Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (40)

Search Parameters:
Keywords = quantum many-body phases

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
68 pages, 5470 KiB  
Article
Does Quantum Mechanics Breed Larger, More Intricate Quantum Theories? The Case for Experience-Centric Quantum Theory and the Interactome of Quantum Theories
by Alireza Tavanfar, Sahar Alipour and Ali T. Rezakhani
Universe 2025, 11(5), 162; https://doi.org/10.3390/universe11050162 - 16 May 2025
Viewed by 619
Abstract
We pose and address the radical question of whether quantum mechanics, known for its firm internal structure and enormous empirical success, carries in itself the genomes of larger quantum theories that have higher internal intricacy and phenomenological versatility. In other words, we consider, [...] Read more.
We pose and address the radical question of whether quantum mechanics, known for its firm internal structure and enormous empirical success, carries in itself the genomes of larger quantum theories that have higher internal intricacy and phenomenological versatility. In other words, we consider, at the basic level of closed quantum systems and regardless of interpretational aspects, whether standard quantum theory (SQT) harbors quantum theories with context-based deformed principles or structures, having definite predictive power within much broader scopes. We answer this question in the affirmative following complementary evidence and reasoning arising from quantum-computation-based quantum simulation and fundamental, general, and abstract rationales within the frameworks of information theory, fundamental or functional emergence, and participatory agency. In this light, as we show, one is led to the recently proposed experience-centric quantum theory (ECQT), which is a larger and richer theory of quantum behaviors with drastically generalized quantum dynamics. ECQT allows the quantum information of the closed quantum system’s developed state history to continually contribute to defining and updating the many-body interactions, the Hamiltonians, and even the internal elements and “particles” of the total system. Hence, the unitary evolutions are continually impacted and become guidable by the agent system’s experience. The intrinsic interplay of unitarity and non-Markovianity in ECQT brings about a host of diverse behavioral phases, which concurrently infuse closed and open quantum system characteristics, and it even surpasses the theory of open systems in SQT. From a broader perspective, a focus of our investigation is the existence of the quantum interactome—the interactive landscape of all coexisting, independent, context-based quantum theories that emerge from inferential participatory agencies—and its predictive phenomenological utility. Full article
(This article belongs to the Section Foundations of Quantum Mechanics and Quantum Gravity)
Show Figures

Figure 1

30 pages, 4446 KiB  
Review
Electrical Transport Interplay with Charge Density Waves, Magnetization, and Disorder Tuned by 2D van der Waals Interface Modification via Elemental Intercalation and Substitution in ZrTe3, 2H-TaS2, and Cr2Si2Te6 Crystals
by Xiao Tong, Yu Liu, Xiangde Zhu, Hechang Lei and Cedomir Petrovic
Nanomaterials 2025, 15(10), 737; https://doi.org/10.3390/nano15100737 - 14 May 2025
Viewed by 684
Abstract
Electrical transport in 2D materials exhibits unique behaviors due to reduced dimensionality, broken symmetries, and quantum confinement. It serves as both a sensitive probe for the emergence of coherent electronic phases and a tool to actively manipulate many-body correlated states. Exploring their interplay [...] Read more.
Electrical transport in 2D materials exhibits unique behaviors due to reduced dimensionality, broken symmetries, and quantum confinement. It serves as both a sensitive probe for the emergence of coherent electronic phases and a tool to actively manipulate many-body correlated states. Exploring their interplay and interdependence is crucial but remains underexplored. This review integratively cross-examines the atomic and electronic structures and transport properties of van der Waals-layered crystals ZrTe3, 2H-TaS2, and Cr2Si2Te6, providing a comprehensive understanding and uncovering new discoveries and insights. A common observation from these crystals is that modifying the atomic and electronic interface structures of 2D van der Waals interfaces using heteroatoms significantly influences the emergence and stability of coherent phases, as well as phase-sensitive transport responses. In ZrTe3, substitution and intercalation with Se, Hf, Cu, or Ni at the 2D vdW interface alter phonon–electron coupling, valence states, and the quasi-1D interface Fermi band, affecting the onset of CDW and SC, manifested as resistance upturns and zero-resistance states. We conclude here that these phenomena originate from dopant-induced variations in the lattice spacing of the quasi-1D Te chains of the 2D vdW interface, and propose an unconventional superconducting mechanism driven by valence fluctuations at the van Hove singularity, arising from quasi-1D lattice vibrations. Short-range in-plane electronic heterostructures at the vdW interface of Cr2Si2Te6 result in a narrowed band gap. The sharp increase in in-plane resistance is found to be linked to the emergence and development of out-of-plane ferromagnetism. The insertion of 2D magnetic layers such as Mn, Fe, and Co into the vdW gap of 2H-TaS2 induces anisotropic magnetism and associated transport responses to magnetic transitions. Overall, 2D vdW interface modification offers control over collective electronic behavior, transport properties, and their interplays, advancing fundamental science and nanoelectronic devices. Full article
Show Figures

