Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,522)

Search Parameters:
Keywords = propagation area

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 7663 KiB  
Article
Spatio-Temporal Evolution, Factors, and Enhancement Paths of Ecological Civilization Construction Effectiveness: Empirical Evidence Based on 48 Cities in the Yellow River Basin of China
by Haifa Jia, Pengyu Liang, Xiang Chen, Jianxun Zhang, Wanmei Zhao and Shaowen Ma
Land 2025, 14(7), 1499; https://doi.org/10.3390/land14071499 (registering DOI) - 19 Jul 2025
Abstract
Climate change, resource scarcity, and ecological degradation have become critical bottlenecks constraining socio-economic development. Basin cities serve as key nodes in China’s ecological security pattern, playing indispensable roles in ecological civilization construction. This study established an evaluation index system spanning five dimensions to [...] Read more.
Climate change, resource scarcity, and ecological degradation have become critical bottlenecks constraining socio-economic development. Basin cities serve as key nodes in China’s ecological security pattern, playing indispensable roles in ecological civilization construction. This study established an evaluation index system spanning five dimensions to assess the effectiveness of ecological civilization construction. This study employs the entropy-weighted Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) and Back-Propagation (BP) neural network methods to evaluate the level of ecological civilization construction in the Yellow River Basin from 2010 to 2022, to analyze its indicator weights, and to explore the spatio-temporal evolution characteristics of each city. The results demonstrate the following: (1) Although the ecological civilization construction level of cities in the Yellow River Basin shows a steady improvement, significant regional development disparities persist. (2) The upper reaches are primarily constrained by ecological fragility and economic underdevelopment. The middle reaches exhibit significant internal divergence, with provincial capitals leading yet demonstrating limited spillover effects on neighboring areas. The lower reaches face intense anthropogenic pressures, necessitating greater economic–ecological coordination. (3) Among the dimensions considered, Territorial Space and Eco-environmental Protection emerged as the two most influential dimensions contributing to performance differences. According to the ecological civilization construction performance and changing characteristics of the 48 cities, this study proposes differentiated optimization measures and coordinated development pathways to advance the implementation of the national strategy for ecological protection and high-quality development in the Yellow River Basin. Full article
23 pages, 4453 KiB  
Article
Nonlinear Elasticity and Damage Prediction in Automated Fiber Placement Composites via Nested Micromechanics
by Hadas Hochster, Gal Raanan, Eyal Tiosano, Yoav Harari, Golan Michaeli, Yonatan Rotbaum and Rami Haj-Ali
Materials 2025, 18(14), 3394; https://doi.org/10.3390/ma18143394 (registering DOI) - 19 Jul 2025
Abstract
Automated fiber placement (AFP) composites exhibit complex mechanical behaviors due to manufacturing-induced mesostructural variations, including resin-rich regions and tow gaps that significantly influence both local stress distributions and global material responses. This study presents a hierarchically nested modeling framework based on the Parametric [...] Read more.
Automated fiber placement (AFP) composites exhibit complex mechanical behaviors due to manufacturing-induced mesostructural variations, including resin-rich regions and tow gaps that significantly influence both local stress distributions and global material responses. This study presents a hierarchically nested modeling framework based on the Parametric High-Fidelity Generalized Method of Cells (PHFGMC) to predict the effective elastic properties and nonlinear mechanical response of AFP composites. The PHFGMC model integrates micro- and meso-scale analyses using representative volume elements (RVEs) derived from micrographs of AFP composite laminates to capture these manufacturing-induced characteristics. Multiple RVE configurations with varied gap patterns are analyzed to quantify the influence of mesostructural features on global stress–strain response. Predictions for linear and nonlinear elastic behaviors are validated against experimental results from carbon fiber/epoxy AFP specimens, demonstrating good quantitative agreement with measured responses. A cohesive extension of the PHFGMC framework further captures damage initiation and crack propagation under transverse tensile loading, revealing failure mechanisms specifically associated with tow gaps and resin-rich areas. By systematically accounting for manufacturing-induced variability through detailed RVE modeling, the nested PHFGMC framework enables the accurate prediction of global mechanical performance and localized behavior, providing a robust computational tool for optimizing AFP composite design in aerospace and other high-performance applications. Full article
(This article belongs to the Special Issue Mechanical Behaviour of Advanced Metal and Composite Materials)
Show Figures

