Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (249)

Search Parameters:
Keywords = probiotic beverage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2097 KiB  
Article
Dual Bioconversion Strategy: Synergistic Germination and Lactobacillus Fermentation Engineering for a γ-Aminobutyric Acid-Enriched Beverage from Brown Rice
by Di Yuan, Shan Zhang, Bin Hong, Shan Shan, Jingyi Zhang, Dixin Sha, Shiwei Gao, Qing Liu, Shuwen Lu and Chuanying Ren
Foods 2025, 14(15), 2733; https://doi.org/10.3390/foods14152733 - 5 Aug 2025
Abstract
Growing demand for plant-based nutraceuticals drives the need for innovative bioprocessing strategies. This study developed an integrated approach combining germination and Lactobacillus-mediated fermentation to produce a γ-aminobutyric acid (GABA)-enriched functional beverage from brown rice. Systematic screening identified an optimal rice cultivar for germination. [...] Read more.
Growing demand for plant-based nutraceuticals drives the need for innovative bioprocessing strategies. This study developed an integrated approach combining germination and Lactobacillus-mediated fermentation to produce a γ-aminobutyric acid (GABA)-enriched functional beverage from brown rice. Systematic screening identified an optimal rice cultivar for germination. Sequential enzymatic liquefaction and saccharification were optimized to generate a suitable hydrolysate. Screening of 13 probiotic strains revealed that a 10-strain Lactobacillus–Bifidobacterium consortium maximized GABA synthesis (12.2 mg/100 g). Fermentation parameters were optimized to 0.25% monosodium glutamate, 4% inoculum, 10 μmol/L pyridoxine hydrochloride, 37 °C, and 24 h. The resulting beverage achieved significantly elevated GABA concentrations while exhibiting low fat (0.2 g/100 g), reduced caloric content (233.6 kJ/100 g), and high viable probiotic counts (2 × 108 CFU/g). This strategy demonstrates significant potential for the scalable production of multifunctional, plant-based nutraceuticals with targeted bioactive components. Full article
Show Figures

Figure 1

20 pages, 1743 KiB  
Article
Encapsulation of Lactobacillus reuteri in Chia–Alginate Hydrogels for Whey-Based Functional Powders
by Alma Yadira Cid-Córdoba, Georgina Calderón-Domínguez, María de Jesús Perea-Flores, Alberto Peña-Barrientos, Fátima Sarahi Serrano-Villa, Rigoberto Barrios-Francisco, Marcela González-Vázquez and Rentería-Ortega Minerva
Gels 2025, 11(8), 613; https://doi.org/10.3390/gels11080613 - 4 Aug 2025
Viewed by 23
Abstract
This study aimed to develop a functional powder using whey and milk matrices, leveraging the protective capacity of chia–alginate hydrogels and the advantages of electrohydrodynamic spraying (EHDA), a non-thermal technique suitable for encapsulating probiotic cells under stress conditions commonly encountered in food processing. [...] Read more.
This study aimed to develop a functional powder using whey and milk matrices, leveraging the protective capacity of chia–alginate hydrogels and the advantages of electrohydrodynamic spraying (EHDA), a non-thermal technique suitable for encapsulating probiotic cells under stress conditions commonly encountered in food processing. A hydrogel matrix composed of chia seed mucilage and sodium alginate was used to form a biopolymeric network that protected probiotic cells during processing. The encapsulation efficiency reached 99.0 ± 0.01%, and bacterial viability remained above 9.9 log10 CFU/mL after lyophilization, demonstrating the excellent protective capacity of the hydrogel matrix. Microstructural analysis using confocal laser scanning microscopy (CLSM) revealed well-retained cell morphology and homogeneous distribution within the hydrogel matrix while, in contrast, scanning electron microscopy (SEM) showed spherical, porous microcapsules with distinct surface characteristics influenced by the encapsulation method. Encapsulates were incorporated into beverages flavored with red fruits and pear and subsequently freeze-dried. The resulting powders were analyzed for moisture, protein, lipids, carbohydrates, fiber, and color determinations. The results were statistically analyzed using ANOVA and response surface methodology, highlighting the impact of ingredient ratios on nutritional composition. Raman spectroscopy identified molecular features associated with casein, lactose, pectins, anthocyanins, and other functional compounds, confirming the contribution of both matrix and encapsulants maintaining the structural characteristics of the product. The presence of antioxidant bands supported the functional potential of the powder formulations. Chia–alginate hydrogels effectively encapsulated L. reuteri, maintaining cell viability and enabling their incorporation into freeze-dried beverage powders. This approach offers a promising strategy for the development of next-generation functional food gels with enhanced probiotic stability, nutritional properties, and potential application in health-promoting dairy systems. Full article
(This article belongs to the Special Issue Food Gels: Fabrication, Characterization, and Application)
Show Figures