Figure 1

24 pages, 4919 KiB  
Article
Quantum Error Mitigation in Optimized Circuits for Particle-Density Correlations in Real-Time Dynamics of the Schwinger Model
by Domenico Pomarico, Mahul Pandey, Riccardo Cioli, Federico Dell’Anna, Saverio Pascazio, Francesco V. Pepe, Paolo Facchi and Elisa Ercolessi
Entropy 2025, 27(4), 427; https://doi.org/10.3390/e27040427 - 14 Apr 2025
Viewed by 485
Abstract
Quantum computing gives direct access to the study of the real-time dynamics of quantum many-body systems. In principle, it is possible to directly calculate non-equal-time correlation functions, from which one can detect interesting phenomena, such as the presence of quantum scars or dynamical [...] Read more.
Quantum computing gives direct access to the study of the real-time dynamics of quantum many-body systems. In principle, it is possible to directly calculate non-equal-time correlation functions, from which one can detect interesting phenomena, such as the presence of quantum scars or dynamical quantum phase transitions. In practice, these calculations are strongly affected by noise, due to the complexity of the required quantum circuits. As a testbed for the evaluation of the real-time evolution of observables and correlations, the dynamics of the Zn Schwinger model in a one-dimensional lattice is considered. To control the computational cost, we adopt a quantum–classical strategy that reduces the dimensionality of the system by restricting the dynamics to the Dirac vacuum sector and optimizes the embedding into a qubit model by minimizing the number of three-qubit gates. The time evolution of particle-density operators in a non-equilibrium quench protocol is both simulated in a bare noisy condition and implemented on a physical IBM quantum device. In either case, the convergence towards a maximally mixed state is targeted by means of different error mitigation techniques. The evaluation of the particle-density correlation shows a well-performing post-processing error mitigation for properly chosen coupling regimes. Full article
(This article belongs to the Special Issue Entanglement in Quantum Spin Systems)
Show Figures

Figure 1

24 pages, 1419 KiB  
Article
Measurement-Induced Symmetry Restoration and Quantum Mpemba Effect
by Giuseppe Di Giulio, Xhek Turkeshi and Sara Murciano
Entropy 2025, 27(4), 407; https://doi.org/10.3390/e27040407 - 10 Apr 2025
Cited by 3 | Viewed by 696
Abstract
Monitoring a quantum system can profoundly alter its dynamical properties, leading to non-trivial emergent phenomena. In this work, we demonstrate that dynamical measurements strongly influence the evolution of symmetry in many-body quantum systems. Specifically, we demonstrate that monitored systems governed by non-Hermitian dynamics [...] Read more.
Monitoring a quantum system can profoundly alter its dynamical properties, leading to non-trivial emergent phenomena. In this work, we demonstrate that dynamical measurements strongly influence the evolution of symmetry in many-body quantum systems. Specifically, we demonstrate that monitored systems governed by non-Hermitian dynamics exhibit a quantum Mpemba effect, where systems with stronger initial asymmetry relax faster to a symmetric state. Crucially, this phenomenon is purely measurement-induced: in the absence of measurements, we find states where the corresponding unitary evolution does not display any Mpemba effect. Furthermore, we uncover a novel measurement-induced symmetry restoration mechanism: below a critical measurement rate, the symmetry remains broken, but beyond a threshold, it is fully restored in the thermodynamic limit—along with the emergence of the quantum Mpemba effect. Full article
(This article belongs to the Special Issue Entanglement Entropy in Quantum Field Theory)
Show Figures

