Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (95)

Search Parameters:
Keywords = primary bronchial epithelial cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3280 KiB  
Article
Cellular and Transcriptional Responses of Human Bronchial Epithelial Cells to Delta-9-Tetrahydrocannabinol In Vitro
by Megan S. Doldron, Sourav Chakraborty, Santosh Anand, Mehwish Faheem, Beh Reh, Xuegeng Wang, Saurav Mallik, Zhenquan Jia and Ramji Kumar Bhandari
Int. J. Mol. Sci. 2025, 26(11), 5212; https://doi.org/10.3390/ijms26115212 - 29 May 2025
Viewed by 631
Abstract
Delta-9-tetrahydrocannabinol (Δ-9-THC or THC), the primary psychoactive constituent of cannabis, can lead to adverse health conditions, including mental health issues, brain impairment, and cardiac and respiratory problems. The amount of THC in cannabis has steadily climbed over the past few decades, with today’s [...] Read more.
Delta-9-tetrahydrocannabinol (Δ-9-THC or THC), the primary psychoactive constituent of cannabis, can lead to adverse health conditions, including mental health issues, brain impairment, and cardiac and respiratory problems. The amount of THC in cannabis has steadily climbed over the past few decades, with today’s cannabis having three times the concentration of THC compared to 25 years ago. Inhalation is a major route of exposure, allowing substances to enter the body via the respiratory tract. THC exposure causes cell death in the airway epithelium; however, the molecular underpinning of THC exposure-induced bronchial epithelial cell death is not clearly understood. To address the mechanisms involved in this process, the present study examined the cell viability, oxidative stress, lipid peroxidation, and transcriptional alterations caused by various concentrations of Δ-9-THC (0, 800, 1000, 1200, and 1500 ng/mL) in a human bronchial epithelial cell line (BEAS-2B) in vitro. Δ-9-THC exposure caused a significant dose-dependent decrease in cell viability after 24 h exposure. Transcriptome analysis showed a distinct dose-dependent response. HIF-1 signaling, ferroptosis, AMPK signaling, and immunogenic pathways were activated by Δ-9-THC-upregulated genes. Glutathione and fatty acid metabolic pathways were significantly altered by Δ-9-THC-dependent downregulated genes. Ingenuity Pathway Analysis (IPA) revealed several top canonical pathways altered by Δ-9-THC exposure, including ferroptosis, NRF-2-mediated oxidative stress response, caveolar-mediated endocytosis (loss of cell adhesion to the substrate), tumor microenvironment, HIF1alpha signaling, and the unfolded protein response pathway. Δ-9-THC-induced cell death was ameliorated by inhibiting the ferroptosis pathway, whereas treatments with ferroptosis agonist exacerbated the cell death process, suggesting that Δ-9-THC-induced bronchial epithelial cell death potentially involves the ferroptosis pathway. Full article
(This article belongs to the Special Issue Toxicology of Psychoactive Drugs)
Show Figures

Figure 1

18 pages, 2835 KiB  
Article
Respiratory Syncytial Virus Elicits Glycolytic Metabolism in Pediatric Upper and Lower Airways
by Armando S. Flores-Torres, Svetlana Rezinciuc, Lavanya Bezavada, Barry L. Shulkin, Stephania A. Cormier and Heather S. Smallwood
Viruses 2025, 17(5), 703; https://doi.org/10.3390/v17050703 - 14 May 2025
Viewed by 620
Abstract
Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract viral infection in infants and causes around 60,000 in-hospital deaths annually. Emerging evidence suggests that RSV induces metabolic changes in host cells to support viral replication, presenting a potential target for [...] Read more.
Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract viral infection in infants and causes around 60,000 in-hospital deaths annually. Emerging evidence suggests that RSV induces metabolic changes in host cells to support viral replication, presenting a potential target for therapeutic intervention. To investigate RSV-driven metabolic changes in situ, we combined positron emission tomography (PET), live-cell bioenergetics, and metabolomic profiling in the upper and lower airways of children. PET imaging revealed persistent, hyper-glycolytic regions in the lungs of RSV-infected children. Bioenergetic analysis of freshly collected nasopharyngeal aspirates from infants showed live upper respiratory cells (URCs) infected with RSV in situ exhibited significantly higher levels of glycolysis, glycolytic capacity, glycolytic reserves, and mitochondrial respiration than uninfected controls. Metabolomic analysis of nasopharyngeal fluids from these patients revealed distinct metabolic signatures, including increased citrate and malate, and decreases in taurine. In vitro infection of pediatric nasopharynx tissue-derived multicellular epithelial cultures (TEpiCs) and bronchial epithelial cells further confirmed RSV-induced increases in glycolysis. Together, these findings demonstrate that RSV infection induces hypermetabolism in both upper and lower primary airways in situ, supporting the potential of host-targeted metabolic interventions as a therapeutic strategy—particularly in vulnerable populations such as infants for whom vaccines are not currently available. Full article
(This article belongs to the Section General Virology)
Show Figures