Figure 1

22 pages, 37656 KiB  
Article
Investigating Urban Heat Islands in Miami, Florida, Utilizing Planet and Landsat Satellite Data
by Suraj K C, Anuj Chiluwal, Lalit Pun Magar and Kabita Paudel
Atmosphere 2025, 16(7), 880; https://doi.org/10.3390/atmos16070880 - 18 Jul 2025
Abstract
Miami, Florida, renowned for its cultural richness and coastal beauty, also faces the concerning challenges created by urban heat islands (UHIs). As one of the hottest cities of the United States, Miami is facing escalating temperatures and threatening heat-related vulnerabilities due to urbanization [...] Read more.
Miami, Florida, renowned for its cultural richness and coastal beauty, also faces the concerning challenges created by urban heat islands (UHIs). As one of the hottest cities of the United States, Miami is facing escalating temperatures and threatening heat-related vulnerabilities due to urbanization and climate change. Our study addresses the critical issue of mapping and investigating UHIs in complex urban settings. This study leveraged Planet satellite data and Landsat data to conceptualize and develop appropriate mitigation strategies for UHIs in Miami. Utilizing the Planet satellite imagery and Landsat data, we conducted a combined study of land cover and land surface temperature variations within the city. This approach fuses remotely sensed data to identify the UHI hotspots. This study aims for dynamic approaches for UHI mitigation. This includes studying the status of green spaces present in the city, possible expansion of urban green spaces, the propagation of cool roof initiatives, and exploring the recent climatic trend of the city. The research revealed that built-up areas consistently showed higher land surface temperatures while zones with dense vegetation have lower surface temperatures, supporting the role of urban green spaces in surface temperature reduction. This research can also set a robust model for addressing UHIs in other cities facing rapid urbanization and experiencing mounting temperatures each passing year by helping in assessing LST, land cover, and related spectral indices as well. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

32 pages, 20641 KiB  
Article
Mechanical Properties and Failure Mechanisms of Sandstone Under Combined Action of Cyclic Loading and Freeze–Thaw
by Taoying Liu, Huaheng Li, Longjun Dong and Ping Cao
Appl. Sci. 2025, 15(14), 7942; https://doi.org/10.3390/app15147942 - 16 Jul 2025
Viewed by 180
Abstract
In high-elevation mining areas, the roadbeds of certain surface ore haul roads are predominantly composed of sandstone. These sandstones are exposed to cold climatic conditions for long periods and are highly susceptible to erosion by the effects of freeze–thaw, which can degrade their [...] Read more.
In high-elevation mining areas, the roadbeds of certain surface ore haul roads are predominantly composed of sandstone. These sandstones are exposed to cold climatic conditions for long periods and are highly susceptible to erosion by the effects of freeze–thaw, which can degrade their support properties. This paper investigates the mechanism of strength deterioration of sandstone containing prefabricated cracks under cyclic loading and unloading after experiencing freeze–thaw. Sandstone specimens containing prefabricated cracks were prepared and subjected to 0, 20, 40, 60, and 80 freeze–thaw cycle tests. The strength changes were tested, and the crack extension process was analyzed using numerical simulation techniques. The study results show the following: 1. The wave propagation speed within the sandstone is more sensitive to changes in the number of freeze–thaw cycles. In contrast, mass damage shows significant changes only when more freeze–thaw cycles are experienced. 2. As the number of freeze–thaw cycles increases, the frequency of energy release from the numerical model accelerates. 3. The trend of the Cumulative Strain Difference (εc) reflects that the plastic strain difference between numerical simulation and actual measurement gradually decreases with increasing stress cycle level. 4. With the increase in freeze–thaw cycles, the damage morphology of the specimen undergoes a noticeable change, which is gradually transformed from monoclinic shear damage to X-shaped conjugate surface shear damage. 5. The number of tensile cracks dominated throughout the cyclic loading and unloading process, but with the increase in freeze–thaw cycles, the percentage of shear cracks increased. As the freeze–thaw cycles increase, sandstones are more inclined to undergo shear damage. These findings are important guidelines for road design and maintenance in alpine mining areas. Full article
Show Figures

