Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (615)

Search Parameters:
Keywords = protein splicing factor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 883 KB  
Article
RB1 Sequence Variants in Retinoblastoma: Analysis of RB1 Variants in a Database for Correlation with pRB Protein Domains and Clinical Presentation
by Nicohol Tovar Martelo and Irene Szijan
Biomedicines 2025, 13(11), 2693; https://doi.org/10.3390/biomedicines13112693 (registering DOI) - 2 Nov 2025
Abstract
Background: Retinoblastoma (RB) is the most common pediatric ocular tumor that occurs due to the biallelic inactivation of the RB1 tumor suppressor gene. RB may be unilateral or bilateral and is hereditary in 50% of cases. An inactivation of the RB1 gene [...] Read more.
Background: Retinoblastoma (RB) is the most common pediatric ocular tumor that occurs due to the biallelic inactivation of the RB1 tumor suppressor gene. RB may be unilateral or bilateral and is hereditary in 50% of cases. An inactivation of the RB1 gene may occur due to gross rearrangements (20%) or due to small-length changes (80%): single nucleotide substitutions (SNVs) and insertions/deletions (INDELs). Objectives: Our objective was to study the frequency of the different RB1 variants present in patients with retinoblastoma and to correlate them with the functional domains of the pRb protein and with the clinical presentation. Methods: For this purpose, we analyzed all the clinically validated germline SNVs and INDELs annotated in the database. They were grouped into the pRb domains; contingency tables were made, and figures were constructed to compare the types of variants in the different domains between bilateral and unilateral patients. Results: The number of variants analyzed was 2103; 34% of them were nonsense, 34% INDELs, 22% splice-site and 10% missense. All these variants mainly gave rise to bilateral RB (88%); their frequency and distribution in relation to pRb domains varied between bilateral (Bi) and unilateral hereditary (Ug) RB. Nonsense variants occurred more frequently in Bi vs. Ug, whereas missense variants were more frequent in Ug vs. Bi. Indels and splice-site variants were not significantly different between Bi and Ug. The most frequent pRB location of variants was in the Pocket domain (the binding site of the E2F transcription factor). The slice-site of the consensus sequence most mutated was the first nucleotide of the donor, which is the driver of the splicing process. Conclusions: The highest percentage of variants in RB corresponded to nonsense substitutions and indels, mainly affecting the Pocket domain, which is the major functional site for the pRb regulatory process. These results indicate the predominance of the most pathogenic variants related to the bilateral presentation of retinoblastoma. Full article
(This article belongs to the Special Issue Pediatric Tumors: Diagnosis, Pathogenesis, Treatment, and Outcome)
Show Figures

Graphical abstract

20 pages, 3922 KB  
Article
Identification and Characterization of SRSF2 as a Splicing-Relevant Factor Associated with the Distribution of Membranous to Secreted PD-L1, Exemplarily Considered on Human Renal Tissue, Including Renal Cell Carcinoma
by Tim Hohmann, Urszula Hohmann, Faramarz Dehghani, Hendrik Borgmann, Olaf Grisk, Galyna Pryymachuk and Simon Jasinski-Bergner
Cancers 2025, 17(21), 3463; https://doi.org/10.3390/cancers17213463 - 28 Oct 2025
Viewed by 147
Abstract
Background: The immunomodulatory molecule PD-L1 and its immunological tolerance-mediating interaction with the PD-1 receptor on many immune effector cells represent one of the most important tumor immune checkpoint axes in antibody-based anti-tumor therapies. Furthermore, PD-L1 is subject to alternative splicing, whereby, in addition [...] Read more.
Background: The immunomodulatory molecule PD-L1 and its immunological tolerance-mediating interaction with the PD-1 receptor on many immune effector cells represent one of the most important tumor immune checkpoint axes in antibody-based anti-tumor therapies. Furthermore, PD-L1 is subject to alternative splicing, whereby, in addition to the membrane-bound PD-L1, secreted PD-L1 is also formed as an additional splice variant. This also exerts its effects in the tumor microenvironment, even away from the actual tumor cells, and contributes additional benefits to immune evasion of the tumor. Methods: To examine the association of the splicing factor SRSF2 with the PD-L1 splicing pattern, respective SRSF2 overexpression and knockdown experiments were performed. The precise characterization of SRSF2 followed in human kidney tissue samples and RCCs, including immunofluorescence staining. The impact of the known oncogenic SRSF2 on the host cell transcriptome was further analyzed by RNA sequencing analyses in SRSF2 overexpression and knockdown experiments. Results: In this original research article, the trans splicing factor SRSF2 is identified to be associated with the shift in the alternative splicing pattern of PD-L1 towards the secreted splice variant. The impact of SRSF2 on the cellular transcriptome was demonstrated, and its involvement in the process of malignant transformation, which is obviously also directly linked to immune evasion. Discussion: The optimization of anti-tumor therapies based on monoclonal antibodies against immunomodulatory axes such as PD-1 and PD-L1, including necessary cost reductions, requires the detailed characterization of the gene expression and gene regulation of such molecules, as well as comprehensive molecular biological diagnostics of the tumor sample before putative therapy formulations, e.g., antibody panel collection. Conclusion: Thus, both the amount of PD-L1 protein produced and its splicing pattern are crucial for therapy success and for selecting the most effective therapeutic antibodies. Full article
Show Figures

