Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (140)

Search Parameters:
Keywords = preceding crop

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3541 KB  
Article
Sustainable Maize Forage Production: Effect of Organic Amendments Combined with Microbial Biofertilizers Across Different Soil Textures
by Francesco Serrapica, Ida Di Mola, Eugenio Cozzolino, Lucia Ottaiano, Fiorella Sarubbi, Giannicola Pezzullo, Antonio Di Francia, Mauro Mori and Felicia Masucci
Sustainability 2025, 17(21), 9617; https://doi.org/10.3390/su17219617 - 29 Oct 2025
Viewed by 124
Abstract
This study aimed to assess whether the fertilizing effects of compost (Com) and vermicompost (VCom) applied to a preceding wheat crop, either alone or in combination with microbial biofertilizers (MBF; arbuscular mycorrhizal fungi and nitrogen-fixing bacteria), could sustain forage maize yield across contrasting [...] Read more.
This study aimed to assess whether the fertilizing effects of compost (Com) and vermicompost (VCom) applied to a preceding wheat crop, either alone or in combination with microbial biofertilizers (MBF; arbuscular mycorrhizal fungi and nitrogen-fixing bacteria), could sustain forage maize yield across contrasting soil textures. A split–split plot trial was conducted in 2023 in sandy, loamy, and clay soils. Treatments included Com, VCom, standard mineral nitrogen fertilization, and unfertilized control, each tested with or without MBF inoculation. Maize was harvested at the milk–dough stage and assessed for biomass yield, dry matter partitioning, chemical composition, and in vitro digestibility. Interactions among factors were frequent, particularly with soil texture, but overall, Com and VCom sustained biomass yield and forage quality, especially when combined with MBF. Notably, in loamy soil, VCom coupled with MBF (38.4 t ha−1) outperformed mineral fertilization (32.9 t ha−1). Across soils, loam produced the highest dry matter yield (27.0 t ha−1) and sand the lowest (23.7 t ha−1), while clay showed variable responses depending on the amendment–MBFs combination. All plots treated with the MBFconsistently exhibited higher yields compared to their respective controls, with an average increase of 52.6% across texture and fertilization strategies. Fertilization strategy and soil texture slightly yet significantly affected maize chemical composition, while digestibility remained largely preserved. Crude protein concentration peaked under mineral fertilization in loamy soil (8.3% dry matter). These findings highlight the potential of bio-based fertilizers, especially when integrated with microbial inoculants, to reduce mineral nitrogen dependency and support the sustainable intensification of forage maize. Full article
Show Figures

Figure 1

25 pages, 6636 KB  
Article
Analysis of Soil Nutrients and Microbial Community Characteristics in Rainfed Rice–Potato Cropping Systems
by Longkang Liang, Sunjin Li, Kun Li, Xing Zhang, Longjun Yang and Huachun Guo
Agronomy 2025, 15(11), 2500; https://doi.org/10.3390/agronomy15112500 - 28 Oct 2025
Viewed by 126
Abstract
Background: Rainfed rice–potato cropping systems represent an emerging agricultural pattern in Yunnan Province. This study investigates the dynamics of soil nutrient release and microbial community structure under rainfed rice–potato cropping systems. Methods: Four experimental treatments were established using two rice cultivation methods (flooded [...] Read more.
Background: Rainfed rice–potato cropping systems represent an emerging agricultural pattern in Yunnan Province. This study investigates the dynamics of soil nutrient release and microbial community structure under rainfed rice–potato cropping systems. Methods: Four experimental treatments were established using two rice cultivation methods (flooded and rainfed cultivation) as the preceding crop, followed by two distinct potato cultivars: rainfed rice–potato Dianshu 23 (DR), rainfed rice–potato Dianshu 1418 (DY), flooded rice–potato Dianshu 23 (WR), and flooded rice–potato Dianshu 1418 (WY). Soil samples were collected before rice planting and at harvest, as well as before potato planting and at 40-, 80-, and 120-days post-planting. Soil nutrient release dynamics and microbial community composition were analyzed across all treatments. Results: Flooded rice cultivation as the preceding crop exhibited higher soil nutrient depletion compared to rainfed systems, accompanied by more pronounced increases in soil urease and invertase activities. Following potato establishment, rainfed rice–potato systems demonstrated an accelerated release of available nitrogen and potassium during the initial growth period relative to flooded rice–potato systems. At potato harvest, soil urease and invertase activities increased in rainfed rice–potato systems compared to pre-planting levels, while decreasing in flooded rice–potato systems. Proteobacteria constituted the dominant bacterial phylum across all treatments. Rainfed rice cultivation significantly enhanced Cyanobacteria relative abundance, whereas flooded rice cultivation promoted increased Thermodesulfobacteria abundance. Ascomycota dominated fungal communities, with flooded rice showing significantly greater reductions in Ascomycota relative abundance compared to rainfed systems. Rainfed rice–potato systems exhibited superior soil microbial community richness, diversity, and species abundance relative to flooded rice–potato systems. Bacterial genera associated with nitrogen metabolism showed higher relative abundance in rainfed rice–potato systems, as did pathogenic fungal genera. Conclusions: Soil nutrient characteristics and microbial community profiles in rainfed rice–potato cropping systems differ markedly from traditional flooded rice–potato rotation practices. These findings provide valuable insights for optimizing water and nutrient management strategies in rainfed rice–potato cropping systems. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