Graphical abstract

18 pages, 2062 KiB  
Review
Living Cultures in a Glass: The Health Promise of Probiotic Bacteria in Kombucha
by Tara Budimac, Aleksandra Ranitović, Olja Šovljanski, Dragoljub Cvetković and Ana Tomić
Fermentation 2025, 11(8), 434; https://doi.org/10.3390/fermentation11080434 - 29 Jul 2025
Viewed by 363
Abstract
Kombucha is a fermented tea beverage of Asian origin, widely consumed due to its functional properties; yet, it typically lacks sufficient levels of probiotic micro-organisms to be classified as a probiotic product. This review analyzes the occurrence of lactic acid bacteria (LAB) in [...] Read more.
Kombucha is a fermented tea beverage of Asian origin, widely consumed due to its functional properties; yet, it typically lacks sufficient levels of probiotic micro-organisms to be classified as a probiotic product. This review analyzes the occurrence of lactic acid bacteria (LAB) in kombucha, reporting that concentrations rarely exceed 4–5 log CFU/mL and often decline during fermentation or storage. Strategies to enhance probiotic viability, including the use of robust LAB strains and encapsulation technologies, are critically evaluated. Notably, encapsulation using pea and whey protein has been shown to sustain LAB levels above 6 log CFU/mL during fermentation and up to 21 days under refrigerated storage for whey protein. Fortified kombucha beverages with probiotic strains have also been shown to possess enhanced functional and health-promoting benefits compared to traditional control samples. Despite promising approaches, inconsistencies in microbial survival and regulatory constraints remain key challenges. Future research should focus on the optimization of delivery systems for probiotic cultures, identification of kombucha-compatible LAB strains and standardized protocols to validate probiotic efficacy in real-world beverage conditions. Full article
Show Figures

Figure 1

21 pages, 3912 KiB  
Article
Screening and Phenotyping of Lactic Acid Bacteria in Boza
by Xudong Zhao, Longying Pei, Xinqi Wang, Mingming Luo, Sihan Hou, Xingqian Ye, Wei Liu and Yuting Zhou
Microorganisms 2025, 13(8), 1767; https://doi.org/10.3390/microorganisms13081767 - 29 Jul 2025
Viewed by 325
Abstract
The aim of this study was to isolate and identify lactic acid bacteria (LAB) from a traditional fermented beverage, Boza, and to conduct an in-depth study on their fermentation and probiotic properties. The fermentation (acid production rate, acid tolerance, salt tolerance, amino acid [...] Read more.
The aim of this study was to isolate and identify lactic acid bacteria (LAB) from a traditional fermented beverage, Boza, and to conduct an in-depth study on their fermentation and probiotic properties. The fermentation (acid production rate, acid tolerance, salt tolerance, amino acid decarboxylase activity) and probiotic properties (gastrointestinal tolerance, bile salt tolerance, hydrophobicity, self-aggregation, drug resistance, bacteriostatic properties) of the 16 isolated LAB were systematically analyzed by morphological, physiological, and biochemical tests and 16S rDNA molecular biology. This analysis utilized principal component analysis (PCA) to comprehensively evaluate the biological properties of the strains. The identified LAB included Limosilactobacillus fermentum (9 strains), Levilactobacillus brevis (2 strains), Lacticaseibacillus paracasei (2 strains), and Lactobacillus helveticus (3 strains). These strains showed strong environmental adaptation at different pH (3.5) and temperature (45 °C), with different gastrointestinal colonization, tolerance, and antioxidant properties. All the strains did not show hemolytic activity and were inhibitory to Staphylococcus aureus, and showed resistance to kanamycin, gentamicin, vancomycin, and streptomycin. Based on the integrated scoring of biological properties by principal component analysis, Limosilactobacillus fermentum S4 and S6 and Levilactobacillus brevis S5 had excellent fermentation properties and tolerance and could be used as potential functional microbial resources. Full article
(This article belongs to the Special Issue Microbial Fermentation in Food Processing)
Show Figures