Figure 1

20 pages, 3622 KB  
Review
Nuclear CaMKII Isoforms as Regulators of Transcription: From Developmental to Pathological Persistence
by Areli Marlene Gaytán-Gómez, Claudio Adrián Ramos-Cortés, Ricardo Xopan Suarez-García, Diego Alberto Martínez-Islas, Axel Tonatiuh Marroquin-Aguilar, Fernanda Avelino-Vivas, Dafne Montserrat Solis-Galván, Alexis Arturo Laguna-González, Bruno Manuel García-García, Eduardo Minaya-Pérez, Efren Quiñones-Lara, Axel Eduardo Muciño-Galicia, Olga Villamar-Cruz, Luis Enrique Arias-Romero, Sonia León-Cabrera, Leonel Armas-López and Héctor Iván Saldívar-Cerón
Med. Sci. 2025, 13(4), 246; https://doi.org/10.3390/medsci13040246 - 27 Oct 2025
Viewed by 630
Abstract
Calcium/calmodulin-dependent protein kinase II (CaMKII) comprises multiple isoforms with distinct nuclear variants that exert transcriptional control in a context-dependent manner. Among them, CaMKIIδB and δ9 in the heart, and CaMKIIγ in the nervous system, have emerged as regulators of chromatin dynamics, transcription factor [...] Read more.
Calcium/calmodulin-dependent protein kinase II (CaMKII) comprises multiple isoforms with distinct nuclear variants that exert transcriptional control in a context-dependent manner. Among them, CaMKIIδB and δ9 in the heart, and CaMKIIγ in the nervous system, have emerged as regulators of chromatin dynamics, transcription factor activity, and developmental gene programs. Nuclear localization is driven by splice-dependent nuclear localization sequences, with phosphorylation at defined serine residues modulating import and retention. Evidence supports CaMKII-dependent phosphorylation of class IIa HDACs (Ser467/Ser632 in HDAC4), linking CaMKII to MEF2 activation in cardiac hypertrophy, and interactions with NF-κB and HSF1 further expand its nuclear repertoire. In the nervous system, CaMKIIγ contributes to kinase-dependent gene expression, potentially influencing plasticity and disease susceptibility. While these mechanisms highlight nuclear CaMKII as an isoform-specific regulator of transcription, direct evidence remains elusive, and several CaMKII putative substrates require further validation. This review synthesizes current knowledge on nuclear CaMKII isoforms, emphasizes established mechanistic pathways, and outlines unsolved questions critical for understanding their roles in development, disease progression, and therapeutic targeting. Full article
Show Figures

Graphical abstract

26 pages, 43386 KB  
Article
Single-Cell Heterogeneity of Epigenetic Factor Regulation Deciphers Alteration of RNA Metabolism During Proliferative SHH-Medulloblastoma
by Raquel Francés, Jenny Bonifacio-Mundaca, Íñigo Casafont, Christophe Desterke and Jorge Mata-Garrido
Cancers 2025, 17(21), 3424; https://doi.org/10.3390/cancers17213424 - 24 Oct 2025
Viewed by 320
Abstract
Background: Medulloblastoma is an aggressive pediatric brain tumor characterized by marked molecular heterogeneity, which significantly impacts prognosis. The low frequency of genomic mutations in medulloblastoma suggests that alternative mechanisms, such as epigenetic regulation, may play a critical role in its pathogenesis. Methods: Using [...] Read more.
Background: Medulloblastoma is an aggressive pediatric brain tumor characterized by marked molecular heterogeneity, which significantly impacts prognosis. The low frequency of genomic mutations in medulloblastoma suggests that alternative mechanisms, such as epigenetic regulation, may play a critical role in its pathogenesis. Methods: Using the EpiFactors database, we investigated the expression of epigenetic regulators in two independent RNA sequencing cohorts [Pediatric Brain Tumor Atlas (PBTA) and Williamson], stratified by molecular subgroups and clinical outcomes. We further analyzed expression heterogeneity at the single-cell level in malignant medulloblastoma cells using single-cell RNA sequencing. Results: Members of the SWI/SNF superfamily were dysregulated across all four molecular subtypes of medulloblastoma. Subtype-specific alterations were also observed: the acetyltransferase complex was shared between Group 3 (with SMARCD3 as a potential marker) and Group 4 (with RBM24 as a potential marker); SWR1, β-catenin/TCF, and protein–DNA complexes were specifically enriched in SHH-MB (with EYA1 and SATB2 as SHH markers); and RSC-type, PRC1, DNA polymerase complexes, and X-chromosome-related factors were enriched in WNT-MB (with FOXA1 and PIWIL4 as WNT markers). An epigenetic score (epi-score), linked to RNA metabolism and S-adenosyl-L-methionine pathways, was developed and identified as an independent adverse prognostic factor. High epi-scores were associated with proliferative, stem-like SHH malignant cells (characterized by G2/M phase, low pseudotime, and high entropy), exhibiting alterations in RNA splicing, DNA recombination, and nuclear division. Conclusions: Expression heterogeneity of epigenetic regulators is closely associated with molecular subgroups and clinical outcomes in medulloblastoma. These findings highlight the role of epigenetic dysregulation in RNA metabolism and tumor progression, particularly in SHH-driven proliferative cells. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms of Malignant Nervous System Cancers)
Show Figures

