Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (50)

Search Parameters:
Keywords = proppant transportation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5671 KiB  
Article
Evaluation of Proppant Placement Efficiency in Linearly Tapering Fractures
by Xiaofeng Sun, Liang Tao, Jinxin Bao, Jingyu Qu, Haonan Yang and Shangkong Yao
Geosciences 2025, 15(7), 275; https://doi.org/10.3390/geosciences15070275 - 21 Jul 2025
Viewed by 177
Abstract
With growing reliance on hydraulic fracturing to develop tight oil and gas reservoirs characterized by low porosity and permeability, optimizing proppant transport and placement has become critical to sustaining fracture conductivity and production. However, how fracture geometry influences proppant distribution under varying field [...] Read more.
With growing reliance on hydraulic fracturing to develop tight oil and gas reservoirs characterized by low porosity and permeability, optimizing proppant transport and placement has become critical to sustaining fracture conductivity and production. However, how fracture geometry influences proppant distribution under varying field conditions remains insufficiently understood. This study employed computational fluid dynamics to investigate proppant transport and placement in hydraulic fractures of which the aperture tapers linearly along their length. Four taper rate models (δ = 0, 1/1500, 1/750, and 1/500) were analyzed under a range of operational parameters: injection velocities (1.38–3.24 m/s), sand concentrations (2–8%), proppant particle sizes (0.21–0.85 mm), and proppant densities (1760–3200 kg/m3). Equilibrium proppant pack height was adopted as the key metric for pack morphology. The results show that increasing injection rate and taper rate both serve to lower pack heights and enhance downstream transport, while a higher sand concentration, larger particle size, and greater density tend to raise pack heights and promote more stable pack geometries. In tapering fractures, higher δ values amplify flow acceleration and turbulence, yielding flatter, “table-top” proppant distributions and extended placement lengths. Fine, low-density proppants more readily penetrate to the fracture tip, whereas coarse or dense particles form taller inlet packs but can still be carried farther under high taper conditions. These findings offer quantitative guidance for optimizing fracture geometry, injection parameters, and proppant design to improve conductivity and reduce sand-plugging risk in tight formations. These insights address the challenge of achieving effective proppant placement in complex fractures and provide quantitative guidance for tailoring fracture geometry, injection parameters, and proppant properties to improve conductivity and mitigate sand plugging risks in tight formations. Full article
Show Figures

Figure 1

27 pages, 7362 KiB  
Article
Preparation and Properties of a Novel Multi-Functional Viscous Friction Reducer Suspension for Fracturing in Unconventional Reservoirs
by Shenglong Shi, Jinsheng Sun, Shanbo Mu, Kaihe Lv, Yingrui Bai and Jian Li
Gels 2025, 11(5), 344; https://doi.org/10.3390/gels11050344 - 6 May 2025
Viewed by 402
Abstract
Aiming at the problem that conventional friction reducers used in fracturing cannot simultaneously possess properties such as temperature resistance, salt resistance, shear resistance, rapid dissolution, and low damage. Under the design concept of “medium-low molecular weight, salt-resistant functional monomer, supramolecular physical crosslinking aggregation, [...] Read more.
Aiming at the problem that conventional friction reducers used in fracturing cannot simultaneously possess properties such as temperature resistance, salt resistance, shear resistance, rapid dissolution, and low damage. Under the design concept of “medium-low molecular weight, salt-resistant functional monomer, supramolecular physical crosslinking aggregation, and enhanced chain mechanical strength”, acrylamide, sulfonic acid salt-resistant monomer 2-acrylamide-2-methylpropanesulfonic acid, hydrophobic association monomer, and rigid skeleton functional monomer acryloyl morpholine were introduced into the friction reducer molecular chain by free radical polymerization, and combined with the compound suspension technology to develop a new type of multi-functional viscous friction reducer suspension (SAMD), the comprehensive performance of SAMD was investigated. The results indicated that the critical micelle concentration of SAMD was 0.33 wt%, SAMD could be dissolved in 80,000 mg/L brine within 3.0 min, and the viscosity loss of 0.5 wt% SAMD solution was 24.1% after 10 min of dissolution in 80,000 mg/L brine compared with that in deionized water, the drag reduction rate of 0.1 wt% SAMD solution could exceed 70% at 120 °C and still maintained good drag reduction performance in brine with a salinity of 100,000 mg/L. After three cycles of 170 s−1 and 1022 s−1 variable shear, the SAMD solution restored viscosity quickly and exhibited good shear resistance. The Tan δ (a parameter characterizing the viscoelasticity of the system) of 1.0 wt% SAMD solution was 0.52, which showed a good sand-carrying capacity, and the proppant settling velocity in it could be as low as 0.147 mm/s at 120 °C, achieving the function of high drag reduction at low concentrations and strong sand transportation at high concentrations. The viscosity of 1.4 wt% SAMD was 95.5 mPa s after shearing for 120 min at 140 °C and at 170 s−1. After breaking a gel, the SAMD solution system had a core permeability harm rate of less than 15%, while the SAMD solution also possessed the performance of enhancing oil recovery. Compared with common friction reducers, SAMD simultaneously possessed the properties of temperature resistance, salt resistance, shear resistance, rapid dissolution, low damage, and enhanced oil recovery. Therefore, the use of this multi-effect friction reducer is suitable for the development of unconventional oil reservoirs with a temperature lower than 140 °C and a salinity of less than 100,000 mg/L. Full article
(This article belongs to the Special Issue Chemical and Gels for Oil Drilling and Enhanced Recovery)
Show Figures