Figure 1

21 pages, 21042 KiB  
Article
Lassa Virus Infection of Primary Human Airway Epithelial Cells
by Helena Müller-Kräuter, Sarah Katharina Fehling, Lucie Sauerhering, Birthe Ehlert, Janine Koepke, Juliane Schilling, Mikhail Matrosovich, Andrea Maisner and Thomas Strecker
Viruses 2025, 17(5), 592; https://doi.org/10.3390/v17050592 - 22 Apr 2025
Viewed by 1025
Abstract
Lassa mammarenavirus (LASV), a member of the family Arenaviridae, is a highly pathogenic virus capable of causing severe systemic infections in humans. The primary host reservoir is the Natal multimammate mouse (Mastomys natalensis), with human infections typically occurring through mucosal exposure [...] Read more.
Lassa mammarenavirus (LASV), a member of the family Arenaviridae, is a highly pathogenic virus capable of causing severe systemic infections in humans. The primary host reservoir is the Natal multimammate mouse (Mastomys natalensis), with human infections typically occurring through mucosal exposure to virus-containing aerosols from rodent excretions. To better understand the molecular mechanisms underlying LASV replication in the respiratory tract, we utilized differentiated primary human airway epithelial cells (HAECs) grown under air–liquid interface conditions, closely mimicking the bronchial epithelium in vivo. Our findings demonstrate that HAECs are permissive to LASV infection and support productive virus replication. While LASV entry into polarized HAECs occurred through both apical and basolateral surfaces, progeny virus particles were predominantly released from the apical surface, consistent with an intrinsic apical localization of the envelope glycoprotein GP. This suggests that apical virus shedding from infected bronchial epithelia may facilitate LASV transmission via airway secretions. Notably, limited basolateral release at later stages of infection was associated with LASV-induced rearrangement of the actin cytoskeleton, resulting in compromised epithelial barrier integrity. Finally, we demonstrate that LASV-infected HAECs exhibited a pronounced type III interferon response. A detailed understanding of LASV replication and host epithelial responses in the respiratory tract could facilitate the development of targeted future therapeutics. Full article
(This article belongs to the Special Issue Viral Infection in Airway Epithelial Cells)
Show Figures

Figure 1

17 pages, 6050 KiB  
Article
Effects of Benzo[a]Pyrene Exposure on Lung Cancer: A Mechanistic Study of Epigenetic m6A Levels and YTHDF1
by Siyi Xu, Jie Li, Sheng Yang, Panpan Yang, Yiru Niu, Yiling Ge and Geyu Liang
Toxics 2025, 13(4), 280; https://doi.org/10.3390/toxics13040280 - 5 Apr 2025
Cited by 1 | Viewed by 724
Abstract
Benzo[a]pyrene, as the primary component of air pollutants, has been implicated in the pathogenesis of non-small-cell lung cancer (NSCLC). As an m6A reader that facilitates mRNA translation, YTHDF1 serves as a crucial regulator in tumor progression. Therefore, we established Benzo[a]pyrene(B[a]P)-induced bronchial epithelial malignant [...] Read more.
Benzo[a]pyrene, as the primary component of air pollutants, has been implicated in the pathogenesis of non-small-cell lung cancer (NSCLC). As an m6A reader that facilitates mRNA translation, YTHDF1 serves as a crucial regulator in tumor progression. Therefore, we established Benzo[a]pyrene(B[a]P)-induced bronchial epithelial malignant transformed cells (HBE-P35) to simulate the precancerous lesions of NSCLC and investigated the regulatory axis of YTHDF1 in both HBE-P35 and A549 lung cancer cells. A high level of m6A expression was detected in both HBE-P35 and A549 cells. Over-expression of YTHDF1 was observed in NSCLC tissues and correlated with poor overall survival in NSCLC patients. TMT labeling-based proteomic analysis and clinical lung tissue microarray assays demonstrated that CDK6 and MAP3K6 were positively correlated with YTHDF1 expression. MeRIP and RIP analyses revealed that YTHDF1 mediates the m6A-dependent regulation of CDK6 and MAP3K6 protein expression. The acquisition and deletion of miR-139/145-5p, along with luciferase reporter gene assays, demonstrated that miR-139-5p can target YTHDF1. Therefore, we conclude that YTHDF1 regulates CDK6 and MAP3K6 through m6A in B[a]P-induced HBE-P35 and A549 cells, providing a potential target for lung cancer treatment. Full article
(This article belongs to the Special Issue Environmental Contaminants and Human Health)
Show Figures