Figure 1

25 pages, 2613 KiB  
Article
Design and Optimization of a Plant-Based Synbiotic Beverage from Sprouted Buckwheat: A Multi-Response Approach for Enhancing Functional Properties
by Caterina Nela Dumitru, Camelia Vizireanu, Gabriela Elena Bahrim, Rodica Mihaela Dinica, Mariana Lupoae, Alina Oana Dumitru and Tudor Vladimir Gurau
Beverages 2025, 11(4), 104; https://doi.org/10.3390/beverages11040104 - 17 Jul 2025
Viewed by 386
Abstract
Fermented plant-based beverages represent promising functional foods due to their content of bioactive compounds (polyphenols, prebiotics) and viable probiotic microorganisms. Sprouted buckwheat is a rich source of bioactives and nutrients, which makes it a promising ingredient for the development of synbiotic formulations. This [...] Read more.
Fermented plant-based beverages represent promising functional foods due to their content of bioactive compounds (polyphenols, prebiotics) and viable probiotic microorganisms. Sprouted buckwheat is a rich source of bioactives and nutrients, which makes it a promising ingredient for the development of synbiotic formulations. This study aimed to optimize the fermentation process of a plant-based beverage composed of germinated buckwheat, honey, inulin, and Lactiplantibacillus plantarum (Lpb. plantarum), using Box–Behnken experimental design (BBD) and Response Surface Methodology (RSM) tools. The influence of three independent variables (inulin, honey, and inoculum concentration) was evaluated on five key response variables: total polyphenol content, flavonoid content, antioxidant activity (RSA%), pH, and starter culture viability. The optimal formulation—comprising 3% inulin, 10% honey, and 6.97 mg/100 mL inoculum—demonstrated functional stability over 21 days of refrigerated storage (4 °C), maintaining high levels of antioxidants and probiotic viability in the fermented beverage. Kinetic analysis of the fermentation process confirmed the intense metabolic activity of Lpb. plantarum, as evidenced by a decrease in pH, active consumption of reducing sugars, and organic acids accumulation. Full article
Show Figures

Figure 1

20 pages, 1065 KiB  
Review
Microbial Genome Editing with CRISPR–Cas9: Recent Advances and Emerging Applications Across Sectors
by Chhavi Dudeja, Amish Mishra, Ansha Ali, Prem Pratap Singh and Atul Kumar Jaiswal
Fermentation 2025, 11(7), 410; https://doi.org/10.3390/fermentation11070410 - 16 Jul 2025
Viewed by 972
Abstract
CRISPR technology, which is derived from the bacterial adaptive immune system, has transformed traditional genetic engineering techniques, made strain engineering significantly easier, and become a very versatile genome editing system that allows for precise, programmable modifications to a wide range of microbial genomes. [...] Read more.
CRISPR technology, which is derived from the bacterial adaptive immune system, has transformed traditional genetic engineering techniques, made strain engineering significantly easier, and become a very versatile genome editing system that allows for precise, programmable modifications to a wide range of microbial genomes. The economies of fermentation-based manufacturing are changing because of its quick acceptance in both academic and industry labs. CRISPR processes have been used to modify industrially significant bacteria, including the lactic acid producers, Clostridium spp., Escherichia coli, and Corynebacterium glutamicum, in order to increase the yields of bioethanol, butanol, succinic acid, acetone, and polyhydroxyalkanoate precursors. CRISPR-mediated promoter engineering and single-step multiplex editing have improved inhibitor tolerance, raised ethanol titers, and allowed for the de novo synthesis of terpenoids, flavonoids, and recombinant vaccines in yeasts, especially Saccharomyces cerevisiae and emerging non-conventional species. While enzyme and biopharmaceutical manufacturing use CRISPR for quick strain optimization and glyco-engineering, food and beverage fermentations benefit from starter-culture customization for aroma, texture, and probiotic functionality. Off-target effects, cytotoxicity linked to Cas9, inefficient delivery in specific microorganisms, and regulatory ambiguities in commercial fermentation settings are some of the main challenges. This review provides an industry-specific summary of CRISPR–Cas9 applications in microbial fermentation and highlights technical developments, persisting challenges, and industrial advancements. Full article
(This article belongs to the Section Fermentation Process Design)
Show Figures