Graphical abstract

12 pages, 4596 KiB  
Article
Numerical Simulation and Application of Coated Proppant Transport in Hydraulic Fracturing Systems
by Qiang Du, Hua Yang, Shipeng He, Pingxuan Deng, Xun Yang, Chen Lin, Zhiyun Sun, Lan Ren, Hanxiang Yin, Bencheng He and Ran Lin
Processes 2025, 13(4), 1062; https://doi.org/10.3390/pr13041062 - 2 Apr 2025
Viewed by 481
Abstract
The enhancement of proppant conductivity in shale gas fracturing can be effectively achieved through the implementation of coated proppants. After soaking, non-curable viscous resin-coated proppants exhibit progressive viscosity development and spontaneous agglomeration during the transportation phase. Furthermore, upon fracture closure, the formed proppant [...] Read more.
The enhancement of proppant conductivity in shale gas fracturing can be effectively achieved through the implementation of coated proppants. After soaking, non-curable viscous resin-coated proppants exhibit progressive viscosity development and spontaneous agglomeration during the transportation phase. Furthermore, upon fracture closure, the formed proppant agglomerates demonstrate significant stability and do not flow back with the fracturing fluid through the wellbore. While contemporary research has mostly focused on proppant coating methodologies, the transportation process of these proppants remains insufficiently investigated. To fill this knowledge gap, a sophisticated migration two-phase flow coupling model was developed utilizing the computational fluid dynamics–discrete element method (CFD-DEM) approach. This model incorporates the bond contact forces between film-coated proppant particles, accounting for their distinctive cementing characteristics during transport. Through comprehensive numerical simulations, the transport properties of film-coated proppants were systematically analyzed. Field application indicated that compared with conventional continuous sand fracturing, the amount of proppant after treatment with viscous resin film was reduced by 35% and the production was increased by about 25–30%. Additionally, the optimization of the field-scale coated proppant transport processes was achieved through the implementation of a lower fracturing displacement combined with staged sand addition. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