Figure 1

22 pages, 11512 KiB  
Article
Hazard Assessment of Highway Debris Flows in High-Altitude Mountainous Areas: A Case Study of the Laqi Gully on the China–Pakistan Highway
by Xiaomin Dai, Qihang Liu, Ziang Liu and Xincheng Wu
Sustainability 2025, 17(14), 6411; https://doi.org/10.3390/su17146411 - 13 Jul 2025
Viewed by 283
Abstract
Located on the northern side of the China–Pakistan Highway in the Pamir Plateau, Laqi Gully represents a typical rainfall–meltwater coupled debris flow gully. During 2020–2024, seven debris flow events occurred in this area, four of which disrupted traffic and posed significant threats to [...] Read more.
Located on the northern side of the China–Pakistan Highway in the Pamir Plateau, Laqi Gully represents a typical rainfall–meltwater coupled debris flow gully. During 2020–2024, seven debris flow events occurred in this area, four of which disrupted traffic and posed significant threats to the China–Pakistan Economic Corridor (CPEC). The hazard assessment of debris flows constitutes a crucial component in disaster prevention and mitigation. However, current research presents two critical limitations: traditional models primarily focus on single precipitation-driven debris flows, while low-resolution digital elevation models (DEMs) inadequately characterize the topographic features of alpine narrow valleys. Addressing these issues, this study employed GF-7 satellite stereo image pairs to construct a 1 m resolution DEM and systematically simulated debris flow propagation processes under 10–100-year recurrence intervals using a coupled rainfall–meltwater model. The results show the following: (1) The mudslide develops rapidly in the gully section, and the flow velocity decays when it reaches the highway. (2) At highway cross-sections, maximum velocities corresponding to 10-, 20-, 50-, and 100-year recurrence intervals measure 2.57 m/s, 2.75 m/s, 3.02 m/s, and 3.36 m/s, respectively, with maximum flow depths of 1.56 m, 1.78 m, 2.06 m, and 2.52 m. (3) Based on the hazard classification model of mudslide intensity and return period, the high-, medium-, and low-hazard sections along the highway were 58.65 m, 27.36 m, and 24.1 m, respectively. This research establishes a novel hazard assessment methodology for rainfall–meltwater coupled debris flows in narrow valleys, providing technical support for debris flow mitigation along the CPEC. The outcomes demonstrate significant practical value for advancing infrastructure sustainability under the United Nations Sustainable Development Goals (SDGs). Full article
Show Figures

Figure 1

25 pages, 9560 KiB  
Article
I.S.G.E.: An Integrated Spatial Geotechnical and Geophysical Evaluation Methodology for Subsurface Investigations
by Christos Orfanos, Konstantinos Leontarakis, George Apostolopoulos, Ioannis E. Zevgolis and Bojan Brodic
Geosciences 2025, 15(7), 264; https://doi.org/10.3390/geosciences15070264 - 8 Jul 2025
Viewed by 153
Abstract
A new Integrated Spatial Geophysical and Geotechnical Evaluation (I.S.G.E) methodology has been developed to estimate the spatial distribution of geotechnical parameters using high-resolution geophysical methods. The proposed algorithm is based on fuzzy logic, and the final output is the prediction of the 2D [...] Read more.
A new Integrated Spatial Geophysical and Geotechnical Evaluation (I.S.G.E) methodology has been developed to estimate the spatial distribution of geotechnical parameters using high-resolution geophysical methods. The proposed algorithm is based on fuzzy logic, and the final output is the prediction of the 2D or 3D distribution of a geotechnical parameter within a survey area. The main advantage of the developed I.S.G.E tool is that it can propagate sparse geotechnical or point information from 1D to 2D or even 3D space through a fully automatic, unbiased statistical procedure. In this study, I.S.G.E. is implemented and evaluated first using synthetic data and, afterwards, in field condition applications. The automatically derived 3D models, depicting the spatial distribution of specific geotechnical parameters, provide engineers with an additional interpretation tool for better understanding the subsurface conditions of a survey area. Full article
(This article belongs to the Section Geophysics)
Show Figures

