Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (345)

Search Parameters:
Keywords = protein assembly mutation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2961 KB  
Article
Effects of Swapping 5HT3 and α7 Residues in Chimeric Receptor Proteins on RIC3 and NACHO Chaperone Actions
by Zixuan Yan, Sreeharshini Oruganti, Swetha K. Iyer, Kushboo Agarwal, Mitali Gupta, Ketaki Adhikari, Nevetha Vijayan, Jash Doda, Vaishali Jain, Arya N. Lokhande, Aadhya P. Nair, Venkat Sri K. Nallanichakravarthula, Maegan M. Weltzin and Ralph H. Loring
Molecules 2025, 30(21), 4235; https://doi.org/10.3390/molecules30214235 - 30 Oct 2025
Viewed by 485
Abstract
Alpha7 nicotinic receptors (α7-nAChRs) are implicated in many neurological disorders, but how they fold and assemble is not well understood. Unlike native α7-nAChRs, α7-5HT3 chimeras fold efficiently in HEK cells and do not require chaperones RIC3 or TMEM35A (NACHO) for proper assembly. We [...] Read more.
Alpha7 nicotinic receptors (α7-nAChRs) are implicated in many neurological disorders, but how they fold and assemble is not well understood. Unlike native α7-nAChRs, α7-5HT3 chimeras fold efficiently in HEK cells and do not require chaperones RIC3 or TMEM35A (NACHO) for proper assembly. We investigated the effects of swapping 5HT3 and α7-receptor protein sequences on α7-5HT3R chimera surface expression in mammalian HEK293 or Bosc23 cells, or chimeric receptor function using Xenopus laevis oocytes with or without chaperones. α7-5HT3Rs, consisting of human α7-nAChRs with mouse 5HT3 transmembrane domains (TMs) express without chaperones as measured by cell surface alpha-bungarotoxin binding. However, when subunit TMs from α7-nAChRs and 5HT3Rs were mixed, chaperones were required. Substituting the SAP motif prior to the α7-nAChR “Latch” tail sequence for the 5HT3 C-terminal decreased expression relative to α7-nAChRs with chaperones. Chaperone effects on L264 and G265 mutations in M2 were also investigated. Some constructs that express well in HEK293 or Bosc23 cells are nonfunctional in oocytes with or without NACHO. Our data do not support direct binding of RIC3 or NACHO to the α7-nAChR TM4 (M4) region; instead, they emphasize the functional importance of the conserved SAP motif. Full article
(This article belongs to the Section Molecular Structure)
Show Figures

Graphical abstract

20 pages, 5128 KB  
Article
Bioinformatics Approach to mTOR Signaling Pathway-Associated Genes and Cancer Etiopathogenesis
by Kursat Ozdilli, Gozde Oztan, Demet Kıvanç, Ruştu Oğuz, Fatma Oguz and Hayriye Senturk Ciftci
Genes 2025, 16(11), 1253; https://doi.org/10.3390/genes16111253 - 24 Oct 2025
Viewed by 444
Abstract
Background/Objectives: The mTOR serine/threonine kinase coordinates protein translation, cell growth, and metabolism, and its dysregulation promotes tumorigenesis. We present a reproducible, pan-cancer, network-aware framework that integrates curated resources with genomics to move beyond pathway curation, yielding falsifiable hypotheses and prioritized candidates for [...] Read more.
Background/Objectives: The mTOR serine/threonine kinase coordinates protein translation, cell growth, and metabolism, and its dysregulation promotes tumorigenesis. We present a reproducible, pan-cancer, network-aware framework that integrates curated resources with genomics to move beyond pathway curation, yielding falsifiable hypotheses and prioritized candidates for mTOR axis biomarker validation. Materials and Methods: We assembled MTOR-related genes and interactions from GeneCards, KEGG, STRING, UniProt, and PathCards and harmonized identifiers. We formulated a concise working model linking genotype → pathway architecture (mTORC1/2) → expression-level rewiring → phenotype. Three analyses operationalized this model: (i) pan-cancer alteration mapping to separate widely shared drivers from tumor-specific nodes; (ii) expression-based activity scoring to quantify translational/nutrient-sensing modules; and (iii) topology-aware network propagation (personalized PageRank/Random Walk with Restart on a high-confidence STRING graph) to nominate functionally proximal neighbors. Reproducibility was supported by degree-normalized diffusion, predefined statistical thresholds, and sensitivity analyses. Results: Gene ontology analysis demonstrated significant enrichment for mTOR-related processes (TOR/TORC1 signaling and cellular responses to amino acids). Database synthesis corroborated disease associations involving MTOR and its partners (e.g., TSC2, RICTOR, RPTOR, MLST8, AKT1 across selected carcinomas). Across cohorts, our framework distinguishes broadly shared upstream drivers (PTEN, PIK3CA) from lineage-enriched nodes (e.g., RICTOR-linked components) and prioritizes non-mutated, network-proximal candidates that align with mTOR activity signatures. Conclusions: This study delivers a transparent, pan-cancer framework that unifies curated biology, genomics, and network topology to produce testable predictions about the mTOR axis. By distinguishing shared drivers from tumor-specific nodes and elevating non-mutated, topology-inferred candidates, the approach refines biomarker discovery and suggests architecture-aware therapeutic strategies. The analysis is reproducible and extensible, supporting prospective validation of prioritized candidates and the design of correlative studies that align pathway activity with clinical response. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