20 pages, 2890 KiB  
Article
Removal of Divalent Cations from Produced Water and Its Impact on Rheological Properties and Proppant Settling Velocity
by Yanze Zhang, Wajid Ali and Hassan Dehghanpour
Gels 2025, 11(3), 158; https://doi.org/10.3390/gels11030158 - 22 Feb 2025
Viewed by 594
Abstract
The petroleum industry seeks to optimize the reuse of flowback and produced water (FPW) in hydraulic fracturing to reduce environmental impacts and costs. This study investigates how controlling divalent cations in FPW influences its rheological properties and proppant carrying capacity, both of which [...] Read more.
The petroleum industry seeks to optimize the reuse of flowback and produced water (FPW) in hydraulic fracturing to reduce environmental impacts and costs. This study investigates how controlling divalent cations in FPW influences its rheological properties and proppant carrying capacity, both of which are crucial for efficient fracturing. Synthetic FPW, modified to simulate treated and untreated conditions, was analyzed to determine the impact of gel-based additives such as anionic polyacrylamide-based friction reducers (FRs). Results indicate that removing divalent cations increases relaxation times from 0.12 s in untreated FPW to 1.00 s in a 1 gallon per thousand gallons (gpt) FR solution, demonstrating improved viscoelastic gel characteristics. However, these changes do not significantly increase proppant carrying capacity. Even with relaxation times increasing to 4.5 s at higher FR dosages (3 gpt), the treated FPW still does not achieve the relaxation time observed in FR solutions using deionized (DI) water, which remain above 10 s. The removal of divalent cations from FPW resulted in only minor changes to its shear viscosity, with a modest 15% increase that was not enough to significantly affect the settling velocity of the proppant. Thus, removal of divalent cations can positively influence rheological behavior; it does not necessarily improve proppant transport efficiency in hydraulic fracturing operations. Full article
(This article belongs to the Special Issue Gels for Oil and Gas Industry Applications (3rd Edition))
Show Figures

Graphical abstract

26 pages, 23917 KiB  
Article
Numerical Simulation on the Transport and Displacement Patterns of Proppant in Hydraulic Fractures Considering the Effect of Rough Fracture Surfaces
by Bo Xiao, Hongzhu Li, Chaoran Wei, Weiyao Zhu, Tianru Song and Ming Yue
Processes 2025, 13(2), 461; https://doi.org/10.3390/pr13020461 - 8 Feb 2025
Viewed by 690
Abstract
The influence of various factors, such as the natural properties of rock and in-situ stress conditions, results in uneven and rough fracture surfaces post-hydraulic fracturing. This significantly impacts the transport and placement of proppant within the fracture, thereby affecting the effectiveness of fracture [...] Read more.
The influence of various factors, such as the natural properties of rock and in-situ stress conditions, results in uneven and rough fracture surfaces post-hydraulic fracturing. This significantly impacts the transport and placement of proppant within the fracture, thereby affecting the effectiveness of fracture stimulation. This study employs the rectangular wave method to characterize the roughness of fracture wall morphology, detailing the variation of roughness by altering the number and height of micro-protuberances, and constructs a three-dimensional model of rough fractures. The Euler–Euler model is utilized to simulate the placement and transport patterns of proppant within the fracture. Sand banks within the fracture profile are segmented based on proppant concentration, and the dimensionless area of each concentration interval is calculated to analyze the structure of sand banks and the suspension and settling effects of proppant. This research investigates the variation patterns of sand dune structures within fractures characterized by different levels of roughness and morphologies; it also examines the impact of injection velocity and fracturing fluid viscosity on the transport and placement of proppant within rough fractures. The findings indicate that the complex spatial structure of rough fractures modifies the edge shape of sand dunes. Moreover, it impedes proppant transport, leading to the formation of sand plugs near the wellbore. The maximum distance of sand placement for rough fractures is only 55.2% of that for fractures without considering roughness. The increase in the number and height of micro-protrusions enhances fracture roughness, leading to a stronger retarding effect. However, variations in these two types of roughness have distinct impacts on the morphology of sand dunes. Higher injection velocities facilitate the transport of proppant within rough fractures. The furthest distance of proppant placement at an injection velocity of 0.5 m3/min is only 68.4% of that at an injection velocity of 1.5 m3/min. The study’s findings contribute to a more intuitive understanding of the impact of rough fracture wall surfaces on the transport and placement patterns of proppant, providing a foundation for the optimization of fracturing design and operational parameters. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