18 pages, 5597 KB  
Article
Evaluating the Performance of Winter Wheat Under Late Sowing Using UAV Multispectral Data
by Yuanyuan Zhao, Hui Wang, Wei Wu, Yi Sun, Ying Wang, Weijun Zhang, Jianliang Wang, Fei Wu, Wouter H. Maes, Jinfeng Ding, Chunyan Li, Chengming Sun, Tao Liu and Wenshan Guo
Agronomy 2025, 15(10), 2384; https://doi.org/10.3390/agronomy15102384 - 13 Oct 2025
Viewed by 378
Abstract
In the lower and middle sections of the Yangtze River Basin Region (YRBR) in China, challenges posed by climate change and delayed harvesting of preceding crops have hindered the timely sowing of wheat, leading to an increasing prevalence of late-sown wheat fields. This [...] Read more.
In the lower and middle sections of the Yangtze River Basin Region (YRBR) in China, challenges posed by climate change and delayed harvesting of preceding crops have hindered the timely sowing of wheat, leading to an increasing prevalence of late-sown wheat fields. This trend has emerged as a significant impediment to achieving high and stable production of wheat in this area. During the growing seasons of 2022–2023 and 2023–2024, an unmanned aerial vehicle (UAV)-based multispectral camera was used to monitor different wheat materials at various growth stages under normal sowing treatment (M1) and late sowing with increased plant density (M2). By assessing yield loss, the wheat tolerance to late sowing was quantified and categorized. The correlation between the differential vegetation indices (D-VIs) and late sowing resistance was examined. The findings revealed that the J2-Logistic model demonstrated optimal classification performance. The precision values of stable type, intermediate type, and sensitive type were 0.92, 0.61, and 1.00, respectively. The recall values were 0.61, 0.92, and 1.00. The mean average precision (mAP) of the model was 0.92. This study proposes a high-throughput and low-cost evaluation method for wheat tolerance to late sowing, which can provide a rapid predictive tool for screening suitable varieties for late sowing and facilitating late-sown wheat breeding. Full article
(This article belongs to the Special Issue Digital Twins in Precision Agriculture)
Show Figures

Figure 1

19 pages, 5905 KB  
Article
Soybean-Bupleurum Rotation System Can Optimize Rhizosphere Soil Microbial Community via Impacting Soil Properties and Enzyme Activities During Bupleurum Seedling Stage
by Qingshan Yang, Peng Dong, Mengni Chen, Hui Wang, Lu Wang, Jiawei Yuan, Chengyu Hu, Zhen Liu, Yongshan Li and Qiaolan Fan
Microorganisms 2025, 13(10), 2346; https://doi.org/10.3390/microorganisms13102346 - 13 Oct 2025
Viewed by 370
Abstract
To avoid continuous cropping problems with Bupleurum, we screened suitable preceding crops for rotation with Bupleurum through different crop rotations. Therefore, the objective of this study was to find out the relationships between microbial community characteristics, soil properties, and enzyme activities under [...] Read more.
To avoid continuous cropping problems with Bupleurum, we screened suitable preceding crops for rotation with Bupleurum through different crop rotations. Therefore, the objective of this study was to find out the relationships between microbial community characteristics, soil properties, and enzyme activities under four different rotation patterns, including fallow-Bupleurum (CK), maize-Bupleurum (M), soybean-Bupleurum (So), and sunflower-Bupleurum (Su). Results indicated that under all four rotation patterns, So treatment significantly enhanced soil nutrients and enzyme activities compared to CK. So not only optimized the composition of soil bacterial and fungal communities but markedly enhanced microbial α diversity. Additionally, So exhibited high similarity in bacterial and fungal community composition with M, and featured complex symbiotic relationships within the soil microbial network. While no clear discrepancies were detected in the abundance of the top twenty metabolic pathways in the predictive functions of bacterial and fungal communities across four rotation patterns, the metabolic pathway function MET-SAM-PWY (methionine synthesis pathway) in bacterial communities and the metabolic pathway function VALSYN-PWY (valine synthesis pathway) in fungal communities were particularly prominent under the So rotation pattern. RDA suggested that soil properties (available phosphorus and pH) and enzyme activities (sucrase and alkaline phosphatase activities) were the driving forces for bacterial community composition, while soil properties (soil organic matter and available potassium) and enzyme activities (sucrase and catalase activities) regulated fungal community composition. Hence, the soybean-Bupleurum rotation pattern represents a cultivation practice more beneficial for the sustainable development of the bupleurum industry, which can significantly improve soil fertility and the micro-ecological environment. Full article
(This article belongs to the Collection Feature Papers in Environmental Microbiology)
Show Figures