Figure 1

21 pages, 1958 KiB  
Article
Potential Prebiotic Effect of Caatinga Bee Honeys from the Pajeú Hinterland (Pernambuco, Brazil) on Synbiotic Alcoholic Beverages Fermented by Saccharomyces boulardii CNCM I-745
by Walter de Paula Pinto-Neto, Luis Loureiro, Raquel F. S. Gonçalves, Márcia Cristina Teixeira Marques, Rui Miguel Martins Rodrigues, Luís Abrunhosa, Aline Magalhães de Barros, Neide Kazue Sakugawa Shinohara, Ana Cristina Pinheiro, Antonio Augusto Vicente, Rafael Barros de Souza and Marcos Antonio de Morais Junior
Fermentation 2025, 11(7), 405; https://doi.org/10.3390/fermentation11070405 - 15 Jul 2025
Viewed by 474
Abstract
The singular biodiversity of the Brazilian Caatinga inspires innovative solutions in food science. In this study, we evaluated the prebiotic potential of honeys produced by Apis mellifera in the Pajeú hinterland, Pernambuco, Brazil (Caatinga Biome), with different floral origins: Mastic (Aroeira), Mesquite (Algaroba), [...] Read more.
The singular biodiversity of the Brazilian Caatinga inspires innovative solutions in food science. In this study, we evaluated the prebiotic potential of honeys produced by Apis mellifera in the Pajeú hinterland, Pernambuco, Brazil (Caatinga Biome), with different floral origins: Mastic (Aroeira), Mesquite (Algaroba), and mixed flowers. These were used to formulate synbiotic and alcoholic beverages fermented by Saccharomyces boulardii CNCM I-745. Static and dynamic simulations of the human gastrointestinal tract (GIT) were used, as well as physicochemical, rheological, and microbiological analyses. The results revealed that honey positively influences the viability and resilience of probiotic yeast, especially honey with a predominance of Algaroba, which promoted the highest survival rate (>89%) even after 28 days of refrigeration and in dynamic in vitro simulation of the GIT (more realistic to human physio-anatomical conditions). The phenolic composition of the honeys showed a correlation with this tolerance. The use of complementary methodologies, such as flow cytometry, validated the findings and highlighted the functional value of these natural matrices, revealing an even greater longevity potential compared to conventional microbiological methodology. The data reinforces the potential of the Caatinga as a source of bioactive and sustainable compounds, proposing honey as a promising non-dairy synbiotic vehicle. This work contributes to the appreciation of the biome and the development of functional food products with a positive social, economic, and ecological impact. Full article
(This article belongs to the Section Probiotic Strains and Fermentation)
Show Figures