14 pages, 3553 KiB  
Article
Simulation Study of the Effects of Foam Rheology on Hydraulic Fracture Proppant Placement
by Tuan Tran, Giang Hoang Nguyen, Maria Elena Gonzalez Perdomo, Manouchehr Haghighi and Khalid Amrouch
Processes 2025, 13(2), 378; https://doi.org/10.3390/pr13020378 - 30 Jan 2025
Viewed by 911
Abstract
Hydraulic fracture stimulation is one of the most effective methods to recover oil and gas from unconventional resources. In recent years, foam-based fracturing fluids have been increasingly studied to address the limitations of conventional slickwater such as high water and chemical consumption, environmental [...] Read more.
Hydraulic fracture stimulation is one of the most effective methods to recover oil and gas from unconventional resources. In recent years, foam-based fracturing fluids have been increasingly studied to address the limitations of conventional slickwater such as high water and chemical consumption, environmental concerns, and high incompatibility with water-sensitive formations. Due to the gradual breakdown of liquid foams at reservoir conditions, the combination of silica nanoparticles (SNP) and surfactants has attracted a lot of attention to improve liquid foams’ characteristics, including their stability, rheology, and proppant-carrying capacity. This paper investigates and compares the effects of cationic and anionic surfactants on the fracturing performance of SNP-stabilized foams at the reservoir temperature of 90 °C. The experimental results of viscosity measurements were imported into a 3D fracture-propagation model to evaluate the effectiveness of fracturing foams in transporting and distributing proppants in the fracture system. At both ambient and elevated temperatures, cationic surfactant was experimentally found to have better synergistic effects with SNP than anionic surfactant in improving the apparent viscosity and proppant-carrying capacity of foams. The simulation results demonstrate that fracturing with cationic surfactant-SNP foam delivers greater performance with larger propped area by 4%, higher fracture conductivity by 9%, and higher cumulative gas production by 13%, compared to the anionic surfactant-SNP foam. This research work not only helps validate the interrelationship between fluid viscosity, proppant settlement rate, and fracture effectiveness, but it also emphasizes the importance of proppant placement in enhancing fracture conductivity and well productivity. Full article
Show Figures

Figure 1

17 pages, 14672 KiB  
Article
Visualization Experiment on the Influence of the Lost Circulation Material Injection Method on Fracture Plugging
by Yi Feng, Guolin Xin, Wantong Sun, Gao Li, Rui Li and Huibin Liu
Processes 2025, 13(1), 236; https://doi.org/10.3390/pr13010236 - 15 Jan 2025
Viewed by 900
Abstract
The drilling fluid loss or lost circulation via near-wellbore fractures is one of the most critical problems in the drilling of deep oil and gas resources, which causes other problems such as difficulty in achieving wellbore pressure control and reservoir damage. The conventional [...] Read more.
The drilling fluid loss or lost circulation via near-wellbore fractures is one of the most critical problems in the drilling of deep oil and gas resources, which causes other problems such as difficulty in achieving wellbore pressure control and reservoir damage. The conventional treatment is to introduce granular lost circulation material (LCM) into the drilling fluid to plug the fractures. As the migration mechanism of the LCM in irregular fractures has not been completely figured out as of yet, the low success rate of fracture plugging and repeated drilling fluid loss still obstruct the exploitation of deep oil and gas resources. In this paper, the spatial data of actual rock fracture surfaces were obtained through structured light scanning, and an irregular surface identical to the rock was machined on a transparent polymethyl methacrylate plate. On this basis, a visualization experimental apparatus for fracture plugging was established, and the fracture flow space of this device was consistent with that of the actual rock fracture. Employing cylindrical nylon particles as LCM, a visualization experiment study was carried out to investigate the process of LCM bridging and fracture plugging and the influence of LCM injection methods. The experimental results show that the process of fracture plugging includes the sporadic bridging, plugging zone extension and merging, thickening of the plugging zone and complete plugging of the fracture. It was observed in the visualization experiment that a large number of small particles flow deep into the fracture in the traditional fracture plugging method, where all types and sizes of LCM are injected at one time. After changing the injection sequence, which injects the large particles first and the small particles subsequently, it is found that the large particles will form single-particle bridging at a specific depth of the fracture, intercepting subsequently injected particles and thickening the plugging zone, which finally increases the area of the plugging zone by 19%. The visualization experiment results demonstrate that modifying the LCM injection method significantly enhances both the LCM utilization rate and the fracture plugging effect, thereby reducing reservoir damage. This is conducive to reducing the drilling cost of fractured formation. Additionally, the visualized experimental approach introduced in this study can also benefit other research areas, including proppant placement and solute transport in rock fractures. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