Figure 1

15 pages, 1047 KB  
Article
Sustainable Soybean Production Using Residual Vermicompost Inputs in Corn-Soybean Rotation
by Ivan Oyege and Maruthi Sridhar Balaji Bhaskar
Environments 2025, 12(9), 333; https://doi.org/10.3390/environments12090333 - 18 Sep 2025
Viewed by 611
Abstract
Soybeans (Glycine max L.), a globally significant crop, play a critical role in economic, nutritional, and ecological systems, particularly in rotational farming due to their nitrogen-fixing capacity. This study investigated the residual effects of vermicompost (VC) and vermicompost tea (VCT) applied during [...] Read more.
Soybeans (Glycine max L.), a globally significant crop, play a critical role in economic, nutritional, and ecological systems, particularly in rotational farming due to their nitrogen-fixing capacity. This study investigated the residual effects of vermicompost (VC) and vermicompost tea (VCT) applied during a preceding corn cycle on subsequent soybean growth and productivity in an organic corn–soybean rotation. Soybeans were grown in raised beds previously treated with different VCT concentrations and combinations of VC+VCT, without additional fertilization during the soybean phase. Physiological traits, including leaf chlorophyll content (SPAD values) and stomatal conductance, were measured alongside biomass, yield, and plant leaves nutrient concentrations. VC+VCT treatments significantly increased biomass and yield, with VC1+VCT20 achieving the highest biomass (3.02 tons/ha) and yield (1.68 tons/ha). Leaf nutrient analysis revealed increased uptake of both macro- and micronutrients in amended treatments, while SPAD and stomatal conductance values remained consistently higher than in the control. Soil analyses confirmed improved nutrient retention and cation exchange capacity in amended plots, demonstrating the legacy benefits of organic inputs. Therefore, residual VCT and VC+VCT applications improved soybean productivity, nutrient acquisition, and physiological performance in rotational systems. By reducing reliance on synthetic fertilizers and enhancing soil fertility, this strategy supports climate-smart agriculture principles and contributes to SDG 2 (Zero Hunger), SDG 12 (Responsible Consumption and Production), and SDG 13 (Climate Action). Full article
Show Figures