11 pages, 957 KB  
Technical Note
vvv2_align_SE, vvv2_align_PE/vvv2_display: Galaxy-Based Workflows and Tool Designed to Perform, Summarize and Visualize Variant Calling and Annotation in Viral Genome Assemblies
by Alexandre Flageul, Edouard Hirchaud, Céline Courtillon, Flora Carnet, Paul Brown, Béatrice Grasland and Fabrice Touzain
Viruses 2025, 17(10), 1385; https://doi.org/10.3390/v17101385 - 17 Oct 2025
Viewed by 348
Abstract
Background: Next-generation sequencing (NGS) analysis of viral samples generates results dispersed across multiple files—genome assembly, variant calling, and functional annotations—making integrated interpretation challenging. Variants often yield numerous low-frequency or non-significant variants, yet only a small fraction are biologically relevant. Virologists must manually [...] Read more.
Background: Next-generation sequencing (NGS) analysis of viral samples generates results dispersed across multiple files—genome assembly, variant calling, and functional annotations—making integrated interpretation challenging. Variants often yield numerous low-frequency or non-significant variants, yet only a small fraction are biologically relevant. Virologists must manually sift through extensive data to identify meaningful mutations, a time-consuming and error-prone process. To address these practical challenges, we developed vvv2_display, a dedicated summarization and visualization tool, integrated within comprehensive Galaxy workflows. Results: vvv2_display streamlines variant interpretation by consolidating key results into two concise and interoperable outputs. The first output is a PNG image showing alignment coverage depth and genomic annotations, with significant variants displayed along the genome as symbols whose height reflects frequency and shape indicates the affected protein. At a glance, this enables virologists to identify all deviations from a reference viral genome. Each significant variant is assigned a unique identifier that directly links to the second output: a tab-separated (TSV) text file listing only high-confidence variants, with frequencies, flanking nucleotides, and impacted genes and proteins. This cross-referenced design supports rapid, accurate, and intuitive data exploration. Availability: vvv2_display is open source, available on Github and installable via Mamba. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