Figure 1

16 pages, 3674 KB  
Article
The Ubiquitination of Mycobacterium tuberculosis Rv3717 Promotes Proteasomal Degradation of Interleukin Enhancer-Binding Factor
by Xu-Wen Gui, Teng-Fei Zhang, An-Qi Zheng, Ming-Xin Guo, Qian-Wei Dong and Tao Jiang
Biology 2025, 14(10), 1414; https://doi.org/10.3390/biology14101414 - 14 Oct 2025
Viewed by 482
Abstract
Mycobacterium tuberculosis (M. tuberculosis) has developed some strategies to evade host immune responses through ubiquitination, thereby facilitating persistent mycobacterial infection. The Rv3717 protein has been identified as a peptidoglycan (PG) amidase that contributes to mycobacterial survival, but its exact mechanism is [...] Read more.
Mycobacterium tuberculosis (M. tuberculosis) has developed some strategies to evade host immune responses through ubiquitination, thereby facilitating persistent mycobacterial infection. The Rv3717 protein has been identified as a peptidoglycan (PG) amidase that contributes to mycobacterial survival, but its exact mechanism is still unclear. The findings of this study indicate that Rv3717 inhibits mycobacterial clearance within pulmonary epithelial cells. To elucidate the molecular mechanisms by which Rv3717 facilitates persistent infection, we identified intracellular candidates interacting with Rv3717 using co-immunoprecipitation (Co-IP) combined with liquid chromatography–mass spectrometry (LC-MS/MS). The unique proteins are categorized into three functional networks: mRNA splicing, the immune system process, and the translation process through Protein–Protein Interaction (PPI) analysis. The candidate interacting proteins of Rv3717 are involved in interleukin-2 enhancer-binding factor 2 (ILF2) and TAF15, as well as the polyubiquitin chain (UBC) and E3 ubiquitin ligase TRIM21. Our results suggest that intracellular Rv3717 is likely to influence biological processes through the potential interacting proteins. Our findings confirmed that Rv3717 interacted with interleukin enhancer-binding factor 2 (ILF2) through Co-IP and immunofluorescence assays. Furthermore, Rv3717 was verified to bind with ubiquitin and be degraded through the proteasome system. More importantly, the ubiquitination of Rv3717 accelerated the proteasomal degradation of ILF2 and downregulated the expression of IL-2. This study is the first to propose that the ubiquitination of the mycobacterial membrane vesicle-associated protein Rv3717 facilitates the proteasomal degradation of ILF2, resulting in the downregulation of IL-2 expression. Overall, the role of intracellular Rv3717 in promoting mycobacterial survival is associated with its ubiquitination and the proteasomal degradation of ILF2. Full article
(This article belongs to the Section Infection Biology)
Show Figures