Graphical abstract

17 pages, 2930 KB  
Article
Legacy Effects of Different Preceding Crops on Grain Yield, Protein Fractions and Soil Nutrients in Subsequent Winter Wheat
by Rui Wang, Jiayun Wu, Yang Wang, Zhimei Sun, Wenqi Ma, Cheng Xue and Huasen Xu
Plants 2025, 14(16), 2598; https://doi.org/10.3390/plants14162598 - 21 Aug 2025
Viewed by 688
Abstract
Given the pressing global food security crisis and climate change-induced constraints on agricultural productivity, crop rotation proves critical for boosting yield and grain quality of winter wheat (Triticum aestivum) alongside ameliorating soil quality. However, the legacy effect of different preceding crops [...] Read more.
Given the pressing global food security crisis and climate change-induced constraints on agricultural productivity, crop rotation proves critical for boosting yield and grain quality of winter wheat (Triticum aestivum) alongside ameliorating soil quality. However, the legacy effect of different preceding crops on synergistic increments of wheat productivity and soil fertility remains to be fully clarified. Five different preceding crop–winter wheat rotations were conducted in a field experiment established in Huanghua, China. Maize (Zea mays), sorghum (Sorghum bicolor), and millet (Setaria italica) were designated as preceding gramineous crops, and soybean (Glycine max) and mung bean (Vigna radiata) were assigned as preceding legume crops. Grain yield, protein fraction, and soil nutrients were measured to elucidate the legacy effect of the preceding crops on the subsequent winter wheat. Leguminous predecessors significantly evaluated the grain yield of winter wheat compared to gramineous predecessors, particularly that the mung–winter wheat rotation (Mun-W) was 11.56% higher than that of the maize–winter wheat rotation (Mai-W). This rising yield was attributed to the increase of 4.05% in spike number per hectare and 14.31% in kernel number per spike. The Mun-W facilitated the highest gluten protein content (8.22%) in winter wheat among five treatments, which was 6.06% higher than that in the sorghum–winter wheat system. Soil organic matter (SOM) showed an advantage in legume–winter wheat rotations (Leg-Ws) compared to gramineous crop–winter wheat systems (Gra-Ws). Notably among these, the Mun-W significantly enhanced SOM content by 0.99% relative to the Mai-W. The soybean–winter wheat system decreased soil pH by 0.36 compared to the Mai-W system. Coupling coordination degree (CCD) and co-benefit index (CBI) in the Leg-Ws exhibited significant superiority of 62.41% and 42.22% over the Gra-Ws, respectively, and the Mun-W attained maximum CCD by 0.84 and CBI by 0.77. From a multi-objective assessment perspective of the legacy effect of the preceding crops, legume-based rotations facilitate synergistic improvements of yield, protein quality, and soil nutrients in winter wheat. Full article
Show Figures

Figure 1

21 pages, 1620 KB  
Article
Effect of Organic and Mineral Phosphate Fertilization of the Plant Cane and First Ratoon on Agronomic Performance and Industrial Quality of the Second Ratoon in the Brazilian Cerrado Region
by Evaldo Alves dos Santos, Frederico Antonio Loureiro Soares, Marconi Batista Teixeira, Edson Cabral da Silva, Antônio Evami Cavalcante Sousa and Luís Sérgio Rodrigues Vale
Agronomy 2025, 15(8), 2004; https://doi.org/10.3390/agronomy15082004 - 21 Aug 2025
Viewed by 758
Abstract
Sugarcane requires high doses of phosphorus to achieve high productivity. However, not all the phosphorus applied to crops is utilized. Therefore, it is believed that some remaining phosphorus can meet the nutrient demand of the ratoon crop. The objective of this study was [...] Read more.
Sugarcane requires high doses of phosphorus to achieve high productivity. However, not all the phosphorus applied to crops is utilized. Therefore, it is believed that some remaining phosphorus can meet the nutrient demand of the ratoon crop. The objective of this study was to evaluate the effects of mineral fertilization with triple superphosphate (TSP) and organic fertilization with poultry litter (PL), applied to plant cane and the first ratoon, on the quality of second ratoon sugarcane. The experimental design was a randomized complete block design with a 5 × 5 factorial scheme with four replications. The treatments consisted of five TSP doses (0, 60, 120, 180, and 240 kg ha−1) and five PL doses (0, 2, 4, 6, and 8 t ha−1). Fertilization with TSP and PL applied in the two preceding cycles promoted an increase in plant height, stalk diameter, number of tillers, and productivity in the second ratoon. The doses of triple superphosphate and chicken litter applied in cycles preceding the second ratoon were able to increase the agronomic performance of the genotype IACSP95-5094. However, the highest subsequent combined doses of triple superphosphate and chicken litter resulted in a 27% increase in stalk productivity. In general, the preceding doses of chicken litter showed greater potential to enhance the technological attributes. Full article
(This article belongs to the Special Issue Tillage Systems and Fertilizer Application on Soil Health)
Show Figures