Figure 1

33 pages, 762 KiB  
Review
In Vitro Mycorrhization for Plant Propagation and Enhanced Resilience to Environmental Stress: A Review
by Hassna Radi, Meriyem Koufan, Ilham Belkoura, Tayeb Koussa and Mouaad Amine Mazri
Plants 2025, 14(14), 2097; https://doi.org/10.3390/plants14142097 - 8 Jul 2025
Viewed by 457
Abstract
Arbuscular mycorrhizal fungi (AMF) play a key role in enhancing plant stress tolerance, nutrient uptake, and overall health, making them essential for sustainable agriculture. Their multifaceted contributions to the rhizosphere—through biofertilization, bioprotection, and biostimulation—have led to growing interest in their application. In recent [...] Read more.
Arbuscular mycorrhizal fungi (AMF) play a key role in enhancing plant stress tolerance, nutrient uptake, and overall health, making them essential for sustainable agriculture. Their multifaceted contributions to the rhizosphere—through biofertilization, bioprotection, and biostimulation—have led to growing interest in their application. In recent years, in vitro mycorrhization has emerged as a promising approach for the rapid propagation of economically and ecologically important plant species, offering improved agronomic and physiological traits as well as increased resilience to environmental stressors. However, challenges remain in achieving consistent AMF-plant symbiosis under in vitro conditions across diverse species. This review highlights the potential of in vitro mycorrhization as a controlled system for investigating AMF interactions and their impact on plant development. Various in vitro mycorrhization systems are described and discussed, along with their applications in the mass production of AMF propagules and mycorrhizal plants, and their role in enhancing the acclimatization of micropropagated plantlets to ex vitro conditions. The role of in vitro mycorrhization as an effective tissue culture approach that integrates plant propagation with enhanced resilience to environmental stress is emphasized. The factors influencing the success of in vitro mycorrhization and strategies for the large-scale production of AMF propagules and mycorrhizal plants are explored. Although research in this area is still limited, existing studies underscore the potential of in vitro mycorrhization to enhance plant tolerance to abiotic and biotic stresses—an increasingly urgent goal in the context of climate change and global food security. Full article
Show Figures

Figure 1

25 pages, 8033 KiB  
Article
Research on the Damage Evolution Law of Branch Wellbore Based on Damage Mechanics
by Qizhong Tian, Chao Han, Yang Meng, Rongdong Dai, Haocai Huang, Jiaao Chen and Chuanliang Yan
Processes 2025, 13(7), 2172; https://doi.org/10.3390/pr13072172 - 8 Jul 2025
Viewed by 253
Abstract
Multilateral wells can effectively develop complex reservoirs at a lower cost, which, in turn, enhances the overall efficiency of oilfield exploitation. However, drilling branch wells from the main wellbore can disrupt the surrounding formation stresses, leading to secondary stress concentration at the junctions, [...] Read more.
Multilateral wells can effectively develop complex reservoirs at a lower cost, which, in turn, enhances the overall efficiency of oilfield exploitation. However, drilling branch wells from the main wellbore can disrupt the surrounding formation stresses, leading to secondary stress concentration at the junctions, which, in turn, causes wellbore instability. This study established a coupled analysis model for wellbore stability in branch wells by integrating seepage, stress, and damage. The model explained the instability mechanisms of branch wellbores under multi-physics coupling conditions. The results showed that during drilling, the thin, interwall section of branch wells had weak resistance to external loads, with significant stress concentration and a maximum damage factor of 0.267, making it prone to instability. As drilling time progressed, fractures in the surrounding rock mass of the wellbore continuously formed, propagated, and interconnected, causing a sharp increase in the permeability of the damaged area. The seepage direction of drilling fluid in the wellbore tended towards the severely damaged interwall section, leading to a rapid increase in pore pressure there. With increasing distance from the interwall tip, the resistance to external loads strengthened, and the formation damage factor, permeability, pore pressure, and equivalent plastic strain all gradually decreased. When the drilling fluid density increased from 1.0 g/cm3 to 1.5 g/cm3, the maximum equivalent plastic strain around the wellbore decreased from 0.041 to 0.014, a reduction of 65.8%, indicating that appropriately increasing the drilling fluid density can effectively reduce the risk of wellbore instability. Full article
Show Figures