Graphical abstract

20 pages, 14154 KiB  
Article
Differential Cytotoxicity and Inflammatory Responses to Particulate Matter Components in Airway Structural Cells
by Nilofar Faruqui, Sofie Orell, Camilla Dondi, Zaira Leni, Daniel M. Kalbermatter, Lina Gefors, Jenny Rissler, Konstantina Vasilatou, Ian S. Mudway, Monica Kåredal, Michael Shaw and Anna-Karin Larsson-Callerfelt
Int. J. Mol. Sci. 2025, 26(2), 830; https://doi.org/10.3390/ijms26020830 - 20 Jan 2025
Cited by 2 | Viewed by 3621
Abstract
Particulate matter (PM) is a major component of ambient air pollution. PM exposure is linked to numerous adverse health effects, including chronic lung diseases. Air quality guidelines designed to regulate levels of ambient PM are currently based on the mass concentration of different [...] Read more.
Particulate matter (PM) is a major component of ambient air pollution. PM exposure is linked to numerous adverse health effects, including chronic lung diseases. Air quality guidelines designed to regulate levels of ambient PM are currently based on the mass concentration of different particle sizes, independent of their origin and chemical composition. The objective of this study was to assess the relative hazardous effects of carbonaceous particles (soot), ammonium nitrate, ammonium sulfate, and copper oxide (CuO), which are standard components of ambient air, reflecting contributions from primary combustion, secondary inorganic constituents, and non-exhaust emissions (NEE) from vehicular traffic. Human epithelial cells representing bronchial (BEAS-2B) and alveolar locations (H441 and A549) in the airways, human lung fibroblasts (HFL-1), and rat precision-cut lung slices (PCLS) were exposed in submerged cultures to different concentrations of particles for 5–72 h. Following exposure, cell viability, metabolic activity, reactive oxygen species (ROS) formation, and inflammatory responses were analyzed. CuO and, to a lesser extent, soot reduced cell viability in a dose-dependent manner, increased ROS formation, and induced inflammatory responses. Ammonium nitrate and ammonium sulfate did not elicit any significant cytotoxic responses but induced immunomodulatory alterations at very high concentrations. Our findings demonstrate that secondary inorganic components of PM have a lower hazard cytotoxicity compared with combustion-derived and indicative NEE components, and alveolar epithelial cells are more sensitive to PM exposure. This information should help to inform which sources of PM to target and feed into improved, targeted air quality guidelines. Full article
(This article belongs to the Special Issue Toxicity Mechanism of Emerging Pollutants)
Show Figures

Figure 1

15 pages, 11098 KiB  
Article
Occludin Is Essential to Maintain Normal Alveolar Barrier Integrity and Its Protective Role During ARDS Progression
by Xin Lin, Haiqing Bai, Michael Barravecchia, Rosemary Norman, Gillian M. Schiralli Lester, R. Matthew Kottmann, Antony Leonard, Arshad Rahman, Jennifer L. Young and David A. Dean
Int. J. Mol. Sci. 2024, 25(21), 11595; https://doi.org/10.3390/ijms252111595 - 29 Oct 2024
Cited by 3 | Viewed by 1417
Abstract
Acute respiratory distress syndrome (ARDS) is a severe lung condition without targeted therapy that is characterized by the disruption of epithelial and endothelial barriers. The role of the tight junction protein occludin in the pathogenesis of this disease is unknown, although it has [...] Read more.
Acute respiratory distress syndrome (ARDS) is a severe lung condition without targeted therapy that is characterized by the disruption of epithelial and endothelial barriers. The role of the tight junction protein occludin in the pathogenesis of this disease is unknown, although it has previously been deemed redundant in some tissues. The aim of the present study is to determine whether occludin is required for lung function by controlling alveolar barrier integrity in mouse models. Immunofluorescence staining of lungs from ARDS patients revealed a significant decrease in occludin expression compared to controls. Gene delivery of shRNA against occludin in the mouse lung reduced occludin levels and induced lung injury, as assessed by wet-to-dry-ratio, histology, and cellularity and protein content of bronchial alveolar lavage fluid. Conversely, gene delivery of an occludin-expressing plasmid increased occludin expression and dampened endotoxin-induced lung injury. In primary rat alveolar epithelial cells, occludin levels were positively correlated with barrier integrity, as well as membrane localization of claudin-18, another tight junction protein. Collectively, our data demonstrate that occludin plays a significant role in alveolar barrier function and that targeting occludin may provide a new therapeutic approach for ARDS. Full article
(This article belongs to the Special Issue The Role of Tight Junction Proteins in Health and Disease)
Show Figures