Figure 1

25 pages, 5776 KB  
Article
Early Detection of Herbicide-Induced Tree Stress Using UAV-Based Multispectral and Hyperspectral Imagery
by Russell Main, Mark Jayson B. Felix, Michael S. Watt and Robin J. L. Hartley
Forests 2025, 16(8), 1240; https://doi.org/10.3390/f16081240 - 28 Jul 2025
Viewed by 924
Abstract
There is growing interest in the use of herbicide for the silvicultural practice of tree thinning (i.e., chemical thinning or e-thinning) in New Zealand. Potential benefits of this approach include improved stability of the standing crop in high winds, and safer and lower-cost [...] Read more.
There is growing interest in the use of herbicide for the silvicultural practice of tree thinning (i.e., chemical thinning or e-thinning) in New Zealand. Potential benefits of this approach include improved stability of the standing crop in high winds, and safer and lower-cost operations, particularly in steep or remote terrain. As uptake grows, tools for monitoring treatment effectiveness, particularly during the early stages of stress, will become increasingly important. This study evaluated the use of UAV-based multispectral and hyperspectral imagery to detect early herbicide-induced stress in a nine-year-old radiata pine (Pinus radiata D. Don) plantation, based on temporal changes in crown spectral signatures following treatment with metsulfuron-methyl. A staggered-treatment design was used, in which herbicide was applied to a subset of trees in six blocks over several weeks. This staggered design allowed a single UAV acquisition to capture imagery of trees at varying stages of herbicide response, with treated trees ranging from 13 to 47 days after treatment (DAT). Visual canopy assessments were carried out to validate the onset of visible symptoms. Spectral changes either preceded or coincided with the development of significant visible canopy symptoms, which started at 25 DAT. Classification models developed using narrow band hyperspectral indices (NBHI) allowed robust discrimination of treated and non-treated trees as early as 13 DAT (F1 score = 0.73), with stronger results observed at 18 DAT (F1 score = 0.78). Models that used multispectral indices were able to classify treatments with a similar accuracy from 18 DAT (F1 score = 0.78). Across both sensors, pigment-sensitive indices, particularly variants of the Photochemical Reflectance Index, consistently featured among the top predictors at all time points. These findings address a key knowledge gap by demonstrating practical, remote sensing-based solutions for monitoring and characterising herbicide-induced stress in field-grown radiata pine. The 13-to-18 DAT early detection window provides an operational baseline and a target for future research seeking to refine UAV-based detection of chemical thinning. Full article
(This article belongs to the Section Forest Health)
Show Figures

Figure 1

18 pages, 1756 KB  
Technical Note
Detection of Banana Diseases Based on Landsat-8 Data and Machine Learning
by Renata Retkute, Kathleen S. Crew, John E. Thomas and Christopher A. Gilligan
Remote Sens. 2025, 17(13), 2308; https://doi.org/10.3390/rs17132308 - 5 Jul 2025
Viewed by 1838
Abstract
Banana is an important cash and food crop worldwide. Recent outbreaks of banana diseases are threatening the global banana industry and smallholder livelihoods. Remote sensing data offer the potential to detect the presence of disease, but formal analysis is needed to compare inferred [...] Read more.
Banana is an important cash and food crop worldwide. Recent outbreaks of banana diseases are threatening the global banana industry and smallholder livelihoods. Remote sensing data offer the potential to detect the presence of disease, but formal analysis is needed to compare inferred disease data with observed disease data. In this study, we present a novel remote-sensing-based framework that combines Landsat-8 imagery with meteorology-informed phenological models and machine learning to identify anomalies in banana crop health. Unlike prior studies, our approach integrates domain-specific crop phenology to enhance the specificity of anomaly detection. We used a pixel-level random forest (RF) model to predict 11 key vegetation indices (VIs) as a function of historical meteorological conditions, specifically daytime and nighttime temperature from MODIS and precipitation from NASA GES DISC. By training on periods of healthy crop growth, the RF model establishes expected VI values under disease-free conditions. Disease presence is then detected by quantifying the deviations between observed VIs from Landsat-8 imagery and these predicted healthy VI values. The model demonstrated robust predictive reliability in accounting for seasonal variations, with forecasting errors for all VIs remaining within 10% when applied to a disease-free control plantation. Applied to two documented outbreak cases, the results show strong spatial alignment between flagged anomalies and historical reports of banana bunchy top disease (BBTD) and Fusarium wilt Tropical Race 4 (TR4). Specifically, for BBTD in Australia, a strong correlation of 0.73 was observed between infection counts and the discrepancy between predicted and observed NDVI values at the pixel with the highest number of infections. Notably, VI declines preceded reported infection rises by approximately two months. For TR4 in Mozambique, the approach successfully tracked disease progression, revealing clear spatial spread patterns and correlations as high as 0.98 between VI anomalies and disease cases in some pixels. These findings support the potential of our method as a scalable early warning system for banana disease detection. Full article
(This article belongs to the Special Issue Plant Disease Detection and Recognition Using Remotely Sensed Data)
Show Figures