Figure 1

15 pages, 3152 KiB  
Article
Mechanisms of Crack Evolution in Clay Materials Under Varying Boundary Conditions
by Guoliang Xie, Junjian Cui, Jie Jiang, Mingxiang Guo, Yanbin Song and Yong Liu
Buildings 2025, 15(13), 2340; https://doi.org/10.3390/buildings15132340 - 3 Jul 2025
Viewed by 244
Abstract
In recent years, droughts and extreme weather events have witnessed increasing frequency around the globe, leading to a growing number of issues related to soil cracking that severely impact the stability of engineering projects and ecological environments. This study mainly investigates the cracking [...] Read more.
In recent years, droughts and extreme weather events have witnessed increasing frequency around the globe, leading to a growing number of issues related to soil cracking that severely impact the stability of engineering projects and ecological environments. This study mainly investigates the cracking of clay in arid areas of Xinjiang. An experiment is conducted in a climate simulation laboratory, in which we explored the evolution of soil drying cracks under different (straight/curved) boundary constraints. The crack development process is quantitatively described through the use of digital imaging technology and by combining parameters such as crack rate, fractal dimension, and water-holding performance at different boundaries. The following conclusions were drawn: Under curved boundary conditions, cracks expand in a curve-like manner, and the cracks in the boundary area are densely distributed. However, under straight boundary conditions, penetrating straight cracks are formed, and the soil blocks present as regular polygons. Boundary conditions significantly impact the residual water content. Under straight boundary conditions, the residual masses of strongly and weakly bound water are significantly higher than those under curved boundary conditions. The complexity of the crack network under the curved boundary condition is higher, and its fractal dimension is significantly greater than that under the straight boundary condition. A quantitative analysis based on the use of digital image processing technology indicates that the boundary geometry has a significant controlling effect on the crack propagation path. This research provides guidance on the prevention and control of soil engineering cracking and damage in arid regions. Full article
(This article belongs to the Collection Innovation of Materials and Technologies in Civil Construction)
Show Figures

Figure 1

29 pages, 1959 KiB  
Review
Systematic Review of Service Quality Models in Construction
by Rongxu Liu, Voicu Ion Sucala, Martino Luis and Lama Soliman Khaled
Buildings 2025, 15(13), 2331; https://doi.org/10.3390/buildings15132331 - 3 Jul 2025
Viewed by 408
Abstract
The construction industry is undergoing a significant transformation due to the increasing influence of digital technology, sustainability requirements, and diverse stakeholder expectations, which highlights the need to update the existing service quality models accordingly. However, the traditional service quality models often fail to [...] Read more.
The construction industry is undergoing a significant transformation due to the increasing influence of digital technology, sustainability requirements, and diverse stakeholder expectations, which highlights the need to update the existing service quality models accordingly. However, the traditional service quality models often fail to address these evolving demands comprehensively. This study systematically reviews 44 peer-reviewed articles to identify the key service quality dimensions and offer clear guidance for future research that can address the complexities of modern construction. The findings reveal that reliability, tangibles, and communication remain the most emphasized dimensions across the reviewed literature, whereas critical areas, such as digital integration, sustainability indicators, and service recovery, are significantly underexplored. This contrast explicitly links the limitations of the classic frameworks to these emerging demands, highlighting their difficulty in accommodating the industry’s growing reliance on real-time data, an environmentally friendly performance, and multi-stakeholder collaboration. Because the construction industry typically contributes 6–10 per cent of the national GDP and underpins wider economic development, inadequate service quality models can propagate cost overruns, productivity losses, and reputational damage across the economy; conversely, improved models enhance project efficiency, and thus support sustained economic growth. This review is limited by its reliance on the Scopus and Web of Science databases, which may exclude relevant regional or non-English studies. Furthermore, many reviewed articles are context-specific, potentially reducing the generalizability of the findings. Despite these limitations, this review offers an evidence-based framework that integrates advanced digital tools, sustainability measures, and diverse stakeholder perspectives. Future studies should demonstrate this framework’s efficacy and applicability in different circumstances. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