Figure 1

18 pages, 3044 KiB  
Article
Interferon Epsilon-Mediated Antiviral Activity Against Human Metapneumovirus and Respiratory Syncytial Virus
by Iván Martínez-Espinoza, Pius I. Babawale, Hannah Miletello, Nagarjuna R. Cheemarla and Antonieta Guerrero-Plata
Vaccines 2024, 12(10), 1198; https://doi.org/10.3390/vaccines12101198 - 21 Oct 2024
Cited by 2 | Viewed by 2814
Abstract
Background: Interferon epsilon (IFN-ε) is a type I IFN that plays a critical role in the host immune response against pathogens. Despite having demonstrated antiviral activity in macrophages and mucosal tissues such as the female reproductive tract and the constitutive expression in mucosal [...] Read more.
Background: Interferon epsilon (IFN-ε) is a type I IFN that plays a critical role in the host immune response against pathogens. Despite having demonstrated antiviral activity in macrophages and mucosal tissues such as the female reproductive tract and the constitutive expression in mucosal tissues such as the lung, the relevance of IFN-ε against respiratory viral infections remains elusive. Results: We present, for the first time, the expression of IFN-ε in alveolar epithelial cells and primary human bronchial epithelial cells grown in an air–liquid interface (ALI) in response to human metapneumovirus (HMPV) and respiratory syncytial virus (RSV) infection. The molecular characterization of the IFN-ε induction by the viruses indicates that the expression of RIG-I is necessary for an optimal IFN-ε expression. Furthermore, treatment of the airway epithelial cells with rhIFN-ε induced the expression of IFN-stimulated genes (ISGs) and significantly restricted the viral replication of HMPV and RSV. Conclusions: These findings underscore the relevance of IFN-ε against viral infections in the respiratory tract. Full article
(This article belongs to the Special Issue Adaptive and Innate Response to Viral Disease)
Show Figures

Figure 1

17 pages, 5210 KiB  
Article
Transcriptional Dynamics of NRF2 Overexpression and KEAP1-NRF2 Inhibitors in Human Cell Line and Primary Lung Cells
by Corinne Hamblet, Karin Björhall, Susann Busch, Ulf Gehrmann, Lisa Öberg, Rebekka Kubisch-Dohmen, Sonja Haas, Manish K. Aneja, Johannes Geiger, Carsten Rudolph and Ellinor Hornberg
Antioxidants 2024, 13(8), 924; https://doi.org/10.3390/antiox13080924 - 30 Jul 2024
Cited by 1 | Viewed by 1963
Abstract
Oxidative stress in the human lung is caused by both internal (e.g., inflammation) and external stressors (smoking, pollution, and infection) to drive pathology in a number of lung diseases. Cellular damage caused by oxidative damage is reversed by several pathways, one of which [...] Read more.
Oxidative stress in the human lung is caused by both internal (e.g., inflammation) and external stressors (smoking, pollution, and infection) to drive pathology in a number of lung diseases. Cellular damage caused by oxidative damage is reversed by several pathways, one of which is the antioxidant response. This response is regulated by the transcriptional factor NRF2, which has the ability to regulate the transcription of more than 250 genes. In disease, this balance is overwhelmed, and the cells are unable to return to homeostasis. Several pharmacological approaches aim to improve the antioxidant capacity by inhibiting the interaction of NRF2 with its key cytosolic inhibitor, KEAP1. Here, we evaluate an alternative approach by overexpressing NRF2 from chemically modified RNAs (cmRNAs). Our results demonstrate successful expression of functional NRF2 protein in human cell lines and primary cells. We establish a kinetic transcriptomic profile to compare antioxidant response gene expression after treatment of primary human bronchial epithelial cells with either KEAP1 inhibitors or cmRNAs. The key gene signature is then applied to primary human lung fibroblasts and alveolar macrophages to uncover transcriptional preferences in each cell system. This study provides a foundation for the understanding of NRF2 dynamics in the human lung and provides initial evidence of alternative ways for pharmacological interference. Full article
Show Figures