Graphical abstract

21 pages, 2804 KB  
Article
Clinicopathological Significance of Transcription Factor p73 in Breast Cancers: Protein Expression and Transcriptomic Study
by Ahmed Shoqafi, Asmaa Ibrahim, Ayat Lashen, Michael S. Toss, Shatha Alqahtani, Islam Miligy, Mashael Algethami, Amera Sheha, Jennie N. Jeyapalan, Nigel P. Mongan, Andrew R. Green, Emad A. Rakha and Srinivasan Madhusudan
Biomedicines 2025, 13(10), 2484; https://doi.org/10.3390/biomedicines13102484 - 12 Oct 2025
Viewed by 323
Abstract
Background: p73, a member of the p53 family of transcription factors, plays important roles in DNA repair, cell proliferation, angiogenesis, invasion, metastasis, immune evasion, and cytotoxic therapy response. The clinicopathological significance of p73 in breast cancer, particularly in the context of TP53 [...] Read more.
Background: p73, a member of the p53 family of transcription factors, plays important roles in DNA repair, cell proliferation, angiogenesis, invasion, metastasis, immune evasion, and cytotoxic therapy response. The clinicopathological significance of p73 in breast cancer, particularly in the context of TP53 mutation, remains largely unknown. Methods: Clinicopathological significance of p73 and p53 protein expression was evaluated in 1369 invasive BC and 317 ductal carcinomas in situ (DCIS), including in p53 wild-type or p53 mutant tumours. p73 transcripts and splice variants were investigated in breast cancer genomes (TCGA). Results: High cytoplasmic p73 was significantly associated with high tumour grades, high pleomorphism scores, high mitotic scores, high risk Nottingham prognostic index, negative expression of oestrogen receptors (ERs), triple negative phenotypes (all p values ≤ 0.01), and poor breast cancer specific survival (BCSS) (p = 0.013). In TP53 mutant breast cancers, high p73 was significantly associated with aggressive histopathological features (all p ≤ 0.001) and poor BCSS (p = 0.001) but not in p53 wild-type tumours. Conclusions: Cytoplasmic p73 may be a marker of aggressive phenotype and worse prognosis, particularly in p53 mutant breast cancer. p73, in conjunction with altered p53 expression, may be involved in breast cancer pathogenesis. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Figure 1

15 pages, 1351 KB  
Article
NRDE2 Interacts with an Early Transcription Elongation Complex and Widely Impacts Gene Expression
by Marina Srbic, Chaïmaa Belhaouari, Raoul Raffel, Laurine Lemaire, Jerome Barbier, Julie Bossuyt, Charbel Akkawi, Xavier Contreras and Rosemary Kiernan
Int. J. Mol. Sci. 2025, 26(19), 9792; https://doi.org/10.3390/ijms26199792 - 8 Oct 2025
Viewed by 457
Abstract
NRDE2 is a highly conserved protein implicated in post-transcriptional gene silencing in Schizosaccharomyces pombe and Caenorhabditis elegans and has been shown to modulate splicing in mammals. To explore whether NRDE2 participates in additional processes in human cells, we performed tandem affinity purification followed [...] Read more.
NRDE2 is a highly conserved protein implicated in post-transcriptional gene silencing in Schizosaccharomyces pombe and Caenorhabditis elegans and has been shown to modulate splicing in mammals. To explore whether NRDE2 participates in additional processes in human cells, we performed tandem affinity purification followed by proteomic analysis of NRDE2 from nuclear extracts of HEK293T and HeLa cells. Our analysis confirmed the interaction of NRDE2 with its well-characterized partner, the MTR4 helicase (MTREX), as well as with multiple splicing factors. Notably, we also identified interactions with chromatin-associated proteins involved in transcription, including the Polymerase-Associated Factor 1 (PAF1) complex and elongating forms of RNA polymerase II (RNAPII). To further investigate NRDE2 function, we conducted RNA-seq following its transient depletion. Differential expression analysis revealed that loss of NRDE2 alters the expression of thousands of genes. Consistent with earlier reports, we observed splicing defects, particularly intron retention; however, our results indicate that the impact of NRDE2 on intron retention is more extensive than previously recognized. Moreover, intron retention was frequently associated with reduced mRNA expression. Together, these findings suggest that NRDE2 associates with both transcriptional and splicing machineries and plays a broader role in RNA processing than previously appreciated. Full article
Show Figures

Figure 1

16 pages, 2601 KB  
Article
Genome-Wide Isoform Switching Reveals SR45-Mediated Splicing Control of Arabidopsis Leaf Senescence
by Mohammed Albaqami and Ghaydaa Osamah Almaghrabi
Int. J. Mol. Sci. 2025, 26(19), 9784; https://doi.org/10.3390/ijms26199784 - 8 Oct 2025
Viewed by 449
Abstract
Leaf senescence is the final, programmed stage of leaf development, marked by nutrient remobilization and tightly regulated molecular events. Although alternative splicing has emerged as a major regulator of plant development, its role in isoform switching during leaf aging remains poorly understood. To [...] Read more.
Leaf senescence is the final, programmed stage of leaf development, marked by nutrient remobilization and tightly regulated molecular events. Although alternative splicing has emerged as a major regulator of plant development, its role in isoform switching during leaf aging remains poorly understood. To address this, we conducted a genome-wide analysis of isoform switching in Arabidopsis, leveraging publicly available RNA-seq data from mature (16-day-old) and senescent (30-day-old) leaves, analyzed with the IsoformSwitchAnalyzeR package. Between these two developmental stages, we identified 269 genes exhibiting 377 significant isoform switches collectively predicted to alter protein localization, coding potential, and transcript stability. Experimental validation confirmed predicted switching at the PUS3 (Pseudouridine Synthase 3) locus, with sequence analysis revealing an age-dependent shift from mitochondrial-targeted to cytoplasmic isoforms. Gene Ontology enrichment analysis of switching genes revealed 82 significant terms, prominently associated with metabolism, gene expression, developmental regulation, and stress responses. Interestingly, we found nearly one-third of switching genes to overlap with known targets of the splicing factor SR45, with enrichment in pathways related to nucleotide and amino acid metabolism, energy production, and developmental processes. Correspondingly, dark-induced senescence assays revealed accelerated senescence in the sr45 mutant, confirming SR45′s role in regulating leaf aging. Specific complementation of SR45′s two isoforms revealed contrasting functions, with SR45.1 restoring normal senescence timing while SR45.2 failed to complement. Taken together, our findings demonstrate that differential isoform usage, orchestrated by specific splicing regulators, plays a critical role in leaf aging. This insight opens new avenues for manipulating senescence and engineering stay-green traits in crops. Full article
Show Figures