33 pages, 12918 KiB  
Article
Time-Dependent Fragility Functions and Post-Earthquake Residual Seismic Performance for Existing Steel Frame Columns in Offshore Atmospheric Environment
by Xiaohui Zhang, Xuran Zhao, Shansuo Zheng and Qian Yang
Buildings 2025, 15(13), 2330; https://doi.org/10.3390/buildings15132330 - 2 Jul 2025
Viewed by 354
Abstract
This paper evaluates the time-dependent fragility and post-earthquake residual seismic performance of existing steel frame columns in offshore atmospheric environments. Based on experimental research, the seismic failure mechanism and deterioration laws of the seismic behavior of corroded steel frame columns were revealed. A [...] Read more.
This paper evaluates the time-dependent fragility and post-earthquake residual seismic performance of existing steel frame columns in offshore atmospheric environments. Based on experimental research, the seismic failure mechanism and deterioration laws of the seismic behavior of corroded steel frame columns were revealed. A finite element analysis (FEA) method for steel frame columns, which considers corrosion damage and ductile metal damage criteria, is developed and validated. A parametric analysis in terms of service age and design parameters is conducted. Considering the impact of environmental erosion and aging, a classification criterion for damage states for existing steel frame columns is proposed, and the theoretical characterization of each damage state is provided based on the moment-rotation skeleton curves. Based on the test and numerical analysis results, probability distributions of the fragility function parameters (median and logarithmic standard deviation) are constructed. The evolution laws of the fragility parameters with increasing service age under each damage state are determined, and a time-dependent fragility model for existing steel frame columns in offshore atmospheric environments is presented through regression analysis. At a drift ratio of 4%, the probability of complete damage to columns with 40, 50, 60, and 70-year service ages increased by 18.1%, 45.3%, 79.2%, and 124.5%, respectively, compared with columns within a 30-year service age. Based on the developed FEA models and the damage class of existing columns, the influence of characteristic variables (service age, design parameters, and damage level) on the residual seismic capacity of earthquake-damaged columns, namely the seismic resistance that can be maintained even after suffering earthquake damage, is revealed. Using the particle swarm optimization back-propagation neural network (PSO-BPNN) model, nonlinear mapping relationships between the characteristic variables and residual seismic capacity are constructed, thereby proposing a residual seismic performance evaluation model for existing multi-aged steel frame columns in an offshore atmospheric environment. Combined with the damage probability matrix of the time-dependent fragility, the expected values of the residual seismic capacity of existing multi-aged steel frame columns at a given drift ratio are obtained directly in a probabilistic sense. The results of this study lay the foundation for resistance to sequential earthquakes and post-earthquake functional recovery and reconstruction, and provide theoretical support for the full life-cycle seismic resilience assessment of existing steel structures in earthquake-prone areas. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