Figure 1

19 pages, 754 KB  
Article
Effectiveness of Sunn Hemp (Crotalaria juncea L.) in Reducing Wireworm Damage in Potatoes
by Lorenzo Furlan, Stefano Bona, Roberto Matteo, Luca Lazzeri, Isadora Benvegnù, Nerio Casadei, Elisabetta Caprai, Ilaria Prizio and Bruno Parisi
Insects 2025, 16(7), 674; https://doi.org/10.3390/insects16070674 - 27 Jun 2025
Viewed by 1029
Abstract
Wireworms are a major threat to potatoes. Agronomic prevention is always the first IPM strategy to be implemented. This work assesses whether a bioactive cover crop, sunn hemp (Crotalaria juncea L.), a tropical leguminous plant, reduces wireworm damage risk when cultivated as [...] Read more.
Wireworms are a major threat to potatoes. Agronomic prevention is always the first IPM strategy to be implemented. This work assesses whether a bioactive cover crop, sunn hemp (Crotalaria juncea L.), a tropical leguminous plant, reduces wireworm damage risk when cultivated as a crop preceding potatoes. The effects of Crotalaria plants (alive, chopped, and incorporated) on wireworms and tuber-damage prevention were studied in semi-natural (pots) and open-field conditions. The survival of a set number of reared wireworms feeding on Crotalaria plants or potato tubers in soil with incorporated Crotalaria chopped tissues was assessed. Wireworm damage on tubers was assessed in fields where Crotalaria had been cultivated, chopped, and incorporated the previous year. The tuber damage assessment involved counting all the erosions/scars caused by wireworm feeding. The prevalent wireworm species studied was Agriotes sordidus. Our research is the first to demonstrate that Crotalaria as a cover crop can significantly reduce potato damage by wireworms. A major role is likely played by the high pyrrolizidine alkaloid content in Crotalaria juncea tissues, but this has to be specifically proven. Crotalaria juncea may thus represent an effective means for use alone or with complementary ones to produce potatoes with low wireworm damage without using synthetic insecticides. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

27 pages, 4306 KB  
Article
Extrusion-Biodelignification Approach for Biomass Pretreatment
by Delon Konan, Adama Ndao, Ekoun Koffi, Saïd Elkoun, Mathieu Robert, Denis Rodrigue and Kokou Adjallé
Waste 2025, 3(3), 21; https://doi.org/10.3390/waste3030021 - 26 Jun 2025
Viewed by 749
Abstract
This work presents a new approach for lignocellulosic biomass pretreatment. The process is a sequential combination of extrusion (Ex) and semi-solid fermentation (SSF). To assess the Ex-SSF pretreatment efficiency, black spruce chips (wood residues) and corn stover (crop residues) were subjected to the [...] Read more.
This work presents a new approach for lignocellulosic biomass pretreatment. The process is a sequential combination of extrusion (Ex) and semi-solid fermentation (SSF). To assess the Ex-SSF pretreatment efficiency, black spruce chips (wood residues) and corn stover (crop residues) were subjected to the process. The negative controls were the pretreatment of both residues with SSF alone without extrusion. Lignin peroxidase was the main ligninolytic enzyme contributing to the delignification in the negative controls. High lignin peroxide (LiP) activities were recorded for raw black spruce (53.7 ± 2.7 U/L) and corn stover (16.4 ± 0.8 U/L) compared to the Ex-SSF pretreated biomasses where the highest LiP activity recorded was 6.0 ± 0.3 U/L (corn residues). However, with the negative controls, only a maximum of 17% delignification was achieved for both biomasses. As for the Ex-SSF process, the pretreatments were preceded by the optimization of the extrusion (Ex) step and the semi-solid fermentation (SSF) step via experimental designs. The Ex-SSF pretreatments led to interesting results and offered cost-effective advantages compared to existing pretreatments. Biomass delignification reached 59.1% and 65.4% for black spruce and corn stover, respectively. For the analyses performed, it was found that manganese peroxidase (MnP) was the main contributor to delignification during the SSF step. MnP activity was up to 13.8 U/L for Ex-SSF pretreated black spruce, and 32.0 U/L for Ex-SSF pretreated corn stover, while the maximum MnP recorded in the negative controls was 1.4 ± 0.1 U/L. Ex-SSF pretreatment increased the cellulose crystallinity index (CrI) by 13% for black spruce and 4% for corn stover. But enzymatic digestibility of the Ex-SSF pretreated biomasses with 0.25 mL/g of enzyme led to 7.6 mg/L sugar recovery for black spruce, which is 2.3 times the raw biomass yield. The Ex-SSF pretreated corn stover led to 17.0 mg/L sugar recovery, which is a 44% improvement in sugar concentration compared to raw corn stover. However, increasing the enzyme content from 0.25 mL/g to 0.50 mg/L and 0.75 mg/L generated lower hydrolysis efficiency (the sugar recovery decreased). Full article
(This article belongs to the Special Issue Agri-Food Wastes and Biomass Valorization—2nd Edition)
Show Figures