Figure 1

16 pages, 1306 KB  
Review
Saying “Yes” to NONO: A Therapeutic Target for Neuroblastoma and Beyond
by Sofya S. Pogodaeva, Olga O. Miletina, Nadezhda V. Antipova, Alexander A. Shtil and Oleg A. Kuchur
Cancers 2025, 17(19), 3228; https://doi.org/10.3390/cancers17193228 - 3 Oct 2025
Viewed by 514
Abstract
Pediatric tumors such as neuroblastoma are characterized by a genome-wide ‘transcriptional burden’, surmising the involvement of multiple alterations of gene expression. Search for master regulators of transcription whose inactivation is lethal for tumor cells identified the non-POU domain-containing octamer-binding protein (NONO), a member [...] Read more.
Pediatric tumors such as neuroblastoma are characterized by a genome-wide ‘transcriptional burden’, surmising the involvement of multiple alterations of gene expression. Search for master regulators of transcription whose inactivation is lethal for tumor cells identified the non-POU domain-containing octamer-binding protein (NONO), a member of the Drosophila Behavior/Human Splicing family known for the ability to form complexes with macromolecules. NONO emerges as an essential mechanism in normal neurogenesis as well as in tumor biology. In particular, NONO interactions with RNAs, largely with long non-coding MYCN transcripts, have been attributed to the aggressiveness of neuroblastoma. Broadening its significance beyond MYCN regulation, NONO guards a subset of transcription factors that comprise a core regulatory circuit, a self-sustained loop that maintains transcription. As a component of protein–protein complexes, NONO has been implicated in the control of cell cycle progression, double-strand DNA repair, and, generally, in cell survival. Altogether, the pro-oncogenic roles of NONO justify the need for its inactivation as a therapeutic strategy. However, considering NONO as a therapeutic target, its druggability is a challenge. Recent advances in the inactivation of NONO and downstream signaling with small molecular weight compounds make promising the development of pharmacological antagonists of NONO pathway(s) for neuroblastoma treatment. Full article
(This article belongs to the Special Issue Precision Medicine and Targeted Therapies in Neuroblastoma)
Show Figures

Figure 1

13 pages, 981 KB  
Review
Isoform-Specific Roles and Therapeutic Targeting of RUNX1 in Hematopoiesis and Leukemogenesis
by Seungjun Kim and Kiwon Lee
Hemato 2025, 6(3), 33; https://doi.org/10.3390/hemato6030033 - 17 Sep 2025
Cited by 1 | Viewed by 746
Abstract
Runt-related transcription factor 1 (RUNX1) is a key transcription factor in hematopoiesis, producing multiple major isoforms, RUNX1A, B, and C, via alternative promoter usage and splicing. These isoforms have distinct roles in hematopoiesis and leukemogenesis. Imbalances in isoform expression, such as RUNX1A overexpression [...] Read more.
Runt-related transcription factor 1 (RUNX1) is a key transcription factor in hematopoiesis, producing multiple major isoforms, RUNX1A, B, and C, via alternative promoter usage and splicing. These isoforms have distinct roles in hematopoiesis and leukemogenesis. Imbalances in isoform expression, such as RUNX1A overexpression or RUNX1C loss, contribute to leukemogenesis in disorders. RUNX1 isoform expression is regulated by transcriptional, epigenetic, and splicing mechanisms and is further influenced by genome architecture. Pathogenic variants, including truncations and fusion proteins, disrupt isoform homeostasis and transcriptional control for the target genes in hematopoiesis. Recent therapeutic strategies aim to restore isoform balance rather than inhibit RUNX1 globally. Approaches include splice-switching oligonucleotides, CRISPR-based promoter modulation, and enhancer-targeted therapies. Understanding isoform-specific RUNX1 biology offers new opportunities for precision treatment of hematologic malignancies. Full article
(This article belongs to the Section Leukemias)
Show Figures