14 pages, 2762 KiB  
Article
Highly Efficient Regeneration of Bombax ceiba via De Novo Organogenesis from Hypocotyl and Bud Explants
by Yamei Li, Qionghai Jiang, Lisha Cha, Fei Lin, Fenling Tang, Yong Kang, Guangsui Yang, Surong Huang, Yuhua Guo and Junmei Yin
Plants 2025, 14(13), 2033; https://doi.org/10.3390/plants14132033 - 2 Jul 2025
Viewed by 249
Abstract
Bombax ceiba is an important medicinal and ornamental tree widely distributed in tropical and subtropical areas. However, its seeds lose viability rapidly after harvest, which has created hurdles in large-scale propagation. Here, we describe the development of a rapid and efficient de novo [...] Read more.
Bombax ceiba is an important medicinal and ornamental tree widely distributed in tropical and subtropical areas. However, its seeds lose viability rapidly after harvest, which has created hurdles in large-scale propagation. Here, we describe the development of a rapid and efficient de novo organogenesis system for Bombax ceiba, incorporating both indirect and direct regeneration pathways. The optimal basal medium used throughout the protocol was ½ MS supplemented with 30 g/L glucose, with all cultures maintained at 26–28 °C. For the indirect pathway, callus was induced from both ends of each hypocotyl on basal medium supplemented with 0.2 mg·L−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 0.5 mg·L−1 6-Benzylaminopurine (6-BA) under dark conditions. The induced calluses were subsequently differentiated into adventitious shoots on basal media containing 0.5 mg·L−1 Indole-3-butyric acid (IBA), 0.15 mg·L−1 Kinetin (KIN), and 1 mg·L−1 6-BA under a 16 h photoperiod, resulting in a callus induction rate of 140% and a differentiation rate of 51%. For the direct regeneration pathway, shoot buds cultured on medium with 0.5 mg·L−1 IBA and 1 mg·L−1 6-BA achieved a 100% sprouting rate with a regeneration coefficient of approximately 3.2. The regenerated adventitious shoots rooted successfully on medium supplemented with 0.5 mg·L−1 Naphthylacetic acid (NAA) and were acclimatized under greenhouse conditions to produce viable plantlets. This regeneration system efficiently utilizes sterile seedling explants, is not limited by seasonal or environmental factors, and significantly improves the propagation efficiency of Bombax ceiba. These optimized micropropagation methods also provide a robust platform for future genetic transformation studies using hypocotyls and shoot buds as explants. Full article
Show Figures

Figure 1

20 pages, 2729 KiB  
Article
Occurrence of Philaenus spumarius in Xylella fastidiosa Demarcated Zones of Northern Portugal
by Talita Loureiro, Luís Serra, Ângela Martins, Isabel Cortez and Patrícia Poeta
Microbiol. Res. 2025, 16(7), 145; https://doi.org/10.3390/microbiolres16070145 - 2 Jul 2025
Viewed by 193
Abstract
The introduction of non-native species like Xylella fastidiosa to new environments can lead to potentially catastrophic ecological and economic repercussions. This work comprehended the prospection phase (insect sampling and submission of samples to the laboratory) from X. fastidiosa demarcated zones of Área Metropolitana [...] Read more.
The introduction of non-native species like Xylella fastidiosa to new environments can lead to potentially catastrophic ecological and economic repercussions. This work comprehended the prospection phase (insect sampling and submission of samples to the laboratory) from X. fastidiosa demarcated zones of Área Metropolitana do Porto; Sabrosa; Alijó; Baião; Mirandela; Mirandela II; and Bougado and the research phase (collecting and organizing data and statistical treatment). The results of this study showed the presence of the bacterium in some tested spittlebugs species captured in DZ of Área Metropolitana do Porto, which highlights the role of the vector in mediating the disease’s propagation. Most insects were found in public gardens and in nurseries/gardens where there is a diverse array of food sources, shelter, mating locations, and suitable substrates for egg laying that serve as ideal conditions for the population of Philaenus spumarius. We observed that most insects were found in the first trimester (36.5%), followed by the third trimester (23.2%). Finally, it was shown that, in our study, the most frequent host plants where insects were found included Lavandula dentata, Ulex minor, Ulex europaeus, Quercus suber, Plantago lanceolata. Our findings imply a robust connection between plant communities, ecological conditions, and insect populations with the occurrence of Xylella fastidiosa, particularly within the examined climatic context. Full article
Show Figures