Figure 1

17 pages, 4949 KiB  
Article
Apple Juice Fermented with Lactiplantibacillus plantarum Improves Its Flavor Profile and Probiotic Potential
by Boqian Zhou, Zhuobin Xing, Yiting Wang, Xin Guan, Fuyi Wang, Jiaqi Yin, Zhibo Li, Qiancheng Zhao, Hongman Hou and Xue Sang
Foods 2025, 14(13), 2373; https://doi.org/10.3390/foods14132373 - 4 Jul 2025
Viewed by 465
Abstract
Fermented apple juice (FAJ), a nutrient-dense beverage rich in vitamins, offers multiple health benefits, including improved digestion, enhanced fat metabolism, and sustained energy provision with reduced caloric intake. To advance the development of probiotic-enriched flavored and functional juices, this study establishes Lactiplantibacillus plantarum [...] Read more.
Fermented apple juice (FAJ), a nutrient-dense beverage rich in vitamins, offers multiple health benefits, including improved digestion, enhanced fat metabolism, and sustained energy provision with reduced caloric intake. To advance the development of probiotic-enriched flavored and functional juices, this study establishes Lactiplantibacillus plantarum (L. plantarum) as a safe and effective starter culture for apple juice fermentation. The selected strain exhibited minimal biogenic amine synthesis, producing only 30.55 ± 1.2 mg/L of putrescine and 0.59 ± 0.55 mg/L of cadaverine, while histamine and tyramine were undetectable. Furthermore, the strain demonstrated no hemolytic activity and exhibited robust biofilm-forming capacity, reinforcing its suitability for fermentation applications. An electronic nose analysis revealed that L. plantarum significantly enriched the volatile compound profile of FAJ, leading to an improved flavor profile. The strain also displayed excellent growth adaptability in the apple juice matrix, further optimizing fermentation efficiency and sensory quality. Crucially, 16S rRNA sequencing demonstrated that FAJ specifically restructures the gut microbiota in obese individuals, significantly elevating the relative abundance of beneficial genera, including Enterococcus, Parabacteroides, and Bifidobacterium (p < 0.05). Concurrently, FAJ enhanced glycolytic activity, suggesting a potential role in metabolic regulation. Collectively, these findings confirm that L. plantarum-fermented FAJ combines favorable sensory properties and safety with promising anti-obesity effects mediated through gut microbiome modulation and metabolic pathway activation. This study provides a critical scientific foundation for designing next-generation functional fermented beverages with targeted health benefits. Full article
Show Figures

Figure 1

18 pages, 2412 KiB  
Article
From Probiotic to Postbiotic: Conversion of Acerola Juice by Thermosonication
by Cristiano Silva do Nascimento, Brenda Novais Santos, Thatyane Vidal Fonteles and Sueli Rodrigues
Processes 2025, 13(7), 2122; https://doi.org/10.3390/pr13072122 - 3 Jul 2025
Viewed by 415
Abstract
Postbiotics, defined as non-viable microbial cells or their components that confer health benefits to the host, have emerged as promising functional ingredients for safe and shelf-stable products. This study aimed to develop postbiotic acerola juice through fermentation with Lacticaseibacillus casei NRRL B-442, followed [...] Read more.
Postbiotics, defined as non-viable microbial cells or their components that confer health benefits to the host, have emerged as promising functional ingredients for safe and shelf-stable products. This study aimed to develop postbiotic acerola juice through fermentation with Lacticaseibacillus casei NRRL B-442, followed by thermosonication (TS; 3300 W/L, 60–65 °C, 10 min) or thermal treatment (TH; 80 °C, 10 min). Both TS and TH effectively inactivated the probiotic strain while preserving key bioactive compounds. Total phenolic content ranged from 1.22 to 1.46 g/L, and ascorbic acid levels were retained between 2.36 ± 0.1 and 2.78 ± 0.1 g/L. Antioxidant activity remained stable, with ABTS values between 16,516 ± 246 and 16,689 ± 249 μmol Trolox/L, and FRAP values ranging from 2860 ± 130 to 2910 ± 160 μg Fe2+/mL. These parameters showed no significant degradation (p > 0.05) over 35 days of cold storage (4 °C). TS at 60 °C enhanced antibacterial activity in dialyzed samples, achieving 65% inhibition against Escherichia coli and 56% against Salmonella Typhimurium (7 log CFU/mL), outperforming TH at 80 °C (51% and 57%, respectively). The antibacterial effect remained stable during refrigerated storage, confirming thermosonication as a viable strategy for producing functional, microbiologically safe postbiotic beverages. Full article
(This article belongs to the Special Issue Green Technologies for Food Processing)
Show Figures