Figure 1

9 pages, 1308 KiB  
Article
Expansion Dynamics of Rydberg-Dressed Ultracold Fermi Gas
by Meimei Wu, Xin Bao, Shuxian Yu, Shujin Deng and Haibin Wu
Photonics 2025, 12(4), 350; https://doi.org/10.3390/photonics12040350 - 8 Apr 2025
Viewed by 518
Abstract
We present a theoretical investigation into the expansion dynamics of Rydberg-dressed ultracold Fermi gases. The effective interaction potential induced by Rydberg dressing significantly modifies the intrinsic properties and dynamical behavior of the quantum gas. The strength and range of these interactions can be [...] Read more.
We present a theoretical investigation into the expansion dynamics of Rydberg-dressed ultracold Fermi gases. The effective interaction potential induced by Rydberg dressing significantly modifies the intrinsic properties and dynamical behavior of the quantum gas. The strength and range of these interactions can be precisely tuned by varying the intensity and detuning of the applied laser field. By employing mean-field theory and utilizing the density distribution of the atomic cloud to describe the quantum system dynamics, we theoretically describe the time-dependent evolution of the atomic cloud during the free expansion process, encompassing both non-interacting and unitary Fermi gases. Notably, the specific quantum states of the ground-state atoms play a pivotal role in shaping the effective interaction potential within the Rydberg-dressed quantum system. We elucidate how the interaction potential influences the rate and mode of the atom cloud’s expansion by hydrodynamic expansion arising from Rydberg-dressed atoms in distinct spin hyperfine states. This investigation may deepen our understanding of the behavior and interactions in quantum many-body systems and offer broad potential for future applications like the exploration of novel quantum phase transitions and emergent phenomena. Full article
Show Figures

Figure 1

25 pages, 975 KiB  
Article
Quantum Classical Algorithm for the Study of Phase Transitions in the Hubbard Model via Dynamical Mean-Field Theory
by Anshumitra Baul, Herbert Fotso, Hanna Terletska, Ka-Ming Tam and Juana Moreno
Quantum Rep. 2025, 7(2), 18; https://doi.org/10.3390/quantum7020018 - 4 Apr 2025
Cited by 1 | Viewed by 2342
Abstract
Modeling many-body quantum systems is widely regarded as one of the most promising applications for near-term noisy quantum computers. However, in the near term, system size limitation will remain a severe barrier for applications in materials science or strongly correlated systems. A promising [...] Read more.
Modeling many-body quantum systems is widely regarded as one of the most promising applications for near-term noisy quantum computers. However, in the near term, system size limitation will remain a severe barrier for applications in materials science or strongly correlated systems. A promising avenue of research is to combine many-body physics with machine learning for the classification of distinct phases. We present a workflow that synergizes quantum computing, many-body theory, and quantum machine learning (QML) for studying strongly correlated systems. In particular, it can capture a putative quantum phase transition of the stereotypical strongly correlated system, the Hubbard model. Following the recent proposal of the hybrid quantum-classical algorithm for the two-site dynamical mean-field theory (DMFT), we present a modification that allows the self-consistent solution of the single bath site DMFT. The modified algorithm can be generalized for multiple bath sites. This approach is used to generate a database of zero-temperature wavefunctions of the Hubbard model within the DMFT approximation. We then use a QML algorithm to distinguish between the metallic phase and the Mott insulator phase to capture the metal-to-Mott insulator phase transition. We train a recently proposed quantum convolutional neural network (QCNN) and then utilize the QCNN as a quantum classifier to capture the phase transition region. This work provides a recipe for application to other phase transitions in strongly correlated systems and represents an exciting application of small-scale quantum devices realizable with near-term technology. Full article
Show Figures

Figure 1

13 pages, 2121 KiB  
Article
Structural Transitions and Melting of Two-Dimensional Ion Crystals in RF Traps
by Boris V. Pashinsky, Alexander Kato and Boris B. Blinov
Entropy 2025, 27(4), 325; https://doi.org/10.3390/e27040325 - 21 Mar 2025
Viewed by 689
Abstract
We investigate the structural properties and melting behaviors of two-dimensional ion crystals in an RF trap, focusing on the effects of ion temperature and trap potential symmetry. We identify distinct crystal structures that form under varying trapping conditions and temperatures through experimental observations [...] Read more.
We investigate the structural properties and melting behaviors of two-dimensional ion crystals in an RF trap, focusing on the effects of ion temperature and trap potential symmetry. We identify distinct crystal structures that form under varying trapping conditions and temperatures through experimental observations and theoretical analyses. As the temperature increases or the trap potential becomes more symmetric, we observe a transition from a lattice arrangement to elongated ring-like formations aligned along the trap axes. Our experimental and theoretical efforts enhance our understanding of phase transitions in low-dimensional, confined systems, offering insights into the controlled formation of quantum crystals for applications in quantum simulations and many-body physics. Full article
(This article belongs to the Special Issue Quantum Computing with Trapped Ions)
Show Figures