Figure 1

15 pages, 1701 KiB  
Article
Innovative Method of Stimulating Vegetative Propagation of Large Cranberry (Vaccinium macrocarpon Aiton) Using New Organic Initiators
by Natalia Matłok, Małgorzata Szostek, Tomasz Piechowiak and Maciej Balawejder
Int. J. Mol. Sci. 2025, 26(13), 6369; https://doi.org/10.3390/ijms26136369 - 2 Jul 2025
Viewed by 188
Abstract
Large-fruited cranberry (Vaccinium macrocarpon Aiton) is a species known for its highly valued fruit and is typically propagated vegetatively through the rooting of stem cuttings. Studies on the rooting of stem cuttings of large-fruited cranberry have shown that the morphological traits of [...] Read more.
Large-fruited cranberry (Vaccinium macrocarpon Aiton) is a species known for its highly valued fruit and is typically propagated vegetatively through the rooting of stem cuttings. Studies on the rooting of stem cuttings of large-fruited cranberry have shown that the morphological traits of the root system are a key indicator of the effectiveness of this process. To support rooting, gel coatings based on polysaccharides and containing auxins, especially the indole-3-butyric acid (IBA) W4 variant, were developed and applied. These significantly influenced root length (increase of 44.6% compared to control W0), surface area (increase of 32.4% compared to W0), volume (increase of 26.7% compared to W0), and average thickness, which translated into better nutrient uptake and a higher degree of plant nourishment. The W4 coating, combining mineral components, polysaccharides, and IBA, reduced transpiration and maintained moisture, promoting effective rooting. The associated metabolic changes were confirmed by analyses of oxidative stress markers and chlorophyll fluorescence. The study demonstrated that enhanced root system development was closely linked with the increased accumulation of macro- and micronutrients in the aerial parts of the plants, directly contributing to improved growth and potential yield. These findings highlight that effective rooting—achieved through the targeted metabolic stabilisation of the rooting environment—is essential for the successful vegetative propagation of large-fruited cranberry. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

16 pages, 9897 KiB  
Article
Combination of High-Rate Ionosonde Measurements with COSMIC-2 Radio Occultation Observations for Reference Ionosphere Applications
by Iurii Cherniak, David Altadill, Irina Zakharenkova, Víctor de Paula, Víctor Navas-Portella, Douglas Hunt, Antoni Segarra and Ivan Galkin
Atmosphere 2025, 16(7), 804; https://doi.org/10.3390/atmos16070804 - 1 Jul 2025
Viewed by 255
Abstract
Knowledge of ionospheric plasma altitudinal distribution is crucial for the effective operation of radio wave propagation, communication, and navigation systems. High-frequency sounding radars—ionosondes—provide unbiased benchmark measurements of ionospheric plasma density due to a direct relationship between the frequency of sound waves and ionospheric [...] Read more.
Knowledge of ionospheric plasma altitudinal distribution is crucial for the effective operation of radio wave propagation, communication, and navigation systems. High-frequency sounding radars—ionosondes—provide unbiased benchmark measurements of ionospheric plasma density due to a direct relationship between the frequency of sound waves and ionospheric electron density. But ground-based ionosonde observations are limited by the F2 layer peak height and cannot probe the topside ionosphere. GNSS Radio Occultation (RO) onboard Low-Earth-Orbiting satellites can provide measurements of plasma distribution from the lower ionosphere up to satellite orbit altitudes (~500–600 km). The main goal of this study is to investigate opportunities to obtain full observation-based ionospheric electron density profiles (EDPs) by combining advantages of ground-based ionosondes and GNSS RO. We utilized the high-rate Ebre and El Arenosillo ionosonde observations and COSMIC-2 RO EDPs colocated over the ionosonde’s area of operation. Using two types of ionospheric remote sensing techniques, we demonstrated how to create the combined ionospheric EDPs based solely on real high-quality observations from both the bottomside and topside parts of the ionosphere. Such combined EDPs can serve as an analogy for incoherent scatter radar-derived “full profiles”, providing a reference for the altitudinal distribution of ionospheric plasma density. Using the combined reference EDPs, we analyzed the performance of the International Reference Ionosphere model to evaluate model–data discrepancies. Hence, these new profiles can play a significant role in validating empirical models of the ionosphere towards their further improvements. Full article
Show Figures

Figure 1

Back to TopTop