Figure 1

14 pages, 2033 KiB  
Review
The Phytochemical Insights, Health Benefits, and Bioprocessing Innovations of Cassava-Derived Beverages
by James Ziemah, Oluwaseun Olayemi Aluko, Vincent Ninkuu, Lawrence Adelani Adetunde, Asekabta Karl Anyetin-Nya, James Abugri, Matthias S. Ullrich, Felix Dapare Dakora, Songbi Chen and Nikolai Kuhnert
Beverages 2025, 11(4), 98; https://doi.org/10.3390/beverages11040098 - 1 Jul 2025
Viewed by 745
Abstract
Cassava (Manihot esculenta) is a vital tropical staple crop with expanding relevance beyond food security, particularly in developing functional beverages and nutraceutical products. This review discusses the implications of selected chemicals in cassava roots for beverage production, notably cyanogenic glycosides and [...] Read more.
Cassava (Manihot esculenta) is a vital tropical staple crop with expanding relevance beyond food security, particularly in developing functional beverages and nutraceutical products. This review discusses the implications of selected chemicals in cassava roots for beverage production, notably cyanogenic glycosides and phenolic compounds. We further highlight the role of cassava as a substrate for beverage production, the nutritional significance of cassava-based beverages, and the health benefits and functional potential of cassava as a key ingredient in beverage production. We also discuss the probiotic and prebiotic properties and the antioxidant activity of chemicals in cassava-based beverages for health benefits. Additionally, we review the challenges, opportunities, and innovations regarding commercialization. Full article
Show Figures

Figure 1

13 pages, 465 KiB  
Article
Seaweed (Laminaria digitata) and Honey Kombucha: A Fermented Antioxidant-Rich Beverage
by Anastasia Karpova, Deborah Adesina, Furong Tian and Azza Silotry Naik
Fermentation 2025, 11(7), 379; https://doi.org/10.3390/fermentation11070379 - 30 Jun 2025
Viewed by 629
Abstract
Kombucha is a sweetened tea infusion fermented using a symbiotic culture of bacteria and yeast (SCOBY). Recently, kombucha has gained popularity due to its potential health benefits, attributed to its high antioxidant and probiotic properties. The aim of this research was to formulate [...] Read more.
Kombucha is a sweetened tea infusion fermented using a symbiotic culture of bacteria and yeast (SCOBY). Recently, kombucha has gained popularity due to its potential health benefits, attributed to its high antioxidant and probiotic properties. The aim of this research was to formulate a novel antioxidant-rich beverage with symbiotic benefits by utilizing ingredients such as Laminaria digitata (brown seaweed), cinnamon, and lavender adjuncts, alongside alternative substrates like acacia honey and conventionally used ingredients such as ginger (Zingiber officinale Roscoe). This study comprehensively evaluated parameters including pH levels, acidity, alcohol content, color, and antioxidant potential of the beverages. All kombucha beverages exhibited significantly high antioxidant potential levels, particularly in Honey Kombucha (HK) samples, which ranged between 164.44 and 164.78% 2,2-Diphenyl-1-picrylhydrazyl (DPPH) inhibition, and 155.44–155.29 µg Trolox Equivalent (TE)/mL for the Ferric-reducing antioxidant power (FRAP) assay on days 3 and 7. Sugar Kombucha Seaweed (SKS) and Sugar Kombucha Cinnamon (SKC) samples received the highest acceptability for flavor from the sensory panel, with scores of 87.5% and 70%, respectively. However, Honey Kombucha Ginger (HKG) received the lowest acceptability with only 12.5%. The added adjuncts and substrates significantly influenced the antioxidant potential compared to plain unfermented tea (PT). This research paper outlines well-characterized fermentation process for formulating health-promoting beverages utilizing locally sourced ingredients. Full article
(This article belongs to the Special Issue Recent Advances in Microbial Fermentation in Foods and Beverages)
Show Figures