Figure 1

20 pages, 6433 KiB  
Article
Modeling PAH Mixture Interactions in a Human In Vitro Organotypic Respiratory Model
by Victoria C. Colvin, Lisa M. Bramer, Brianna N. Rivera, Jamie M. Pennington, Katrina M. Waters and Susan C. Tilton
Int. J. Mol. Sci. 2024, 25(8), 4326; https://doi.org/10.3390/ijms25084326 - 13 Apr 2024
Cited by 3 | Viewed by 1674
Abstract
One of the most significant challenges in human health risk assessment is to evaluate hazards from exposure to environmental chemical mixtures. Polycyclic aromatic hydrocarbons (PAHs) are a class of ubiquitous contaminants typically found as mixtures in gaseous and particulate phases in ambient air [...] Read more.
One of the most significant challenges in human health risk assessment is to evaluate hazards from exposure to environmental chemical mixtures. Polycyclic aromatic hydrocarbons (PAHs) are a class of ubiquitous contaminants typically found as mixtures in gaseous and particulate phases in ambient air pollution associated with petrochemicals from Superfund sites and the burning of fossil fuels. However, little is understood about how PAHs in mixtures contribute to toxicity in lung cells. To investigate mixture interactions and component additivity from environmentally relevant PAHs, two synthetic mixtures were created from PAHs identified in passive air samplers at a legacy creosote site impacted by wildfires. The primary human bronchial epithelial cells differentiated at the air–liquid interface were treated with PAH mixtures at environmentally relevant proportions and evaluated for the differential expression of transcriptional biomarkers related to xenobiotic metabolism, oxidative stress response, barrier integrity, and DNA damage response. Component additivity was evaluated across all endpoints using two independent action (IA) models with and without the scaling of components by toxic equivalence factors. Both IA models exhibited trends that were unlike the observed mixture response and generally underestimated the toxicity across dose suggesting the potential for non-additive interactions of components. Overall, this study provides an example of the usefulness of mixture toxicity assessment with the currently available methods while demonstrating the need for more complex yet interpretable mixture response evaluation methods for environmental samples. Full article
(This article belongs to the Special Issue Molecular Research in Chemical Mixtures Toxicology)
Show Figures

Figure 1

19 pages, 3805 KiB  
Article
The Diagnostic Value of ACSL1, ACSL4, and ACSL5 and the Clinical Potential of an ACSL Inhibitor in Non-Small-Cell Lung Cancer
by Yunxia Ma, Miljana Nenkov, Alexander Berndt, Mohamed Abubrig, Martin Schmidt, Tim Sandhaus, Otmar Huber, Joachim H. Clement, Susanne M. Lang, Yuan Chen and Nikolaus Gaßler
Cancers 2024, 16(6), 1170; https://doi.org/10.3390/cancers16061170 - 16 Mar 2024
Cited by 10 | Viewed by 3665
Abstract
Abnormal expression of ACSL members 1, 3, 4, 5, and 6 is frequently seen in human cancer; however, their clinical relevance is unclear. In this study, we analyzed the expression of ACSLs and investigated the effects of the ACSL inhibitor Triacsin C (TC) [...] Read more.
Abnormal expression of ACSL members 1, 3, 4, 5, and 6 is frequently seen in human cancer; however, their clinical relevance is unclear. In this study, we analyzed the expression of ACSLs and investigated the effects of the ACSL inhibitor Triacsin C (TC) in lung cancer. We found that, compared to normal human bronchial epithelial (NHBE) cells, ACSL1, ACSL4, and ACSL6 were highly expressed, while ACSL3 and ACSL5 were lost in the majority of lung cancer cell lines. ACSL activity was associated with the expression levels of the ACSLs. In primary lung tumors, a higher expression of ACSL1, ACSL4, and ACSL5 was significantly correlated with adenocarcinoma (ADC). Moreover, ACSL5 was significantly reversely related to the proliferation marker Ki67 in low-grade tumors, while ACSL3 was positively associated with Ki67 in high-grade tumors. Combination therapy with TC and Gemcitabine enhanced the growth-inhibitory effect in EGFR wild-type cells, while TC combined with EGFR-TKIs sensitized the EGFR-mutant cells to EGFR-TKI treatment. Taken together, the data suggest that ACSL1 may be a biomarker for lung ADC, and ACSL1, ACSL4, and ACSL5 may be involved in lung cancer differentiation, and TC, in combination with chemotherapy or EGFR-TKIs, may help patients overcome drug resistance. Full article
(This article belongs to the Special Issue Pathology, Diagnosis and Treatment in Non-small Cell Lung Cancer)
Show Figures