15 pages, 3905 KiB  
Article
Preparation and Performance Evaluation of CO2 Foam Gel Fracturing Fluid
by Yan Gao, Jiahui Yang, Zefeng Li, Zhenfeng Ma, Xinjie Xu, Ruiqiong Liu, Xin Li, Lixiao Zhang and Mingwei Zhao
Gels 2024, 10(12), 804; https://doi.org/10.3390/gels10120804 - 7 Dec 2024
Viewed by 875
Abstract
The utilization of CO2 foam gel fracturing fluid offers several significant advantages, including minimal reservoir damage, reduced water consumption during application, enhanced cleaning efficiency, and additional beneficial properties. However, several current CO2 foam gel fracturing fluid systems face challenges, such as [...] Read more.
The utilization of CO2 foam gel fracturing fluid offers several significant advantages, including minimal reservoir damage, reduced water consumption during application, enhanced cleaning efficiency, and additional beneficial properties. However, several current CO2 foam gel fracturing fluid systems face challenges, such as complex preparation processes and insufficient viscosity, which limit their proppant transport capacity. To address these issues, this work develops a novel CO2 foam gel fracturing fluid system characterized by simple preparation and robust foam stability. This system was optimized by incorporating a thickening agent CZJ-1 in conjunction with a foaming agent YFP-1. The results of static sand-carrying experiments indicate that under varying temperatures and sand–fluid ratio conditions, the proppant settling velocity is significantly low. Furthermore, the static sand-carrying capacity of the CO2 foam gel fracturing fluid exceeds that of the base fluid. The stable and dense foam gel effectively encapsulates the proppant, thereby improving sand-carrying capacity. In high-temperature shear tests, conducted at a shear rate of 170 s−1 and a temperature of 110 °C for 90 min, the apparent viscosity of the CO2 foam gel fracturing fluid remained above 20 mPa·s after shear, demonstrating excellent high-temperature shear resistance. This work introduces a novel CO2 foam gel fracturing fluid system that is specifically tailored for low-permeability reservoir fracturing and extraction. The system shows significant promise for the efficient development of low-pressure, low-permeability, and water-sensitive reservoirs, as well as for the effective utilization and sequestration of CO2. Full article
Show Figures

Graphical abstract

16 pages, 7199 KiB  
Article
CO2 Foamed Viscoelastic Gel-Based Seawater Fracturing Fluid for High-Temperature Wells
by Jawad Al-Darweesh, Murtada Saleh Aljawad, Muhammad Shahzad Kamal, Mohamed Mahmoud, Shabeeb Alajmei, Prasad B. Karadkar and Bader G. Harbi
Gels 2024, 10(12), 774; https://doi.org/10.3390/gels10120774 - 27 Nov 2024
Viewed by 1183
Abstract
This study investigates the development of a novel CO2-foamed viscoelastic gel-based fracturing fluid to address the challenges of high-temperature formations. The influence of various parameters, including surfactant type and concentration, gas fraction, shear rate, water salinity, temperature, and pressure, on foam [...] Read more.
This study investigates the development of a novel CO2-foamed viscoelastic gel-based fracturing fluid to address the challenges of high-temperature formations. The influence of various parameters, including surfactant type and concentration, gas fraction, shear rate, water salinity, temperature, and pressure, on foam viscosity was systematically explored. Rheological experiments were conducted using a high-pressure/high-temperature (HPHT) rheometer at 150 °C and pressures ranging from 6.89 to 20.68 MPa. To simulate field conditions, synthetic high-salinity water was employed. The thermal stability of the CO2 foam was evaluated at a constant shear rate of 100 1/s for 180 min. Additionally, foamability and foam stability were assessed using an HPHT foam analyzer at 100 °C. The results demonstrate that liquid phase chemistry, experimental conditions, and gas fraction significantly impact foam viscosity. Viscoelastic surfactants achieved a peak foam viscosity of 0.183 Pa·s at a shear rate of 100 1/s and a 70% foam quality, surpassing previous records. At lower foam qualities (≤50%), pressure had a negligible effect on foam viscosity, whereas at higher qualities, it increased viscosity by over 30%. While a slight increase in viscosity was observed with foam qualities between 40% and 60%, a significant enhancement was noted at 65% foam quality. The addition of polymers did not improve foam viscosity. The generation of viscous and stable foams is crucial for effective proppant transport and fracture induction. However, maintaining the thermal stability of CO2 foams with minimal additives remains a significant challenge in the industry. This laboratory study provides valuable insights into the development of stable CO2 foams for stimulating high-temperature wells. Full article
(This article belongs to the Special Issue Gels for Oil and Gas Industry Applications (3rd Edition))
Show Figures