Figure 1

14 pages, 1182 KiB  
Article
Formulation of a Functional Probiotic Beverage Using Maesil (Prunus mume) Syrup By-Product Fermented by Lactiplantibacillus plantarum KFOM 0042
by Chan-Il Bae, Yoon-Soo Gwak, Dasol Nam, Tae Gyu Nam, Hyun-Seok Kim and Mi-Ju Kim
Fermentation 2025, 11(7), 368; https://doi.org/10.3390/fermentation11070368 - 26 Jun 2025
Viewed by 619
Abstract
Maesil (Prunus mume) syrup is the most common form of maesil consumption in Korea; however, its production generates large quantities of by-products. This study aimed to develop a functional probiotic beverage through the lactic acid fermentation of maesil syrup by-products (MSBs). [...] Read more.
Maesil (Prunus mume) syrup is the most common form of maesil consumption in Korea; however, its production generates large quantities of by-products. This study aimed to develop a functional probiotic beverage through the lactic acid fermentation of maesil syrup by-products (MSBs). To optimize fermentation, eight strains of Lactiplantibacillus plantarum were tested, and KFOM 0042 was selected based on its superior acid production in MSBs. The effects of MSB concentration (5%, 10%, 15%, or 20%), pH levels (3, 4, or 5), and sugar type (none, glucose, fructose, or sucrose) were evaluated. The optimal conditions were found to be 20% MSB at pH 4 or 5, either without added sugar or with sucrose. After fermenting under these conditions for 4 days, the probiotic beverages were stored at 4 °C for 30 days to assess stability. All formulations maintained LAB counts above 7 log CFU/mL for 18 days, but only the beverage with sucrose sustained these levels for 25 days. Additionally, antioxidant activity, total polyphenol, and flavonoid content increased post-fermentation, with the highest lactic acid levels observed at pH 5. Overall, this study presents a novel strategy for upcycling MSB into a probiotic beverage with enhanced functional and microbial stability. Full article
Show Figures

Figure 1

26 pages, 1891 KiB  
Article
Developing Novel Plant-Based Probiotic Beverages: A Study on Viability and Physicochemical and Sensory Stability
by Concetta Condurso, Maria Merlino, Anthea Miller, Ambra Rita Di Rosa, Francesca Accetta, Michelangelo Leonardi, Nicola Cicero and Teresa Gervasi
Foods 2025, 14(12), 2148; https://doi.org/10.3390/foods14122148 - 19 Jun 2025
Viewed by 838
Abstract
Consumer demand for plant-based functional foods, especially probiotic beverages, has increased due to their health benefits and suitability as dairy-free alternatives. This study assessed, through a factorial combination, the stability of plant-based extracts (avocado, ginger, and tropical) individually inoculated with three commercial Lactobacillus [...] Read more.
Consumer demand for plant-based functional foods, especially probiotic beverages, has increased due to their health benefits and suitability as dairy-free alternatives. This study assessed, through a factorial combination, the stability of plant-based extracts (avocado, ginger, and tropical) individually inoculated with three commercial Lactobacillus strains (L. casei, L. plantarum, L. reuteri) and stored under refrigerated conditions during both primary (PSL) and secondary shelf life (SSL). Product shelf life was defined by probiotic viability, considering the functional threshold (≥6 log CFU/mL), which was maintained across all formulations throughout the storage period. Physicochemical parameters, including pH, titratable acidity, and colour, as well as volatile profile, remained stable, with only minor variations depending on the matrix and bacterial strain. Sensory evaluations (triangle and acceptability tests) confirmed that the probiotic juices were acceptable to consumers. Overall, the results demonstrate the feasibility of producing non-fermented, plant-based probiotic beverages that retain their functional properties and meet consumer sensory expectations, offering a promising alternative for vegan and lactose-intolerant individuals. Full article
Show Figures