11 pages, 1738 KB  
Brief Report
FLAG Immunoprecipitation-Based Mapping of the In Vivo Assembled Spliceosomal C* Complex
by Sweta Kumari and Kusum K. Singh
Int. J. Mol. Sci. 2025, 26(20), 9914; https://doi.org/10.3390/ijms26209914 - 12 Oct 2025
Viewed by 370
Abstract
Pre-mRNA splicing is catalyzed by the ribonucleoprotein (RNP) complex known as the spliceosome. The spliceosomes are dynamic and undergo constant rearrangement, leading to the formation of the different spliceosomal complexes A, B, Bact, C, C*, and P. Isolation of the spliceosomal [...] Read more.
Pre-mRNA splicing is catalyzed by the ribonucleoprotein (RNP) complex known as the spliceosome. The spliceosomes are dynamic and undergo constant rearrangement, leading to the formation of the different spliceosomal complexes A, B, Bact, C, C*, and P. Isolation of the spliceosomal complex at a specific intermediate stage requires a means to enrich it. This study describes a strategy for studying intermediate spliceosomal complexes by combining BioID with splicing assays. The MINX splicing substrate with a mutation at the 3′ splice site was utilized to arrest and capture the spliceosomal C* complex before the second catalytic step of splicing. The splicing substrate also contains binding sites for the MS2 coat protein, which facilitates the pull-down of assembled complex by FLAG-MS2-tagged RNP immunoprecipitation and determines the captured proximal proteins by mass spectrometry. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

18 pages, 4063 KB  
Article
Welander Distal Myopathy-Associated TIA1 E384K Mutation Disrupts Stress Granule Dynamics Under Distinct Stress Conditions
by Beatriz Ramos-Velasco, José Alcalde and José M. Izquierdo
Biology 2025, 14(9), 1288; https://doi.org/10.3390/biology14091288 - 18 Sep 2025
Viewed by 656
Abstract
Cellular stress triggers the formation of diverse RNA–protein aggregates, which can be associated with physiological responses, pathological conditions, or even detrimental outcomes. Under stress-induced proteostasis disruption, these RNA–protein assemblies are known as stress granules (SGs). Targeting such condensates—while sparing functional RNAs and proteins—remains [...] Read more.
Cellular stress triggers the formation of diverse RNA–protein aggregates, which can be associated with physiological responses, pathological conditions, or even detrimental outcomes. Under stress-induced proteostasis disruption, these RNA–protein assemblies are known as stress granules (SGs). Targeting such condensates—while sparing functional RNAs and proteins—remains a major therapeutic challenge in protein aggregation disorders such as myopathies and neuropathies. In this study, we investigated the cellular response to various stress conditions in the context of the TIA1 E384K mutation, a founder variant implicated in both Welander distal myopathy (WDM) and amyotrophic lateral sclerosis (ALS). Cells were exposed to different stressors, including proteotoxic, proteostatic, chemotoxic, and osmotic insults, and the behavior of TIA1-related SGs was analyzed. Our findings reveal a distinct yet conserved pattern in the dynamics of TIA1-dependent SG formation and clearance, influenced by the specific type of stressor and modulated by eIF2α Ser35 phosphorylation. These results indicate that the WDM-associated TIA1 mutation leads to aberrant SG dynamics across different stress conditions. Collectively, these observations support the idea that TIA1 E384K-associated SG dysregulation plays a role in WDM and ALS pathogenesis and underscores the importance of multiple stress contexts in disease progression. Full article
Show Figures

Figure 1

16 pages, 636 KB  
Review
Stress-Induced Membraneless Organelles in Neurons: Bridging Liquid–Liquid Phase Separation and Neurodevelopmental Dysfunction
by Norbert Bencsik, Daniel Kimsanaliev, Krisztián Tárnok and Katalin Schlett
Int. J. Mol. Sci. 2025, 26(18), 9068; https://doi.org/10.3390/ijms26189068 - 17 Sep 2025
Viewed by 1209
Abstract
Liquid–liquid phase separation (LLPS) in cell biology has revolutionized our understanding of how cells organize biochemical reactions and structures through dynamic, membraneless organelles (MLOs). In neurons, LLPS-driven processes are particularly important for regulating synaptic plasticity, RNA metabolism, and responses to environmental stressors. Over [...] Read more.
Liquid–liquid phase separation (LLPS) in cell biology has revolutionized our understanding of how cells organize biochemical reactions and structures through dynamic, membraneless organelles (MLOs). In neurons, LLPS-driven processes are particularly important for regulating synaptic plasticity, RNA metabolism, and responses to environmental stressors. Over the past decade, LLPS has gained increasing attention in neurobiology as a framework to interpret altered synaptic functions in various neurodevelopmental disorders (NDDs). These diseases comprise a diverse spectrum of clinical and pathological symptoms (e.g., global developmental delay, impaired cognitive and mental functions, as well as social withdrawal). Recent studies have highlighted how mutations in proteins containing intrinsically disordered regions (IDRs)—key drivers of LLPS—can alter condensate properties, resulting in persistent or defective MLO formation. These aberrant assemblies may disrupt RNA transport, splicing, and translation in developing neurons, thereby contributing to disorder pathology. IDRs are known to be enriched in membraneless components, such as stress granules, nuclear paraspeckles, and P-bodies, where they play crucial role in the formation, maintenance, and function of protein–RNA networks. This review explores the role of stress-induced MLOs in the nervous system, the molecular principles governing their formation, and how their dysfunction bridges the gap between environmental stress responses and neurodevelopmental impairment. Full article
(This article belongs to the Special Issue Role of Glia in Human Health and Disease)
Show Figures