Figure 1

20 pages, 15789 KiB  
Article
CFD-DEM Simulation on the Main-Controlling Factors Affecting Proppant Transport in Three-Dimensional Rough Fractures of Offshore Unconventional Reservoirs
by Yuanping Li, Jingwei Huang, Chenyue Xie and Hui Zhao
J. Mar. Sci. Eng. 2024, 12(12), 2117; https://doi.org/10.3390/jmse12122117 - 21 Nov 2024
Cited by 1 | Viewed by 978
Abstract
Hydraulic fracturing is a pivotal technique in the development of offshore unconventional reservoirs. While current research has primarily focused on the longitudinal or transverse roughness of fractures, this study shifts the emphasis to their three-dimensional (3D) roughness characteristics. We present a quantitative analysis [...] Read more.
Hydraulic fracturing is a pivotal technique in the development of offshore unconventional reservoirs. While current research has primarily focused on the longitudinal or transverse roughness of fractures, this study shifts the emphasis to their three-dimensional (3D) roughness characteristics. We present a quantitative analysis of proppant transport within 3D rough fractures of offshore unconventional reservoirs, utilizing computational fluid dynamics (CFD) and the discrete element method (DEM). Our results are validated against experimental data. This study focuses on the main-control factors on the transport of the proppant in rough fractures, including surface roughness, the ratio of lateral to longitudinal forces, the ratio of the proppant diameter to the fracture aperture, and the fracture inclination angle. The results indicate that the rough surface of the fracture has a significant impact on the transport of the proppant, reducing lateral transport distance while increasing the height of the sand dune. Notably, both the lateral transport distance and the height of the sand dune show a quadratic relationship with the fractal dimension of the fractures. In addition, when the ratio of lateral to longitudinal forces is less than one, an increase in fracture roughness significantly reduces the transport efficiency. Once the ratio exceeds one, the effect of fracture roughness on proppant transport becomes negligible. Furthermore, when the ratio of the proppant diameter to the fracture aperture is below 0.25, the roughness has a minimal effect on the lateral transport of the proppant. Our findings, especially the simulation of proppant behavior in realistic 3D fractures, offer a valuable reference point for predicting proppant distribution. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

17 pages, 15203 KiB  
Article
Study on the Effect of an Alternate Injection Pattern of Proppant on Hydraulic Fracture Closure Morphology
by Xiang Wang, Fuhu Chen, Xinchun Zhu, Yanjun Fang, Aiguo Hu and Fajian Nie
Processes 2024, 12(11), 2332; https://doi.org/10.3390/pr12112332 - 24 Oct 2024
Cited by 1 | Viewed by 986
Abstract
In previous studies of the transportation of proppants within fractures and the morphology of proppant-supported fractures, researchers have generally treated the fractures as static and have overlooked the interactions between fractures and the proppant during the dynamic closure caused by filtration. To address [...] Read more.
In previous studies of the transportation of proppants within fractures and the morphology of proppant-supported fractures, researchers have generally treated the fractures as static and have overlooked the interactions between fractures and the proppant during the dynamic closure caused by filtration. To address this limitation, we propose a semi-implicit method to calculate the complete fluid–structure interaction equations for the fracture, fluid, and proppant. The results show that there are three types of closed fracture patterns formed by alternate proppant injection at the end of filtration loss, and the third pattern of fracture formed by injecting small particles first and then large particles has the best support length and filling effect. More effects of the particle size and injection pattern of the injected proppant on the fracture closure pattern after the end of filtration loss are shown graphically and analyzed in detail. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