Figure 1

34 pages, 1105 KiB  
Review
Pseudocereal-Based Functional Beverages: Main Properties and Nutritional Evaluation with an Emphasis on Amino Acid Content: A Review
by Dorottya Krisztina Vajdovich, Éva Csajbókné Csobod and Csilla Benedek
Foods 2025, 14(12), 2080; https://doi.org/10.3390/foods14122080 - 12 Jun 2025
Viewed by 4108
Abstract
The demand for functional beverages has increased significantly in recent years as society places more and more emphasis on healthy lifestyles and disease prevention. Functional beverages may contain various health-promoting, bioactive compounds (e.g., antioxidants, vitamins, minerals, prebiotics, probiotics, proteins, etc.). These ingredients originate [...] Read more.
The demand for functional beverages has increased significantly in recent years as society places more and more emphasis on healthy lifestyles and disease prevention. Functional beverages may contain various health-promoting, bioactive compounds (e.g., antioxidants, vitamins, minerals, prebiotics, probiotics, proteins, etc.). These ingredients originate from sources including fruits (e.g., red berries), vegetables (e.g., spinach), nuts (e.g., flaxseeds), and herbs (e.g., turmeric), or can be added as separate components (e.g., prebiotics). Their nutritional properties qualify pseudocereals (quinoa, buckwheat, and amaranth) as ideal bases for functional beverages. They are high in antioxidants (e.g., polyphenols), vitamins (e.g., folate), and minerals (e.g., iron). Their high protein content (5.7–25.3%, about three times higher than that of maize) improves the nutritional profile of plant-based drinks. They have a balanced protein and amino acid composition, as they contain all the essential amino acids (among which lysine is present in high amounts) and are gluten-free. The in vitro protein digestibility of pseudocereals is also outstanding (PDCAAS: quinoa (0.85), amaranth (0.70), and buckwheat (0.78), while those for wheat, rice, and maize are 0.42, 0.56, and 0.47, respectively). Given these benefits, trends in producing and consuming plant-based, especially pseudocereal-based, functional beverages are highlighted in the present review. Full article
(This article belongs to the Section Drinks and Liquid Nutrition)
Show Figures

Figure 1

25 pages, 4789 KiB  
Systematic Review
The Impact of Kefir Consumption on Inflammation, Oxidative Stress Status, and Metabolic-Syndrome-Related Parameters in Animal Models: A Systematic Review and Meta-Analysis
by Zahid Naeem Qaisrani, Wai Phyo Lin, Bo Bo Lay, Khin Yadanar Phyo, Myat Mon San, Nurulhusna Awaeloh, Sasithon Aunsorn, Rinrada Pattanayaiying, Susakul Palakawong Na Ayudthaya, Choosit Hongkulsup, Nirunya Buntin and Sasitorn Chusri
Foods 2025, 14(12), 2077; https://doi.org/10.3390/foods14122077 - 12 Jun 2025
Viewed by 1837
Abstract
Metabolic syndrome (MetS) is a complex condition defined by central obesity, insulin resistance, dyslipidemia, and systemic inflammation. Kefir, a fermented beverage rich in probiotics and beneficial compounds, has emerged as a functional food that may offer metabolic advantages. Nevertheless, preclinical results have been [...] Read more.
Metabolic syndrome (MetS) is a complex condition defined by central obesity, insulin resistance, dyslipidemia, and systemic inflammation. Kefir, a fermented beverage rich in probiotics and beneficial compounds, has emerged as a functional food that may offer metabolic advantages. Nevertheless, preclinical results have been variable. This systematic review and meta-analysis aimed to assess the influence of kefir and its derived compositions on parameters associated with MetS, inflammation, and oxidative stress in rodent studies. A comprehensive literature search was conducted in PubMed, Scopus, AMED, and LILACS through June 2024. Eligible studies involving kefir interventions in rodent MetS models were included. Data extraction followed PRISMA guidelines, with the risk of bias assessed using the CAMARADES and SYRCLE tools. Meta-analyses were performed with a random effects model. Thirty-eight studies involving 1462 rodents (mice and rats) were analyzed. Kefir significantly reduced body weight gain in both mice (MD = –3.33; 95% CI: –4.89 to –1.77) and rats (MD = –41.53; 95% CI: –54.33 to –28.72). In mice, triglycerides and LDL-C levels decreased significantly; in rats, kefir lowered total cholesterol and triglycerides. Insulin levels were reduced (MD = –0.69; 95% CI: –1.16 to –0.22), suggesting improved insulin sensitivity. Several studies also reported reductions in TNF-α, IL-1β, and IL-6. Despite promising results, the high heterogeneity and methodological variability emphasize the need for standardized preclinical protocols and clinical validation. These findings support the role of kefir as a functional food for metabolic health promotion. Full article
Show Figures

Graphical abstract

Back to TopTop