Figure 1

15 pages, 2187 KB  
Article
The Phenotype of Physcomitrium patens SMC6 Mutant with Interrupted Hinge Interactions
by Karel J. Angelis, Marcela Holá, Radka Vágnerová, Jitka Vaculíková and Jan J. Paleček
Genes 2025, 16(9), 1091; https://doi.org/10.3390/genes16091091 - 16 Sep 2025
Viewed by 512
Abstract
Background/Objectives: The Structural Maintenance of Chromosomes (SMC) proteins form essential heterocomplexes for the preservation of DNA structure and its functions, and hence cell viability. The SMC5/6 dimer is assembled by direct interactions of ATP heads via the kleisin NSE4 bridge and by [...] Read more.
Background/Objectives: The Structural Maintenance of Chromosomes (SMC) proteins form essential heterocomplexes for the preservation of DNA structure and its functions, and hence cell viability. The SMC5/6 dimer is assembled by direct interactions of ATP heads via the kleisin NSE4 bridge and by SMC hinges. The structure might be interrupted by a single point mutation within a conserved motif of the SMC6-hinge. We describe the phenomena associated with the impairment of the SMC5/6 complex with morphology, repair of DNA double strand breaks (DSB), mutagenesis, recombination and gene targeting (GT) in the moss Physcomitrium patens (P. patens). Methods: Using CRISPR/Cas9-directed oligonucleotide replacement, we have introduced two close G to R point mutations in the hinge domain of SMC6 of P. patens and show that both mutations are not toxic and allow viability of mutant lines. Results: The G514R mutation fully prevents the interaction of SMC6 not only with SMC5, but also with NSE5 and NSE6, while the mutation at G517R has no effect. The Ppsmc6_G514R line has aberrant morphology, spontaneous and bleomycin-induced mutagenesis, and maintenance of the number of rDNA copies. The most unique feature is the interference with gene targeting (GT), which is completely abolished. In contrast, the Ppsmc6_G517R line is close to WT in many aspects. Surprisingly, both mutations have no direct effect on the rate of DSB repair in dividing and differentiated cells. Conclusions: Abolished interactions of SMC6 with SMC5 and NSE5,6 partners, which allow DSB repair, but impair other repair and recombination functions, suggests also regulatory role for SMC6. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