Figure 1

12 pages, 1184 KiB  
Article
Three-Phase Confusion Learning
by Filippo Caleca, Simone Tibaldi and Elisa Ercolessi
Entropy 2025, 27(2), 199; https://doi.org/10.3390/e27020199 - 14 Feb 2025
Viewed by 657
Abstract
The use of Neural Networks in quantum many-body theory has undergone a formidable rise in recent years. Among the many possible applications, their pattern recognition power can be utilized when dealing with the study of equilibrium phase diagrams. Learning by Confusion has emerged [...] Read more.
The use of Neural Networks in quantum many-body theory has undergone a formidable rise in recent years. Among the many possible applications, their pattern recognition power can be utilized when dealing with the study of equilibrium phase diagrams. Learning by Confusion has emerged as an interesting and unbiased scheme within this context. This technique involves systematically reassigning labels to the data in various ways, followed by training and testing the Neural Network. While random labeling results in low accuracy, the method reveals a peak in accuracy when the data are correctly and meaningfully partitioned, even if the correct labeling is initially unknown. Here, we propose a generalization of this confusion scheme for systems with more than two phases, for which it was originally proposed. Our construction relies on the use of a slightly different Neural Network: from a binary classifier, we move to a ternary one, which is more suitable to detect systems exhibiting three phases. After introducing this construction, we test it on free and interacting Kitaev chains and on the one-dimensional Extended Hubbard model, consistently achieving results that are compatible with previous works. Our work opens the way to wider use of Learning by Confusion, demonstrating once more the usefulness of Machine Learning to address quantum many-body problems. Full article
(This article belongs to the Section Statistical Physics)
Show Figures

Figure 1

13 pages, 10347 KiB  
Article
Charging a Dimerized Quantum XY Chain
by Riccardo Grazi, Fabio Cavaliere, Niccolò Traverso Ziani and Dario Ferraro
Symmetry 2025, 17(2), 220; https://doi.org/10.3390/sym17020220 - 2 Feb 2025
Cited by 2 | Viewed by 703
Abstract
Quantum batteries are quantum systems designed to store energy and release it on demand. The optimization of their performance is an intensively studied topic within the realm of quantum technologies. Such optimization forces the question: how do quantum many-body systems work as quantum [...] Read more.
Quantum batteries are quantum systems designed to store energy and release it on demand. The optimization of their performance is an intensively studied topic within the realm of quantum technologies. Such optimization forces the question: how do quantum many-body systems work as quantum batteries? To address this issue, we rely on symmetry and symmetry breaking via quantum phase transitions. Specifically, we analyze a dimerized quantum XY chain in a transverse field as a prototype of an energy storage device. This model, which is characterized by ground states with different symmetries depending on the Hamiltonian parameters, can be mapped onto a spinless fermionic chain with superconducting correlations, displaying a rich quantum phase diagram. We show that the stored energy strongly depends on the quantum phase diagram of the model when large charging times are considered. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

9 pages, 292 KiB  
Article
Interaction Between Gravitational Waves and Trapped Bose–Einstein Condensates
by Alessio Perodi and Luca Salasnich
Physics 2024, 6(4), 1306-1314; https://doi.org/10.3390/physics6040081 - 5 Dec 2024
Viewed by 1844
Abstract
Inspired by recent proposals for detecting gravitational waves by using Bose–Einstein condensates (BECs), we investigated the interplay between these two phenomena. A gravitational wave induces a phase shift in the fidelity amplitude of the many-body quantum state. We investigated the enhancement of the [...] Read more.
Inspired by recent proposals for detecting gravitational waves by using Bose–Einstein condensates (BECs), we investigated the interplay between these two phenomena. A gravitational wave induces a phase shift in the fidelity amplitude of the many-body quantum state. We investigated the enhancement of the phase shift in the case of Bose condensates confined by an anisotropic harmonic potential, considering both ideal and interacting BECs. Full article
(This article belongs to the Special Issue Complexity in High Energy and Statistical Physics)
Show Figures