Figure 1

23 pages, 3749 KB  
Article
Differential Gene Expression and Protein–Protein Interaction Networks in Bovine Leukemia Virus Infected Cattle: An RNA-Seq Study
by Ana S. González-Méndez, Mohammad Mehdi Akbarin, Fernando Cerón-Téllez, Gabriel Eduardo Acevedo-Jiménez, Cecilia Rodríguez-Murillo, Víctor David González-Fernández, Lucero de María Ávila-De la Vega, Marisela Leal-Hernández and Hugo Ramírez Álvarez
Pathogens 2025, 14(9), 887; https://doi.org/10.3390/pathogens14090887 - 4 Sep 2025
Viewed by 812
Abstract
Introduction: Bovine leukemia virus is a single-stranded RNA virus that targets B cell CD5+ lymphocytes in cattle. Only a tiny percentage of individuals develop malignant lymphoproliferative disorders, while most remain healthy carriers or experience persistent lymphocytosis. The exact mechanisms leading to lymphoma [...] Read more.
Introduction: Bovine leukemia virus is a single-stranded RNA virus that targets B cell CD5+ lymphocytes in cattle. Only a tiny percentage of individuals develop malignant lymphoproliferative disorders, while most remain healthy carriers or experience persistent lymphocytosis. The exact mechanisms leading to lymphoma development are complex and not fully understood. RNA-seq analysis of cows’ peripheral blood leukocytes (PBLs) with and without Bovine leukemia virus (BLV) antibodies was conducted to gain a deeper understanding of molecular events beyond BLV infection. Method: Eighteen samples were selected, and their RNA was sequenced. For gene expression analysis and protein–protein network interactions, three groups were selected, including healthy negative samples (CT, n = 7), asymptomatic carriers (AC, n = 5), and persistent lymphocytosis (PL, n = 6), to provide the differentially expressed gene (DEG) and protein–protein interaction network (PPIN) outputs. Results: Our results demonstrated that in comparison to CT, ACs upregulated TLR7 and transcription activation factors. In the CT vs. PL group, MHC class II, transcription activation factors, and anti-inflammatory cytokines increased, while the acute-phase proteins, antiviral receptors, and inflammatory cytokines decreased. Additionally, antiviral receptors, acute-phase proteins, and inflammatory receptors were downregulated in the PL versus the AC groups. Moreover, PPINs analysis suggested that nuclear receptor corepressor 1 (NCOR1), serine/arginine repetitive matrix 2 (SRRM2), LUC7 like 3 pre-mRNA splicing factor (LUC7L3), TWIST neighbor (TWISTNB), U6 small nuclear RNA and mRNA degradation associated (LSM4), eukaryotic translation elongation factor 2 (EEF2), ubiquitin C (UBC), CD74, and heterogeneous nuclear ribonucleoprotein A2/B1 (HNRNP A2B1) are possible hub gene candidates in the PL group. Conclusions: Our results suggest that innate and cellular immune responses are more loose in severe BLV infectious conditions, while the PPINs revealed that new protein interactions are necessary for oncogenesis. Full article
(This article belongs to the Special Issue New Insights into Viral Infections of Domestic Animals)
Show Figures

Figure 1

21 pages, 3912 KB  
Article
The Global Transcription Factor FvCon7 Plays a Role in the Morphology, FB1 Toxin Production, and Pathogenesis of Fusarium verticillioides
by Gaolong Wen, Xiange Lu, Jiayan Liang, Yi Liu, Xudong Zhang, Guodong Lu, Zonghua Wang and Wenying Yu
Plants 2025, 14(17), 2725; https://doi.org/10.3390/plants14172725 - 1 Sep 2025
Viewed by 636
Abstract
Fusarium verticillioides, an important global pathogenic fungus, compromises crop quality and yield by infecting maize, sugarcane, and some Solanaceae, endangering food security through contaminated grains and cereals with the fumonisin B1 (FB1) toxin. While Con7 has been reported as a transcription factor [...] Read more.
Fusarium verticillioides, an important global pathogenic fungus, compromises crop quality and yield by infecting maize, sugarcane, and some Solanaceae, endangering food security through contaminated grains and cereals with the fumonisin B1 (FB1) toxin. While Con7 has been reported as a transcription factor involved in the sporulation and pathogenicity of some pathogenic fungi, the function of FvCon7 and its regulatory genes in F. verticillioides remains uncharacterized. Gene deletion mutants of ΔFvcon7 were constructed through homologous recombination, which exhibited defects in vegetative growth, survival, sporophore development, conidiation, conidial germination, and carbon metabolism. Carbon metabolism defects led to a significant accumulation of glycogen granules in hypha and lipid bodies in conidia. Additionally, ΔFvcon7 displayed impaired cell wall structure and integrity, along with an altered expression of genes encoding cell wall-degrading enzymes (such as chitinase), as detected by qRT-PCR. Moreover, Fvcon7 also plays a role in the pathogenicity of maize and sugarcane through different splicing, defective conidia, reduced survival viability, differential expression of secreted proteins, and deficiencies in antioxidant stress capacity. Furthermore, using yeast one-hybrid (Y1H) assays, FvCon7 was found for the first time to directly regulate the expression of FvFUMs by binding to the CCAAT box within the promoters of six key FvFUMs, thereby affecting FB1 production. Overall, FvCon7 functions as a global transcription factor regulating multiple phenotypes. This study provides a theoretical basis for elucidating the mechanism of transcription factor FvCon7 regulating toxin production and pathogenesis in F. verticillioides. Full article
Show Figures