16 pages, 500 KB  
Review
The Skin Barrier: A System Driven by Phase Separation
by Fengjiao Yu, Lu Leng, Haowen Wang, Mengmeng Du, Liang Wang and Wenhua Xu
Cells 2025, 14(18), 1438; https://doi.org/10.3390/cells14181438 - 15 Sep 2025
Viewed by 1036
Abstract
The mammalian epidermis forms a critical barrier against environmental insults and water loss. The formation of its outermost layer, the stratum corneum, involves a rapid terminal differentiation process that has traditionally been explained by the “bricks and mortar” model. Recent advances reveal a [...] Read more.
The mammalian epidermis forms a critical barrier against environmental insults and water loss. The formation of its outermost layer, the stratum corneum, involves a rapid terminal differentiation process that has traditionally been explained by the “bricks and mortar” model. Recent advances reveal a more dynamic mechanism governed by intracellular liquid–liquid phase separation (LLPS). This review proposes that the lifecycle of the granular layer is orchestrated by LLPS. Evidence is synthesized showing that keratohyalin granules (KGs) are biomolecular condensates formed by the phase separation of the intrinsically disordered protein filaggrin (FLG). The assembly, maturation, and pH-triggered dissolution of these condensates are essential for cytoplasmic remodeling and the programmed flattening of keratinocytes, a process known as corneoptosis. In parallel, an LLPS-based signaling pathway is described in which the kinase RIPK4 forms condensates that activate the Hippo pathway, promoting transcriptional reprogramming and differentiation. Together, these structural and signaling condensates drive skin barrier formation. This review further reinterprets atopic dermatitis, ichthyosis vulgaris, and Bartsocas-Papas syndrome as diseases of aberrant phase behavior, in which pathogenic mutations alter condensate formation or material properties. This integrative framework offers new insight into skin biology and suggests novel opportunities for therapeutic intervention through biophysics-informed biomaterial and regenerative design. Full article
(This article belongs to the Section Cellular Biophysics)
Show Figures

Figure 1

16 pages, 2522 KB  
Article
The Predicted Structure of S. cerevisiae Ssp1 Reveals Parallel Evolution in the Pil1 BAR Domain Family Proteins of Ascomycetes
by Yasuyuki Suda and Aaron M. Neiman
J. Fungi 2025, 11(9), 661; https://doi.org/10.3390/jof11090661 - 9 Sep 2025
Viewed by 866
Abstract
BAR domains are a superfamily of widely conserved membrane binding motifs. In fungi, Pil1 family proteins are BAR domain containing proteins involved in organizing the plasma membrane. S. pombe encodes a sporulation-specific Pil1 family protein, Meu14, which has a specialized role in shaping [...] Read more.
BAR domains are a superfamily of widely conserved membrane binding motifs. In fungi, Pil1 family proteins are BAR domain containing proteins involved in organizing the plasma membrane. S. pombe encodes a sporulation-specific Pil1 family protein, Meu14, which has a specialized role in shaping the forespore membrane during sporulation. The functional analog of Meu14 in S. cerevisiae is Ssp1. While Ssp1 has no primary sequence homology to Pil1 or Meu14, AlphaFold predicts that it contains a Pil1-related BAR domain. Consistent with this structural prediction, mutation of residues in the putative lipid binding face of Ssp1 or in a residue implicated in multimerization disrupt sporulation. Characterization of the mutant proteins indicates that the BAR domain is necessary for recruitment of Ssp1 to the highly curved leading edge of the prospore membrane and multimerization of Ssp1 at that location is required for assembly of the leading edge complex. The distribution of Pil1 family proteins across an evolutionary tree of Ascomycetes reveals that Meu14 and Ssp1 arose independently in the lineages leading to S. pombe and S. cerevisiae, respectively. Full article
Show Figures