17 pages, 4427 KiB  
Article
Numerical Simulation Study on Dynamic Interaction between Two Adjacent Wells during Hydraulic Fracturing
by Wenjiang Xu, Weidong Jiang, Yantao Xu and Bumin Guo
Processes 2024, 12(10), 2065; https://doi.org/10.3390/pr12102065 - 24 Sep 2024
Viewed by 924
Abstract
The heterogeneity in fracture formation significantly influences the hydraulic fracture propagation among adjacent wells, underscoring the urgency to comprehend the underlying fracture mechanisms. Specifically, in shale gas or oil extraction fracturing operations, stress interactions among neighboring fracturing clusters, or mutual interference during the [...] Read more.
The heterogeneity in fracture formation significantly influences the hydraulic fracture propagation among adjacent wells, underscoring the urgency to comprehend the underlying fracture mechanisms. Specifically, in shale gas or oil extraction fracturing operations, stress interactions among neighboring fracturing clusters, or mutual interference during the propagation of parallel fractures, are commonplace. At present, there is relatively little research on the sensitivity parameters of adjacent borehole fracture propagation morphology. Consequently, we employed ABAQUS software 2022 to construct a numerical model simulating the fracturing of adjacent boreholes in opposing directions. Upon validating the model’s fidelity, we systematically explored the influence of various engineering and geological factors on fracture morphology and propagation length. Our findings revealed a three-phase evolution: independent fracture propagation, subsequent mutual repulsion, and, ultimately, mutual attraction. It is worth noting that increasing the elastic modulus from 10 GPa to 80 GPa, and increasing the crack length by 16.30%, is beneficial for crack propagation, while the horizontal stress difference profoundly shapes the crack mode, but has a relatively small impact on the overall crack length. When HSD increases from 0 MPa to 15 MPa, the total crack length only changes by 1.24%. In addition, the filtration coefficient of the reservoir is a key determining factor that has a significant impact on the morphology and length of cracks generated by adjacent boreholes. Increasing the filtration coefficient from 1 × 10−14 m3/s/Pa to 5 × 10−12 m3/s/Pa reduces the total length of cracks by 60.77%. Notably, an optimal injection rate exists, optimizing fracturing outcomes. Conversely, the viscosity of the fracturing fluid exerts a limited influence on fracture morphology and length within the confines of this simulation, allowing for the selection of a suitable viscosity to ensure smooth proppant transport during actual fracturing operations. In designing fracturing parameters, it is imperative to aim for sufficient fracture propagation length while harnessing “stress interference” to foster the development of intricate fracture networks. Ultimately, our research findings serve as a solid foundation for engineering practices involving hydraulic fracture propagation in adjacent boreholes undergoing opposing fracturing operations. Full article
(This article belongs to the Special Issue Shale Gas and Coalbed Methane Exploration and Practice)
Show Figures

Figure 1

13 pages, 12300 KiB  
Article
Preparation and Properties of Lightweight Amphiphobic Proppant for Hydraulic Fracturing
by Guang Wang, Qinyue Ma, Longqiang Ren and Jirui Hou
Polymers 2024, 16(18), 2575; https://doi.org/10.3390/polym16182575 - 12 Sep 2024
Cited by 3 | Viewed by 1440
Abstract
The wettability of the proppant is crucial in optimizing the flowback of fracturing fluids and improving the recovery of the produced hydrocarbons. Neutral wet proppants have been proven to improve the fluid flow by reducing the interaction between the fluid and the proppant [...] Read more.
The wettability of the proppant is crucial in optimizing the flowback of fracturing fluids and improving the recovery of the produced hydrocarbons. Neutral wet proppants have been proven to improve the fluid flow by reducing the interaction between the fluid and the proppant surface. In this study, a lightweight amphiphobic proppant (LWAP) was prepared by coating a lightweight ceramic proppant (LWCP) with phenolic resin, epoxy resin, polytetrafluoroethylene (PTFE), and trimethoxy(1H,1H,2H,2H-heptadecafluorodecyl)silane (TMHFS) using a layer-by-layer method. The results indicated that the LWAP exhibited a breakage ratio of 2% under 52 MPa (7.5 K) closure stress, with an apparent density of 2.12 g/cm3 and a bulk density of 1.21 g/cm3. The contact angles of water and olive oil were 125° and 104°, respectively, changing to 124° and 96° after displacement by water and diesel oil. A comparison showed that the LWAP could transport over a significantly longer distance than the LWCP, with the length increasing by more than 80%. Meanwhile, the LWAP displayed notable resistance to scale deposition on the proppant surface compared to the LWCP. Furthermore, the maintained conductivity of the LWAP was higher than that of the LWCP after displacement by water and oil phases alternately. The modified proppant could minimize production declines during hydrocarbon extraction in unconventional reservoirs. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