Figure 1

21 pages, 3542 KB  
Article
BQ323636.1 Employs the AR-CCRK Axis to Modulate the Expression of KU70 to Interfere with Non-Homologous End Joining Mediated DNA Repair Mechanism
by Ho Tsoi, Zi-Qing So, Ellen P. S. Man, Chan-Ping You, Koei Ho-Lam Cheung, Yin-Suen Tse, Wing-Lok Chan and Ui-Soon Khoo
Cells 2025, 14(17), 1341; https://doi.org/10.3390/cells14171341 - 29 Aug 2025
Viewed by 696
Abstract
BQ323636.1 (BQ) is a splice variant of NCOR2. Its overexpression is associated with endocrine therapy and chemoresistance in estrogen receptor-positive (ER+ve) breast cancer. This study investigates how BQ overexpression drives doxorubicin (DOX) resistance by enhancing androgen receptor (AR) signaling and non-homologous end joining [...] Read more.
BQ323636.1 (BQ) is a splice variant of NCOR2. Its overexpression is associated with endocrine therapy and chemoresistance in estrogen receptor-positive (ER+ve) breast cancer. This study investigates how BQ overexpression drives doxorubicin (DOX) resistance by enhancing androgen receptor (AR) signaling and non-homologous end joining (NHEJ). BQ overexpressed breast cancer cell lines (MCF-7, T-47D, BT-549, MDA-MB-453), showed increased AR activity (ARE-luciferase assay) and demonstrated DOX resistance (EC50 > 10-fold with DHT, p < 0.05), as assessed via cell viability, TUNEL, and comet assays. RNA-sequencing (GSE295979, GSE2048) revealed the involvement of AR signaling. BQ upregulated cell cycle-related kinase (CCRK), stabilizing KU70, a key NHEJ protein, resulting in enhanced NHEJ activity (EJ5-GFP assay, p < 0.01). Co-immunoprecipitation confirmed the interaction between CCRK and KU70, and CCRK was found to modulate the protein stability of KU70. AR inhibition with bicalutamide in BQ overexpressing cells reversed DOX resistance. Xenograft models validated AR-dependent DOX resistance. In ER+ve breast cancer patient samples, high CCRK expression correlated with DOX resistance (p = 0.002) and metastasis (p = 0.001). Kaplan–Meier analysis showed poorer overall survival (p < 0.001) and disease-specific survival (p < 0.001) in cancers with high CCRK. Cox-regression analysis showed that high CCRK was a poorer prognostic factor of overall survival (p < 0.001; RR 3.056, 95% CI 1.661, 5.621, AR (p < 0.001; RR 3.420, 95% CI 1.783, 6.562), and disease-specific survival (p < 0.001; RR 2.731, 95% CI 1.472, 5.067). The BQ-AR-CCRK-KU70 axis represents a novel mechanism of DOX resistance in ER+ve breast cancer, suggesting AR or CCRK inhibition as a potential therapeutic strategy. Full article
(This article belongs to the Special Issue Molecular Mechanism and Therapeutic Opportunities of Breast Cancer)
Show Figures