Figure 1

30 pages, 1627 KB  
Review
Linezolid in the Focus of Antimicrobial Resistance of Enterococcus Species: A Global Overview of Genomic Studies
by Slavil Peykov, Boris Kirov and Tanya Strateva
Int. J. Mol. Sci. 2025, 26(17), 8207; https://doi.org/10.3390/ijms26178207 - 24 Aug 2025
Viewed by 2615
Abstract
Linezolid (LNZ) is a synthetic oxazolidinone antibiotic that inhibits bacterial protein synthesis through binding to ribosomal RNA, also preventing the assembly of the initiation complex during translation. It is one of the last-line therapeutic options for serious infections caused by problematic Gram-positive pathogens, [...] Read more.
Linezolid (LNZ) is a synthetic oxazolidinone antibiotic that inhibits bacterial protein synthesis through binding to ribosomal RNA, also preventing the assembly of the initiation complex during translation. It is one of the last-line therapeutic options for serious infections caused by problematic Gram-positive pathogens, including vancomycin-resistant and multidrug-resistant Enterococcus species. Data from recent large-scale studies show a 2.5-fold increase in the prevalence of clinical LNZ-resistant enterococci (LRE) over the past decade with a global detection rate of 1.1% for LNZ-resistant E. faecium (LREfm) and 2.2% for LNZ-resistant E. faecalis (LREfs). Most reported cases have originated from China, followed by South Korea and the United States. LREfm typically belongs to the high-risk clonal complex 17, whereas LREfs demonstrates a heterogeneous population structure. Mutations in the 23S rRNA and ribosomal proteins, as well as acquired resistance genes such as cfr, optrA, and poxtA are involved in the development of LNZ resistance among enterococci. Whole-genome sequencing (WGS) has been recognized as a gold standard for identifying the underlying molecular mechanisms. It exposes that numerous LRE isolates possess multiple LNZ resistance determinants and mutations, further complicating the treatment strategies. The present review article summarizes all known mutational and non-mutational LNZ resistance mechanisms and presents a global overview of WGS-based studies with emphasis on resistome analysis of clinical LREfs and LREfm isolates published in the literature during the period 2014–2025. Full article
(This article belongs to the Special Issue Drug Treatment for Bacterial Infections)
Show Figures

Figure 1

15 pages, 1684 KB  
Article
Dysfunctional Electron Transport Chain Assembly in COXPD8
by Gisela Beutner, Heidie L. Huyck, Gail Deutsch, Gloria S. Pryhuber and George A. Porter Jr.
J. Cardiovasc. Dev. Dis. 2025, 12(8), 318; https://doi.org/10.3390/jcdd12080318 - 20 Aug 2025
Viewed by 738
Abstract
Combined oxidative phosphorylation deficiency type 8 (COXPD8) is an autosomal recessive mitochondrial disorder caused by a mutation of the nuclear encoded mitochondrial alanyl-tRNA synthetase gene (AARS2). Clinical manifestations of COXPD8 include lethal infantile hypertrophic cardiomyopathy, pulmonary hypoplasia, generalized muscle weakness, and neurological involvement. [...] Read more.
Combined oxidative phosphorylation deficiency type 8 (COXPD8) is an autosomal recessive mitochondrial disorder caused by a mutation of the nuclear encoded mitochondrial alanyl-tRNA synthetase gene (AARS2). Clinical manifestations of COXPD8 include lethal infantile hypertrophic cardiomyopathy, pulmonary hypoplasia, generalized muscle weakness, and neurological involvement. We report a patient with COXPD8 caused by two mutations in the AARS2 gene. The c.1738 C>G mutation has not been previously reported, while the c.2872 C>T mutation has been associated with pulmonary hypoplasia and hypertrophic cardiomyopathy. Cardiac tissue, obtained through the LungMAP program, showed that, compared to other patients of similar ages, these two mutations affect not only the assembly of functional monomeric complexes (Cx) I and IV of the electron transport chain (ETC) but also limit the formation of respiratory supercomplexes. This patient had altered expression of some ETC proteins but normal expression of several enzymes of the tricarboxylic acid cycle. We also show that one of the control/comparison patients had an undiagnosed ETC Cx IV deficiency. In conclusion, our data demonstrate that the two mutations of the AARS2 gene are associated with failed assembly of Cx I and Cx IV and reduced formation of respiratory supercomplexes of the ETC, likely leading to acute bioenergetic stress. Full article
(This article belongs to the Section Cardiac Development and Regeneration)
Show Figures

