Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = pulse arc ion plating technology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5168 KB  
Article
Effects of Pulse Ion Source Arc Voltage on the Structure and Friction Properties of Ta-C Thin Films on NBR Surface
by Sen Feng, Wenzhuang Lu, Fei Guo, Can Wang and Liang Zou
Coatings 2025, 15(7), 809; https://doi.org/10.3390/coatings15070809 - 10 Jul 2025
Viewed by 565
Abstract
Nitrile rubber (NBR) is prone to adhesion and hysteresis deformation when in contact with hard materials, leading to wear failure. To mitigate this issue, the deposition of diamond-like carbon (DLC) films onto the rubber surface is a commonly employed method. By utilizing pulsed [...] Read more.
Nitrile rubber (NBR) is prone to adhesion and hysteresis deformation when in contact with hard materials, leading to wear failure. To mitigate this issue, the deposition of diamond-like carbon (DLC) films onto the rubber surface is a commonly employed method. By utilizing pulsed arc ion plating technology and adjusting the arc voltage of the pulsed arc ion source, tetrahedral amorphous carbon (ta-C) films with varying sp3 content were prepared on the surface of NBR. The effects of arc voltage on the structural composition and friction performance of NBR/ta-C materials were examined. A scanning electron microscopy analysis revealed that the ta-C film applied to the surface of NBR was uniform and dense, exhibiting typical network crack characteristics. The results of Raman spectroscopy and X-ray photoelectron spectroscopy indicated that as the arc voltage increased, the sp3 content in the film initially rose before declining, reaching a maximum of 72.28% at 300 V. Mechanical tests demonstrated that the bonding strength and friction performance of the film are primarily influenced by the percentage of sp3 content. Notably, the ta-C film with lower sp3 content demonstrates enhanced wear resistance. At 200 V, the sp3 content of the film is 58.16%, resulting in optimal friction performance characterized by a stable friction coefficient of 0.38 and minimal wear weight loss. This performance is attributed to the protective qualities of the ta-C film and the formation of a graphitized transfer film. These results provide valuable insights for the design and development of wear-resistant rubber materials. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

14 pages, 4173 KB  
Article
Structure and Properties of Arc Ion Plating Deposited AlCrSiN Coatings Controlled by Pulsed Bias Voltage
by Rui Zhang, Yanmei Liu, Chongyang Wang, Fengting Cao, Qixiang Fan and Tiegang Wang
Metals 2023, 13(8), 1448; https://doi.org/10.3390/met13081448 - 11 Aug 2023
Cited by 5 | Viewed by 2428
Abstract
AlCrSiN coatings are promising protective candidates for cutting and forming tools. During the coating deposition process, the microstructure and properties of the coatings were dramatically affected by bias voltages. To further optimize and enhance the AlCrSiN coating, a series of coatings were deposited [...] Read more.
AlCrSiN coatings are promising protective candidates for cutting and forming tools. During the coating deposition process, the microstructure and properties of the coatings were dramatically affected by bias voltages. To further optimize and enhance the AlCrSiN coating, a series of coatings were deposited at different pulse bias voltages using arc ion plating technology. By virtue of scanning electron microscopy, X-ray diffraction, scratch method, OCP, EIS, and other analytical methods, the effects of the pulse bias voltage on the crystal structure, microstructure, and mechanical, tribological, and electrochemical properties of the AlCrSiN coatings were analyzed. The study revealed that the pulse bias voltage exerted a slight influence on the aluminum and nitrogen content of the coatings. As the pulse bias voltage increased, the hardness, critical load, and tribological performance of the AlCrSiN coatings first increased gradually, and then were impaired slightly. When the pulse bias voltage was −100 V, the resulting AlCrSiN coating exhibited the densest structure, the highest hardness, the strongest adhesion, and the best wear resistance. In this case, the coating hardness and critical load reached 2668 HV and 72.7 N, respectively. The friction coefficient and wear rate were 0.35 and 1.02 × 10−3 μm3/N·μm, respectively. Simultaneously, the AlCrSiN coating demonstrated exceptional corrosion resistance in 3.5 wt.% NaCl solutions, surpassing uncoated 304 steel by 3~4 times. Full article
(This article belongs to the Special Issue Electrochemical Properties of Metallic Coatings)
Show Figures

Figure 1

Back to TopTop