Figure 1

12 pages, 2501 KiB  
Article
Immunostimulatory Effect of Flagellin on MDR-Klebsiella-Infected Human Airway Epithelial Cells
by Christine C. A. van Linge, Katina D. Hulme, Hessel Peters-Sengers, Jean-Claude Sirard, Wil H. F. Goessens, Menno D. de Jong, Colin A. Russell, Alex F. de Vos and Tom van der Poll
Int. J. Mol. Sci. 2024, 25(1), 309; https://doi.org/10.3390/ijms25010309 - 25 Dec 2023
Cited by 2 | Viewed by 1865
Abstract
Pneumonia caused by multi-drug-resistant Klebsiella pneumoniae (MDR-Kpneu) poses a major public health threat, especially to immunocompromised or hospitalized patients. This study aimed to determine the immunostimulatory effect of the Toll-like receptor 5 ligand flagellin on primary human lung epithelial cells during [...] Read more.
Pneumonia caused by multi-drug-resistant Klebsiella pneumoniae (MDR-Kpneu) poses a major public health threat, especially to immunocompromised or hospitalized patients. This study aimed to determine the immunostimulatory effect of the Toll-like receptor 5 ligand flagellin on primary human lung epithelial cells during infection with MDR-Kpneu. Human bronchial epithelial (HBE) cells, grown on an air–liquid interface, were inoculated with MDR-Kpneu on the apical side and treated during ongoing infection with antibiotics (meropenem) and/or flagellin on the basolateral and apical side, respectively; the antimicrobial and inflammatory effects of flagellin were determined in the presence or absence of meropenem. In the absence of meropenem, flagellin treatment of MDR-Kpneu-infected HBE cells increased the expression of antibacterial defense genes and the secretion of chemokines; moreover, supernatants of flagellin-exposed HBE cells activated blood neutrophils and monocytes. However, in the presence of meropenem, flagellin did not augment these responses compared to meropenem alone. Flagellin did not impact the outgrowth of MDR-Kpneu. Flagellin enhances antimicrobial gene expression and chemokine release by the MDR-Kpneu-infected primary human bronchial epithelium, which is associated with the release of mediators that activate neutrophils and monocytes. Topical flagellin therapy may have potential to boost immune responses in the lung during pneumonia. Full article
(This article belongs to the Special Issue Flagella 2.0)
Show Figures

Figure 1

19 pages, 5126 KiB  
Article
The Transcriptome Landscape of the In Vitro Human Airway Epithelium Response to SARS-CoV-2
by Said Assou, Engi Ahmed, Lisa Morichon, Amel Nasri, Florent Foisset, Carine Bourdais, Nathalie Gros, Sonia Tieo, Aurelie Petit, Isabelle Vachier, Delphine Muriaux, Arnaud Bourdin and John De Vos
Int. J. Mol. Sci. 2023, 24(15), 12017; https://doi.org/10.3390/ijms241512017 - 27 Jul 2023
Cited by 11 | Viewed by 3403
Abstract
Airway–liquid interface cultures of primary epithelial cells and of induced pluripotent stem-cell-derived airway epithelial cells (ALI and iALI, respectively) are physiologically relevant models for respiratory virus infection studies because they can mimic the in vivo human bronchial epithelium. Here, we investigated gene expression [...] Read more.
Airway–liquid interface cultures of primary epithelial cells and of induced pluripotent stem-cell-derived airway epithelial cells (ALI and iALI, respectively) are physiologically relevant models for respiratory virus infection studies because they can mimic the in vivo human bronchial epithelium. Here, we investigated gene expression profiles in human airway cultures (ALI and iALI models), infected or not with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), using our own and publicly available bulk and single-cell transcriptome datasets. SARS-CoV-2 infection significantly increased the expression of interferon-stimulated genes (IFI44, IFIT1, IFIT3, IFI35, IRF9, MX1, OAS1, OAS3 and ISG15) and inflammatory genes (NFKBIA, CSF1, FOSL1, IL32 and CXCL10) by day 4 post-infection, indicating activation of the interferon and immune responses to the virus. Extracellular matrix genes (ITGB6, ITGB1 and GJA1) were also altered in infected cells. Single-cell RNA sequencing data revealed that SARS-CoV-2 infection damaged the respiratory epithelium, particularly mature ciliated cells. The expression of genes encoding intercellular communication and adhesion proteins was also deregulated, suggesting a mechanism to promote shedding of infected epithelial cells. These data demonstrate that ALI/iALI models help to explain the airway epithelium response to SARS-CoV-2 infection and are a key tool for developing COVID-19 treatments. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