Graphical abstract

14 pages, 3230 KB  
Article
CFAP300 Loss-of-Function Mutations with Primary Ciliary Dyskinesia: Evidence from Ex Vivo and ALI Cultures
by Anna G. Demchenko, Tatiana A. Kyian, Elena I. Kondratyeva, Elizaveta E. Bragina, Oksana P. Ryzhkova, Roman V. Veiko, Aleksandra G. Nazarova, Vyacheslav B. Chernykh, Svetlana A. Smirnikhina and Sergey I. Kutsev
Int. J. Mol. Sci. 2025, 26(15), 7655; https://doi.org/10.3390/ijms26157655 - 7 Aug 2025
Cited by 1 | Viewed by 2898
Abstract
Primary ciliary dyskinesia (PCD) is a genetically heterogeneous disorder characterized by impaired mucociliary clearance due to defects in motile cilia. This study investigates the impact of loss-of-function mutations in the CFAP300 gene on the ciliary structure and function in three PCD patients. Using [...] Read more.
Primary ciliary dyskinesia (PCD) is a genetically heterogeneous disorder characterized by impaired mucociliary clearance due to defects in motile cilia. This study investigates the impact of loss-of-function mutations in the CFAP300 gene on the ciliary structure and function in three PCD patients. Using a multimodal approach, we integrated molecular genetic testing, transmission electron microscopy, the high-speed video microscopy assay and immunofluorescence staining to analyze ciliary motility and protein expression in both ex vivo and in vitro-obtained ciliary cells. Our results revealed that the pathogenic variant c.198_200delinsCC (p.Phe67ProfsTer10) in CFAP300 led to the absence of the functional CFAP300 protein, the complete loss of outer and inner dynein arms and immotile cilia. Air–liquid interface (ALI)-cultured cells from patients exhibited no ciliary beating, contrasting with healthy controls. Immunostaining confirmed the absence of CFAP300 in patient-derived cilia, underscoring its critical role in dynein arm assembly. These findings highlight the diagnostic utility of ALI cultures combined with functional and protein analyses for PCD, offering a clinically actionable framework that can be readily incorporated into standard diagnostic workflows. Full article
(This article belongs to the Special Issue Molecular and Cellular Therapeutics for Respiratory Diseases)
Show Figures

Figure 1

17 pages, 5390 KB  
Article
A Late-Onset and Mild Phenotype of Mitochondrial Complex I Deficiency Due to a Novel Reported Variant Within the ACAD9 Gene
by Anna Gaelle Giguet-Valard, Samira Ait-El-Mkadem Saadi, Sophie Duclos, Didier Lacombe, Rémi Bellance and Nadège Bellance
Int. J. Mol. Sci. 2025, 26(15), 7128; https://doi.org/10.3390/ijms26157128 - 24 Jul 2025
Cited by 1 | Viewed by 922
Abstract
Acyl-CoA dehydrogenase 9 deficiency is considered as a rare neuromuscular syndrome with an autosomal recessive transmission. The ACAD9 protein presents two essential functions, i.e., the limiting step enzyme of the fatty acid β-oxidation pathway and one of the complex’s compounds involved in the [...] Read more.
Acyl-CoA dehydrogenase 9 deficiency is considered as a rare neuromuscular syndrome with an autosomal recessive transmission. The ACAD9 protein presents two essential functions, i.e., the limiting step enzyme of the fatty acid β-oxidation pathway and one of the complex’s compounds involved in the respiratory chain complex I assembly. Thus, loss-of-function mutations are known to convey mitochondrial cytopathologies. A patient with a mild and late-onset phenotype, suffering from exercise intolerance and hypertrophic cardiomyopathy, was diagnosed as a compound heterozygote of the ACAD9 gene. The first c.1240C> T p.Arg414Cys variant has been previously reported and is known to be responsible for ACAD9 deficiency. However, the second c.1636G> A p.Val546Met variant has never been described. The goal was to investigate the eventual pathogenicity of this new genetic variant. For this purpose, molecular cloning was generated to express the ACAD9 gene with the V546M variant in a cell line (ACAD9mut) and compared to cells expressing the wild-type ACAD9. Then, the mitochondrial respiration, ATP production, the mitochondrial network, and the oxidative phosphorylation’s composition were investigated to reveal the effects of the V546M variant. While avoiding to affect the amount of the respiratory chain’s complexes, the new ACAD9 variant was entirely responsible for reducing over 50% of the mitochondrial complex I activity. Full article
(This article belongs to the Special Issue Mitochondria and Energy Metabolism Reprogramming in Diseases)
Show Figures