Figure 1

27 pages, 1323 KB  
Review
Factors Influencing the Formation, Development of Buds, and Flowering of Temperate Fruit Trees
by Iwona Szot and Grzegorz P. Łysiak
Agriculture 2025, 15(12), 1304; https://doi.org/10.3390/agriculture15121304 - 17 Jun 2025
Cited by 1 | Viewed by 2655
Abstract
The condition for the formation of fruit on fruit plants is the presence of flower buds, flowering and proper pollination/fertilisation of flowers. Fruit trees and shrubs are perennial plants, and the processes of flower bud formation and flowering are distant in time. The [...] Read more.
The condition for the formation of fruit on fruit plants is the presence of flower buds, flowering and proper pollination/fertilisation of flowers. Fruit trees and shrubs are perennial plants, and the processes of flower bud formation and flowering are distant in time. The formation of flower buds occurs in the year preceding flowering and fruiting. The number and quality of flowers are the basic factors that determine the potential yield of fruit trees. Therefore, the review focuses on a thorough review of the latest research on the various stages in the development of trees, in which the processes that determine their flowering take place. The greatest emphasis was placed on the influence of factors that determine the yield of trees after the juvenile stage. Climate change leading to global warming will undoubtedly affect the formation of flower buds, which determine the size of crops. To avoid the unforeseen effects of abiotic factors on the availability of raw materials, such as fruits, it is good to diversify the structure of cultivated plants. Most fruit plants come from the Rosaceae family, so they have many pathogens and pests in common. To increase crop, economic, and habitat biodiversity, it is necessary to look for other, more genetically distant, sometimes even less known fruit-bearing species. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