Figure 1

16 pages, 1508 KiB  
Article
Quantum Information Scrambling in Adiabatically Driven Critical Systems
by Ricardo Puebla and Fernando J. Gómez-Ruiz
Entropy 2024, 26(11), 951; https://doi.org/10.3390/e26110951 - 5 Nov 2024
Viewed by 1100
Abstract
Quantum information scrambling refers to the spread of the initially stored information over many degrees of freedom of a quantum many-body system. Information scrambling is intimately linked to the thermalization of isolated quantum many-body systems, and has been typically studied in a sudden [...] Read more.
Quantum information scrambling refers to the spread of the initially stored information over many degrees of freedom of a quantum many-body system. Information scrambling is intimately linked to the thermalization of isolated quantum many-body systems, and has been typically studied in a sudden quench scenario. Here, we extend the notion of quantum information scrambling to critical quantum many-body systems undergoing an adiabatic evolution. In particular, we analyze how the symmetry-breaking information of an initial state is scrambled in adiabatically driven integrable systems, such as the Lipkin–Meshkov–Glick and quantum Rabi models. Following a time-dependent protocol that drives the system from symmetry-breaking to a normal phase, we show how the initial information is scrambled, even for perfect adiabatic evolutions, as indicated by the expectation value of a suitable observable. We detail the underlying mechanism for quantum information scrambling, its relation to ground- and excited-state quantum phase transitions, and quantify the degree of scrambling in terms of the number of eigenstates that participate in the encoding of the initial symmetry-breaking information. While the energy of the final state remains unaltered in an adiabatic protocol, the relative phases among eigenstates are scrambled, and so is the symmetry-breaking information. We show that a potential information retrieval, following a time-reversed protocol, is hindered by small perturbations, as indicated by a vanishingly small Loschmidt echo and out-of-time-ordered correlators. The reported phenomenon is amenable for its experimental verification, and may help in the understanding of information scrambling in critical quantum many-body systems. Full article
(This article belongs to the Special Issue Non-Equilibrium Quantum Many-Body Dynamics)
Show Figures

Figure 1

22 pages, 375 KiB  
Article
Covariant Representation of Spin and Entanglement—A Review and Reformulation
by Martin Land
Symmetry 2024, 16(11), 1465; https://doi.org/10.3390/sym16111465 - 4 Nov 2024
Viewed by 1342
Abstract
A consistent theory of quantum entanglement requires that constituent single-particle states belong to the same Hilbert space, the coherent eigenstates of a complete set of operators in a given representation, defined with respect to a shared continuous parameterization. Formulating such eigenstates for a [...] Read more.
A consistent theory of quantum entanglement requires that constituent single-particle states belong to the same Hilbert space, the coherent eigenstates of a complete set of operators in a given representation, defined with respect to a shared continuous parameterization. Formulating such eigenstates for a single relativistic particle with spin, and applying them to the description of many-body states, presents well-known challenges. In this paper, we review the covariant theory of relativistic spin and entanglement in a framework first proposed by Stueckelberg and developed by Horwitz, Piron, et al. This approach modifies Wigner’s method by introducing an arbitrary timelike unit vector nμ and then inducing a representation of SL(2,C), based on pμ rather than on the spacetime momentum. Generalizing this approach, we construct relativistic spin states on an extended phase space {(xμ,pμ),(ζμ,πμ)}, inducing a representation on the momentum πμ, thus providing a novel dynamical interpretation of the timelike unit vector nμ=πμ/M. Studying the unitary representations of the Poincaré group on the extended phase space allows us to define basis quantities for quantum states and develop the gauge invariant electromagnetic Hamiltonian in classical and quantum mechanics. We write plane wave solutions for free particles and construct stable singlet states, and relate these to experiments involving temporal interference, analogous to the spatial interference known from double slit experiments. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