Figure 1

10 pages, 2289 KB  
Brief Report
The Isoforms of Ral Guanine Nucleotide Dissociation Stimulator (RalGDS) in LLC-PK1 Cells
by Jingze Song, Na Li, Xinze Dong, Jianping Xie, Hongqiao Lai, Hengzhi Zhu, Kongwang He, Libin Wen, Sizhu Suolang and Qi Xiao
Curr. Issues Mol. Biol. 2025, 47(7), 566; https://doi.org/10.3390/cimb47070566 - 18 Jul 2025
Viewed by 596
Abstract
This study investigated the isoforms of porcine-origin Ral guanine nucleotide dissociation stimulator (RalGDS) in LLC-PK1 cells using reverse transcription-polymerase chain reaction (RT-PCR) and sequencing. Through segmented amplification, sequence assembly, and comparative genomics analysis, seven RalGDS isoforms were identified, characterized by insertions, deletions, and [...] Read more.
This study investigated the isoforms of porcine-origin Ral guanine nucleotide dissociation stimulator (RalGDS) in LLC-PK1 cells using reverse transcription-polymerase chain reaction (RT-PCR) and sequencing. Through segmented amplification, sequence assembly, and comparative genomics analysis, seven RalGDS isoforms were identified, characterized by insertions, deletions, and frameshift mutations. These genetic variations may significantly alter RalGDS’s protein structure and function, potentially impacting its role in Ral GTPase-mediated signaling pathways. This work provides foundational insights into the genetic diversity of porcine RalGDS and its implications for porcine physiology and economically significant traits. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

15 pages, 1466 KB  
Article
Effect of Tau Fragment and Membrane Interactions on Membrane Permeabilization and Peptide Aggregation
by Majedul Islam, Md Raza Ul Karim, Emily Argueta, Mohammed N. Selim, Ewa P. Wojcikiewicz and Deguo Du
Membranes 2025, 15(7), 208; https://doi.org/10.3390/membranes15070208 - 13 Jul 2025
Viewed by 1820
Abstract
Aggregation of tau protein is a hallmark feature of tauopathies such as Alzheimer’s disease. The microtubule-binding domain of tau plays a crucial role in the tau aggregation process. In this study, we investigated the dual effects of membrane interactions of tau298–317, [...] Read more.
Aggregation of tau protein is a hallmark feature of tauopathies such as Alzheimer’s disease. The microtubule-binding domain of tau plays a crucial role in the tau aggregation process. In this study, we investigated the dual effects of membrane interactions of tau298–317, a fragment peptide from the microtubule-binding domain, on peptide-induced membrane disruption and membrane-mediated peptide self-assembly. Our results show that neither wild-type tau298–317 nor its P301L or Ser305-phosphorylated mutants aggregate in the presence of zwitterionic POPC vesicles or cause lipid vesicle leakage, indicating weak peptide–membrane interactions. In contrast, tau298–317 strongly interacts with negatively charged POPG liposomes, leading to a rapid transition of the peptide conformation from random coils to α-helical intermediate conformation upon membrane adsorption, which may further promote peptide self-association to form oligomers and β-sheet-rich fibrillar structures. Tau298–317-induced rapid POPG membrane leakage indicates a synergistic process of the peptide self-assembly at the membrane interface and the aggregation-induced membrane disruption. Notably, phosphorylation at Ser305 disrupts favorable electrostatic interactions between the peptide and POPG membrane surface, thus preventing peptide aggregation and membrane leakage. In contrast, the P301L mutation significantly enhances membrane-mediated peptide aggregation and peptide-induced membrane disruption, likely due to alleviation of local conformational constraints and enhancement of local hydrophobicity, which facilitates fast conformational conversion to β-sheet structures. These findings provide mechanistic insights into the molecular mechanisms underlying membrane-mediated aggregation of crucial regions of tau and peptide-induced membrane damage, indicating potential strategies to prevent tau aggregation and membrane rupture by targeting critical electrostatic interactions between membranes and key local regions of tau. Full article
(This article belongs to the Section Biological Membranes)
Show Figures

Figure 1

Back to TopTop