21 pages, 15945 KiB  
Article
Mechanisms of Proppant Transport in Rough Fractures of Offshore Unconventional Reservoirs: Shale and Tight Sandstone
by Biao Yin, Yishan Lou, Shanyong Liu and Peng Xu
J. Mar. Sci. Eng. 2024, 12(9), 1582; https://doi.org/10.3390/jmse12091582 - 7 Sep 2024
Cited by 3 | Viewed by 1532
Abstract
After hydraulic fracturing, unconventional reservoirs frequently encounter challenges related to limited effective proppant support distance and suboptimal proppant placement. Due to the strong heterogeneity of offshore reservoirs, which causes varying fracture roughnesses depending on different lithologies, a systematic study of the relationship between [...] Read more.
After hydraulic fracturing, unconventional reservoirs frequently encounter challenges related to limited effective proppant support distance and suboptimal proppant placement. Due to the strong heterogeneity of offshore reservoirs, which causes varying fracture roughnesses depending on different lithologies, a systematic study of the relationship between roughness and proppant transport could optimize operational parameters. This study incorporates the box dimension method for fractal dimension analysis to quantify roughness in auto-correlated Gaussian distributed surfaces created by true triaxial tests. Combined with the numerical analysis of (computational fluid dynamics) CFD-DEM (discrete element method) for bidirectional coupling, the laws of proppant deposition and transport processes within fractures with different roughnesses are obtained through comparative verification simulations. The results show that for rougher fractures of shale, the proppants are transported farther, but at JRC_52, (joint roughness coefficient), where there may be plugging in curved areas, there is a risk of near-well blockages. Compared to the smooth model, fluctuations in JRC_28 (tight sandstone) drastically increase turbulent kinetic energy within the fracture, altering particle transport dynamics. Moreover, smaller proppants (d/w ≤ 0.3) exhibit better transport capacity due to gravity, but the conductivity of the proppant is limited when the particles are too small. A d/w of 0.4 is recommended to guarantee transport capacity and proppant efficiency near the well. Additionally, proppants injected sequentially from small to large in shale fractures offer optimal propping effects, and can take advantage of the better transport capacity of smaller proppants in rough fractures. The large proppant (d/w = 0.8) is primarily deposited by gravity and forms a sloping sand bed, which subsequently ensures the aperture of the fractures. This research provides a fresh perspective on the influence of fracture roughness on proppant transport in offshore unconventional reservoirs and offers valuable considerations for the order of proppant injection. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

11 pages, 1023 KiB  
Article
Research on the Migration and Settlement Laws of Backflow Proppants after Fracturing Tight Sandstone
by Hanlie Cheng and Qiang Qin
Appl. Sci. 2024, 14(17), 7746; https://doi.org/10.3390/app14177746 - 2 Sep 2024
Cited by 4 | Viewed by 958
Abstract
This article studies the migration and settlement laws of backflow proppants after fracturing tight sandstone. This paper proposes a fitting method based on a multi-task learning network to address the issue of interference from multiple physical parameters during the transport and settlement processes [...] Read more.
This article studies the migration and settlement laws of backflow proppants after fracturing tight sandstone. This paper proposes a fitting method based on a multi-task learning network to address the issue of interference from multiple physical parameters during the transport and settlement processes of proppants. This method can effectively handle multi-dimensional interference factors and fit the mapping logic of multiple engineering parameters to transport patterns through the continuous correction of multi-layer networks. We first introduce the characteristics of tight sandstone reservoirs and their important value in mining, as well as the status of current research on the migration and settlement laws of proppants at home and abroad. Based on this, we then deeply analyze the sedimentation rate model of proppants in tight sandstone backflow and the equilibrium height of proppants under multiple factors of interference while considering the distribution characteristics of proppants. In order to more accurately simulate the transport and settlement laws of proppants, this paper introduces a multi-task learning network. This network can comprehensively consider multi-dimensional parameters, learn the inherent laws of data through training, and achieve accurate fitting of the transport and settlement laws of proppants. This study trained and tested the model using actual production data, and the results showed that the proposed model can fit the input–output relationship well, thus effectively supporting the study of proppant transport and settlement laws. Full article
Show Figures

Figure 1

Back to TopTop