17 pages, 3793 KiB  
Article
Comparable Response Following Exposure to Biodiesel and Diesel Exhaust Particles in Advanced Multicellular Human Lung Models
by Mizanur Rahman, Swapna Upadhyay, Koustav Ganguly, Micol Introna, Jie Ji, Christoffer Boman, Ala Muala, Anders Blomberg, Thomas Sandström and Lena Palmberg
Toxics 2023, 11(6), 532; https://doi.org/10.3390/toxics11060532 - 14 Jun 2023
Cited by 5 | Viewed by 2681
Abstract
Biodiesel is considered to be a sustainable alternative for fossil fuels such as petroleum-based diesel. However, we still lack knowledge about the impact of biodiesel emissions on humans, as airways and lungs are the primary target organs of inhaled toxicants. This study investigated [...] Read more.
Biodiesel is considered to be a sustainable alternative for fossil fuels such as petroleum-based diesel. However, we still lack knowledge about the impact of biodiesel emissions on humans, as airways and lungs are the primary target organs of inhaled toxicants. This study investigated the effect of exhaust particles from well-characterized rapeseed methyl ester (RME) biodiesel exhaust particles (BDEP) and petro-diesel exhaust particles (DEP) on primary bronchial epithelial cells (PBEC) and macrophages (MQ). The advanced multicellular physiologically relevant bronchial mucosa models were developed using human primary bronchial epithelial cells (PBEC) cultured at air–liquid interface (ALI) in the presence or absence of THP-1 cell-derived macrophages (MQ). The experimental set-up used for BDEP and DEP exposures (18 µg/cm2 and 36 µg/cm2) as well as the corresponding control exposures were PBEC-ALI, MQ-ALI, and PBEC co-cultured with MQ (PBEC-ALI/MQ). Following exposure to both BDEP and DEP, reactive oxygen species as well as the stress protein heat shock protein 60 were upregulated in PBEC-ALI and MQ-ALI. Expression of both pro-inflammatory (M1: CD86) and repair (M2: CD206) macrophage polarization markers was increased in MQ-ALI after both BDEP and DEP exposures. Phagocytosis activity of MQ and the phagocytosis receptors CD35 and CD64 were downregulated, whereas CD36 was upregulated in MQ-ALI. Increased transcript and secreted protein levels of CXCL8, as well as IL-6 and TNF-α, were detected following both BDEP and DEP exposure at both doses in PBEC-ALI. Furthermore, the cyclooxygenase-2 (COX-2) pathway, COX-2-mediated histone phosphorylation and DNA damage were all increased in PBEC-ALI following exposure to both doses of BDEP and DEP. Valdecoxib, a COX-2 inhibitor, reduced the level of prostaglandin E2, histone phosphorylation, and DNA damage in PBEC-ALI following exposure to both concentrations of BDEP and DEP. Using physiologically relevant multicellular human lung mucosa models with human primary bronchial epithelial cells and macrophages, we found BDEP and DEP to induce comparable levels of oxidative stress, inflammatory response, and impairment of phagocytosis. The use of a renewable carbon-neutral biodiesel fuel does not appear to be more favorable than conventional petroleum-based alternative, as regards of its potential for adverse health effects. Full article
(This article belongs to the Special Issue Exposure to Air Pollution and Respiratory Health Effects)
Show Figures