24 pages, 16614 KiB  
Article
The Second Derivative of Fullerene C60 (SD-C60) and Biomolecular Machinery of Hydrogen Bonds: Water-Based Nanomedicine
by Lidija R. Matija, Ivana Mladen Stankovic, Milica Puric, Milica Miličić, Danijela Maksimović-Ivanić, Sanja Mijatovic, Tamara Krajnović, Vuk Gordic and Djuro Lj. Koruga
Micromachines 2023, 14(12), 2152; https://doi.org/10.3390/mi14122152 - 25 Nov 2023
Cited by 3 | Viewed by 2022
Abstract
The human body contains 60–70% water, depending on age. As a body fluid, it is not only a medium in which physical and chemical processes take place, but it is also one of the active mediators. Water is the richest substance with non-covalent [...] Read more.
The human body contains 60–70% water, depending on age. As a body fluid, it is not only a medium in which physical and chemical processes take place, but it is also one of the active mediators. Water is the richest substance with non-covalent hydrogen bonds. Water molecules, by themselves (in vacuum), are diamagnetic but when organized into clusters, they become diamagnetic or paramagnetic. Also, biomolecules (DNA, collagen, clathrin, and other proteins) have non-covalent hydrogen bonds in their structure. The interaction, as well as signal transmission, between water and biomolecules is achieved through the vibrations of covalent and non-covalent hydrogen bonds, which determine the state and dynamics of conformational changes in biomolecules. Disruptive conformational changes in biomolecules, cells, and tissues lead to their dysfunctionality, so they are a frequent cause of many disorders and diseases. For example, the rearrangement of hydrogen bonding due to mitochondrial disease mutation in cytochrome bc1 disturbs heme bH redox potential and spin state. In order to prevent and repair the dysfunctional conformational changes, a liquid substance was developed based on the second derivative of the C60 molecule (SD-C60), which has classical and quantum properties. The characterization of SD-C60 by UV-VIS-NIR, FTIR, TEM, and AFM/MFM was performed and it is shown that SD-C60 water layers generate vibrations with near-zero phase dispersion which are transmitted through Fibonacci’s water chains to biomolecules. In comparison with previously published SD-C60 derivate (3HFWC, size until 10 nm, and 1–5 water layers), the improved formulation (3HFWC-W, size 10–25 nm, and 6–9 water layers) showed multiplied cytotoxic activity against melanoma cell lines of different aggressiveness. Apart from this, the mode of action was preserved and based on an induction of senescence rather than cell death. Importantly, high selectivity towards malignant phenotypes was detected. Observed effects can be ascribed to a machinery of hydrogen bonds, which are generated in SD-C60 and transmitted through water to biomolecules. This approach may open a new field in science and healthcare—a “water-based nanomedicine”. Full article
(This article belongs to the Special Issue Micromachines in Nanomedicine)
Show Figures

Figure 1

14 pages, 361 KiB  
Communication
Multiscale Entanglement Renormalization Ansatz: Causality and Error Correction
by Domenico Pomarico
Dynamics 2023, 3(3), 622-635; https://doi.org/10.3390/dynamics3030033 - 18 Sep 2023
Cited by 3 | Viewed by 2675
Abstract
Computational complexity reduction is at the basis of a new formulation of many-body quantum states according to tensor network ansatz, originally framed in one-dimensional lattices. In order to include long-range entanglement characterizing phase transitions, the multiscale entanglement renormalization ansatz (MERA) defines a sequence [...] Read more.
Computational complexity reduction is at the basis of a new formulation of many-body quantum states according to tensor network ansatz, originally framed in one-dimensional lattices. In order to include long-range entanglement characterizing phase transitions, the multiscale entanglement renormalization ansatz (MERA) defines a sequence of coarse-grained lattices, obtained by targeting the map of a scale-invariant system into an identical coarse-grained one. The quantum circuit associated with this hierarchical structure includes the definition of causal relations and unitary extensions, leading to the definition of ground subspaces as stabilizer codes. The emerging error correcting codes are referred to logical indices located at the highest hierarchical level and to physical indices yielded by redundancy, framed in the AdS-CFT correspondence as holographic quantum codes with bulk and boundary indices, respectively. In a use-case scenario based on errors consisting of spin erasure, the correction is implemented as the reconstruction of a bulk local operator. Full article
Show Figures

Figure 1

10 pages, 14356 KiB  
Article
Formation of Tesseract Time Crystals on a Quantum Computer
by Christopher Sims
Crystals 2023, 13(8), 1265; https://doi.org/10.3390/cryst13081265 - 17 Aug 2023
Viewed by 2291
Abstract
The engineering of new states of matter through Floquet driving has revolutionized the field of condensed matter physics. This technique enables the creation of hybrid topological states and ordered phases that are absent in normal systems. Crystalline structures, exemplifying spatially ordered systems under [...] Read more.
The engineering of new states of matter through Floquet driving has revolutionized the field of condensed matter physics. This technique enables the creation of hybrid topological states and ordered phases that are absent in normal systems. Crystalline structures, exemplifying spatially ordered systems under periodic driving, have been extensively studied. However, recent focus has shifted towards discrete time crystals (DTCs), periodically driven quantum many-body systems that break time translation symmetry under specific conditions. In this paper, the model of discrete time crystals is extended to allow for the formation of time-varying tesseracts, allowing for the investigation of time translational symmetry in pseudo-higher-dimensional lattice systems. Full article
(This article belongs to the Section Crystal Engineering)
Show Figures

Figure 1

Back to TopTop