17 pages, 265 KB  
Article
Effect of Preceding Crops, Soil Packing and Tillage System on Soil Compaction, Organic Carbon Content and Maize Yield
by Krzysztof Orzech, Maria Wanic and Dariusz Załuski
Agriculture 2025, 15(11), 1231; https://doi.org/10.3390/agriculture15111231 - 5 Jun 2025
Viewed by 896
Abstract
Crop rotation and simplified tillage affect soil properties and consequently crop yields. The use of heavy machinery in the tillage can affect soil degradation and reduce soil productivity. The aim of this study was to investigate the effect of soil packing and different [...] Read more.
Crop rotation and simplified tillage affect soil properties and consequently crop yields. The use of heavy machinery in the tillage can affect soil degradation and reduce soil productivity. The aim of this study was to investigate the effect of soil packing and different soil tillage methods applied before the sowing of maize cultivated after grassland and in monoculture on soil compaction, soil organic carbon content, and maize yield. A strip–split–plot experiment was conducted on-farm in northeastern Poland from 2017 to 2021. The soil compaction was measured in the soil layers: 0–10, 10–20 and 20–30 cm in the leaf development stage (BBCH 19), the flowering stage (BBCH 67) and the maize kernel development stage (BBCH 79). The experimental factors were as follows: 1. preceding crop—grassland, maize; 2. degree of soil packing—without soil packing, soil packing after harvesting the preceding crop; 3. different soil tillage—conventional plough tillage method, reduced tillage method. Maize cultivation following a multi-species grassland resulted in a modest 1.47% increase in soil organic carbon content compared to continuous maize monoculture. In monoculture maize, all investigated reduced tillage methods led to increased soil compaction by 0.61–0.67 MPa. However, this adverse effect was mitigated by prior grassland cultivation. Maize grown after a multi-species grassland exhibited 14% higher silage mass yields. Considering the reduction in soil compaction and the enhanced yield potential, this preceding crop is recommended for maize cultivation. Although soil packing did not significantly impact maize yields, reduced tillage methods, such as subsoiling at 40 cm, medium ploughing at 20 cm, and passive tillage, led to a significant reduction in silage mass compared to other treatments. Full article
(This article belongs to the Section Agricultural Soils)
17 pages, 4837 KB  
Article
Cover Crops Optimize Soil Fertility and Soybean Productivity in the Cerrado of MATOPIBA, Brazil
by Hosana Aguiar Freitas de Andrade, Edvaldo Sagrilo, José Oscar Lustosa de Oliveira Júnior, Daiane Conceição de Sousa, Carlos Pedro de Menezes Costa, Paula Muniz Costa, Raimundo Bezerra de Araújo Neto, Rosa Maria Cardoso Mota de Alcantara, Luiz Fernando Carvalho Leite, Mariléia Barros Furtado, Marcelo Javier Beltrán, Nicolas Cafaro La Menza and Henrique Antunes de Souza
Agronomy 2025, 15(5), 1083; https://doi.org/10.3390/agronomy15051083 - 29 Apr 2025
Cited by 1 | Viewed by 2070
Abstract
The main challenge of soybean cultivation in Brazil’s last agricultural frontier is to ensure sustainable production. This study aimed to evaluate the use of cover crops (CC) to improve soil fertility, plant nutrition, and soybeans productivity grown in the Cerrado of Brazil. The [...] Read more.
The main challenge of soybean cultivation in Brazil’s last agricultural frontier is to ensure sustainable production. This study aimed to evaluate the use of cover crops (CC) to improve soil fertility, plant nutrition, and soybeans productivity grown in the Cerrado of Brazil. The study was carried out on a farm located in the state of Maranhão, Brazil, with nine treatments, fallow and CC preceding soybean cultivation: (i) Millet (Pennisetum glaucum L.); (ii) Marandu (Urochloa brizantha); (iii) Ruziziensis (Urochloa ruziziensi); (iv) Tanzania (Megathyrsus maximum); (v) Massai (Megathyrsus maximum); (vi) cowpea (Vigna unguiculata L.); (vii) pigeon pea (Cajanus cajan L.); and (viii) Crotalaria (Crotalaria juncea). An analysis for the characterization of the biomass of cover crops and fallow was carried out. Soil chemical and biological properties, soybean foliar nutrient concentrations, and the soybean seed yield and quality grown in sequence to the CC were also analyzed. Soil microbial carbon was favored by the cultivation of ‘Marandu’, ‘Ruziziensis’, ‘Tanzania’, and cowpea. Nutrient cycling promoted by CC contributed to the maintenance of soil quality and increases in the leaf nutrient concentrations of soybeans. The cultivation of millet, ‘Tanzania’, ‘Massai’, cowpea, and C. juncea increased the soybean yield. Cover crops improved soil fertility while increasing soybean productivity, thus being an effective strategy for the achievement of sustainable soybean production. Full article
Show Figures

Figure 1

20 pages, 14288 KB  
Article
Effects of Nitrogen Application on Crop Production and Nitrogen Use in Rice–Wheat Rotation
by Xiaohu Liu, Yulin Yang, Baohan Wu, Chenyang Lv, Huanhe Wei, Pinglei Gao, Hongcheng Zhang, Qigen Dai and Yinglong Chen
Agronomy 2025, 15(5), 1047; https://doi.org/10.3390/agronomy15051047 - 26 Apr 2025
Cited by 1 | Viewed by 1501
Abstract
In this study, a combined localization experiment was performed on different nitrogen application rates in rice–wheat rotation. Rice cultivar Nanjing 5718 and wheat variety Yangmai 25 were employed in this two-season study, with six and five distinct nitrogen rates designed during the rice [...] Read more.
In this study, a combined localization experiment was performed on different nitrogen application rates in rice–wheat rotation. Rice cultivar Nanjing 5718 and wheat variety Yangmai 25 were employed in this two-season study, with six and five distinct nitrogen rates designed during the rice and wheat growing seasons, respectively. Thus, a total of 30 N rate combinations were formed across the two seasons. Our findings indicate that when current-season N inputs ranged from 0 to 240 kg ha−1, residual N from the preceding season contributed significantly to yield improvement (5.58–18.96% increase) for subsequent crops, primarily through enhanced panicle formation and the number of grains per spike. Conversely, high current-season N rates (360–420 kg ha−1) lead to reduced yields (4.61–5.81%) in the following cropping cycle under identical N management practices. Maximizing annual crop production was achieved with a combined N regimen of 264.63 kg ha−1 (rice) and 254.89 kg ha−1 (wheat), yielding 14.21 t ha−1. Notably, current-season N levels exhibited significant correlations with starch and protein content in both rice and wheat, whereas previous-season N application showed no comparable relationships. Furthermore, soil N storage remained stable, and the highest N use efficiency was observed under the total annual N input of 547.7 kg ha−1 (rice + wheat). Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

Back to TopTop