Figure 1

17 pages, 3062 KB  
Review
Leptin Signaling in the Hypothalamus: Cellular Insights and Therapeutic Perspectives in Obesity
by Milen Hristov
Endocrines 2025, 6(3), 42; https://doi.org/10.3390/endocrines6030042 - 28 Aug 2025
Viewed by 2983
Abstract
Leptin, an adipocyte-derived hormone, plays a central role in the regulation of energy homeostasis by acting on distinct hypothalamic nuclei. This review explores recent advances in our understanding of leptin’s region-specific actions within the arcuate nucleus, ventromedial hypothalamus, dorsomedial hypothalamus, and lateral hypothalamus, [...] Read more.
Leptin, an adipocyte-derived hormone, plays a central role in the regulation of energy homeostasis by acting on distinct hypothalamic nuclei. This review explores recent advances in our understanding of leptin’s region-specific actions within the arcuate nucleus, ventromedial hypothalamus, dorsomedial hypothalamus, and lateral hypothalamus, highlighting their contributions to appetite regulation, energy expenditure, and neuroendocrine function. In the hypothalamic arcuate nucleus, leptin’s differential regulation of pro-opiomelanocortin and agouti-related peptide/neuropeptide Y neurons is now complemented by the identification of novel leptin-responsive neuronal populations—such as those expressing prepronociceptin, basonuclin 2, and Pirt—as well as a growing array of cellular and molecular modulators, including secreted factors like angiopoietin-like growth factor, zinc-α2-glycoprotein, and spexin, intracellular regulators such as Rap1, growth factor receptor-bound protein 10, and spliced X-box binding protein 1. In the ventromedial hypothalamus, leptin integrates with both peripheral (e.g., cholecystokinin) and central (e.g., pituitary adenylate cyclase-activating polypeptide) signals, while epigenetic mechanisms, such as those mediated by Jumonji domain-containing protein D3, regulate leptin receptor expression and sensitivity. The dorsomedial hypothalamus is increasingly recognized for coordinating leptin’s effects on metabolism, circadian rhythms, and respiration through distinct neuronal populations, including a subset of neurons co-expressing GLP-1 receptors that mediate leptin’s metabolic effects. In the lateral hypothalamus, leptin modulates reward-driven feeding via GABAergic neuronal populations—circuits that are particularly susceptible to disruption following early life trauma. Together, these insights reveal a sophisticated neurobiological framework through which leptin orchestrates systemic physiology. Understanding the heterogeneity of leptin signaling opens new avenues for restoring leptin sensitivity and developing personalized therapeutic strategies to combat obesity and related metabolic disorders. Full article
(This article belongs to the Section Neuroendocrinology and Pituitary Disorders)
Show Figures

Figure 1

13 pages, 2140 KB  
Communication
Low-Dose Dimethyl Sulfoxide (DMSO) Suppresses Androgen Receptor (AR) and Its Splice Variant AR-V7 in Castration-Resistant Prostate Cancer (CRPC) Cells
by Namrata Khurana, Hogyoung Kim, Talal Khan, Shohreh Kahhal, Amar Bukvic, Asim B. Abdel-Mageed, Debasis Mondal and Suresh C. Sikka
Therapeutics 2025, 2(3), 15; https://doi.org/10.3390/therapeutics2030015 - 27 Aug 2025
Viewed by 1920
Abstract
Background: The outgrowth of castration-resistant prostate cancer (CRPC) dictates patient morbidity and mortality. Recurrence of prostate cancer (PC) following androgen-deprivation therapy (ADT) often occurs due to constitutively active androgen receptor (AR) splice variants (AR-Vs), primarily AR-V7. Therefore, safe and effective therapies enabling [...] Read more.
Background: The outgrowth of castration-resistant prostate cancer (CRPC) dictates patient morbidity and mortality. Recurrence of prostate cancer (PC) following androgen-deprivation therapy (ADT) often occurs due to constitutively active androgen receptor (AR) splice variants (AR-Vs), primarily AR-V7. Therefore, safe and effective therapies enabling the suppression of both full-length AR (AR-FL) and AR-Vs are urgently needed. The natural compound dimethyl sulfoxide (DMSO) has negligible cytotoxicity at concentrations below 5% and has anticancer potential. DMSO has been broadly used in biomedical research as a solvent for pharmaceuticals, as a cryoprotectant for cells, and as a topical treatment to suppress pain and inflammation. We investigated the effect of low-dose DMSO on AR expression, cell viability, and metastatic ability in PC cell lines expressing both AR-FL and AR-V7 (e.g., 22Rv1) and those expressing only AR-FL (e.g., C4-2B). Methods: MTT cell viability assays were performed to measure DMSO-induced cytotoxicity. Wound-healing assays were conducted to monitor the effect of DMSO on the migratory phenotype of cancer cells. Western blot analyses were performed to study the efficacy of DMSO in suppressing the protein levels of AR-FL and AR-V7, and expression of heterogeneous nuclear ribonucleoprotein H1 (hnRNPH1) was measured as a possible mechanism. Results: At concentrations of 0.1–1% (v/v), DMSO treatment showed minimal cytotoxicity, whereas the highest concentration used (2.5%) showed approximately 20% cytotoxicity at 96 h. Interestingly, however, DMSO treatment at concentrations of 1.0 and 2.5% significantly inhibited the migration of PC cells. Treatment with DMSO led to a dose-dependent inhibition of both AR-FL and AR-V7. Notably, in 22Rv1 cells, DMSO potently downregulated the expression of hnRNPH1, a splicing factor often associated with AR expression and signaling. Conclusions: Our findings suggest that low concentrations of DMSO may have potential as an effective anticancer agent, both at the initial and later stages when PC cells become castration resistant. Full article
Show Figures

Figure 1

Back to TopTop