Graphical abstract

13 pages, 1831 KiB  
Article
Recent Clinical Isolates of Enterovirus D68 Have Increased Replication and Induce Enhanced Epithelial Immune Response Compared to the Prototype Fermon Strain
by Mark K. Devries, Yury A. Bochkov, Michael D. Evans, James E. Gern and Daniel J. Jackson
Viruses 2023, 15(6), 1291; https://doi.org/10.3390/v15061291 - 31 May 2023
Cited by 3 | Viewed by 2076
Abstract
In 2014, enterovirus D68 (EV-D68), previously associated primarily with mild respiratory illness, caused a large outbreak of severe respiratory illness and, in rare instances, paralysis. We compared the viral binding and replication of eight recent EV-D68 clinical isolates collected both before and during [...] Read more.
In 2014, enterovirus D68 (EV-D68), previously associated primarily with mild respiratory illness, caused a large outbreak of severe respiratory illness and, in rare instances, paralysis. We compared the viral binding and replication of eight recent EV-D68 clinical isolates collected both before and during the 2014 outbreak and the prototype Fermon strain from 1962 in cultured HeLa cells and differentiated human primary bronchial epithelial cells (BEC) to understand the possible reasons for the change in virus pathogenicity. We selected pairs of closely related isolates from the same phylogenetic clade that were associated with severe vs. asymptomatic infections. We found no significant differences in binding or replication in HeLa cell cultures between the recent clinical isolates. However, in HeLa cells, Fermon had significantly greater binding (2–3 logs) and virus progeny yields (2–4 logs) but a similar level of replication (1.5–2 log increase in viral RNA from 2 h to 24 h post infection) compared to recent isolates. In differentiated BECs, Fermon and the recent EV-D68 isolates had similar levels of binding; however, the recent isolates produced 1.5–2-log higher virus progeny yields than Fermon due to increased replication. Interestingly, no significant differences in replication were identified between the pairs of genetically close recent EV-D68 clinical isolates despite the observed differences in associated disease severity. We then utilized RNA-seq to define the transcriptional responses in BECs infected with four recent EV-D68 isolates, representing major phylogenetic clades, and the Fermon strain. All the tested clinical isolates induced similar responses in BECs; however, numerous upregulated genes in antiviral and pro-inflammatory response pathways were identified when comparing the response to clinical isolates versus Fermon. These results indicate that the recent emergence in severe EV-D68 cases could be explained by an increased replication efficiency and enhanced inflammatory response induced by newly emerged clinical isolates; however, host factors are likely the main determinants of illness severity. Full article
(This article belongs to the Special Issue Enteroviruses 2023)
Show Figures

Figure 1

10 pages, 1659 KiB  
Communication
Liposomal Lactoferrin Exerts Antiviral Activity against HCoV-229E and SARS-CoV-2 Pseudoviruses In Vitro
by Sabina Andreu, Inés Ripa, Raquel Bello-Morales and José Antonio López-Guerrero
Viruses 2023, 15(4), 972; https://doi.org/10.3390/v15040972 - 15 Apr 2023
Cited by 14 | Viewed by 3863
Abstract
A limited number of effective therapies are currently available to treat human coronavirus SARS-CoV-2 and other human coronaviruses, which are responsible for nearly a third of global cases of the common cold. The possibility of new emerging coronaviruses demands powerful new antiviral strategies. [...] Read more.
A limited number of effective therapies are currently available to treat human coronavirus SARS-CoV-2 and other human coronaviruses, which are responsible for nearly a third of global cases of the common cold. The possibility of new emerging coronaviruses demands powerful new antiviral strategies. Lactoferrin is a well-known protein that possesses anti-inflammatory and immunomodulatory activities, and it has previously shown antiviral activity against several viruses, including SARS-CoV-2. To increase this antiviral activity, here we present bovine liposomal lactoferrin. Liposomal encapsulation of the compound was proven to increase permeability, bioavailability, and time release. In the present work, we compare the antiviral activity of free and liposomal bovine lactoferrin against HCoV229E and SARS-CoV-2 in vitro and in human primary bronchial epithelial cells, and we demonstrated that the liposomal form exerts a more potent antiviral activity than its free form at non-cytotoxic doses. Full article
(This article belongs to the Collection SARS-CoV-2 and COVID-19)
Show Figures

Figure 1

Back to TopTop