Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (81)

Search Parameters:
Keywords = powder mould

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2947 KB  
Article
Development of Biodegradable Cups from Corn and Fruit Processing Waste and Its Characterization: A Sustainable Approach
by Sangram S. Wandhekar, Rajesh B. Kshirsagar, Surendra K. Sadawarte, Rinkesh A. Gosavi, Vaszko Gabor, Ayaz Mukarram Shaikh and Kovács Bela
Macromol 2025, 5(4), 53; https://doi.org/10.3390/macromol5040053 - 4 Nov 2025
Viewed by 542
Abstract
Single-use plastic cups and packaging materials pose severe environmental challenges due to their persistent nature and harmful impact on ecosystems and wildlife. Simultaneously, the indiscriminate disposal and burning of agricultural and food processing biomass contribute significantly to pollution. Among this biomass, waste generated [...] Read more.
Single-use plastic cups and packaging materials pose severe environmental challenges due to their persistent nature and harmful impact on ecosystems and wildlife. Simultaneously, the indiscriminate disposal and burning of agricultural and food processing biomass contribute significantly to pollution. Among this biomass, waste generated from corn and fruit processing is produced in substantial quantities and is rich in natural fibres, making it a potential source for developing biodegradable products. This study focuses on the development of biodegradable cups using corn cob powder, mango peel powder, and pineapple peel powder through hot-press compression and moulding technology. The formulation was optimized using response surface methodology, with independent variables, i.e., corn cob (20–40 g), mango peel (30–50 g), and pineapple peel (20–30 g). The responses evaluated including hardness, colour (L* value), and water-holding capacity. The model was fitted using a second-order polynomial equation. Optimum results were achieved with 34 g of corn cob, 40 g of mango peel, and 26 g of pineapple peel powder, yielding a maximum hardness of 2.41 kg, an L* value of 47.03, and a water-holding capacity of 18.25 min. The optimized samples further underwent characterization of physical properties, functional groups, lattice structure, surface morphology, and biodegradability. Colour parameters were recorded as L* = 47.03 ± 0.021, a* = 10.47 ± 0.041, and b* = 24.77 ± 0.032. Textural study revealed a hardness of 2.411 ± 0.063 and a fracturability of 2.635 ± 0.033. The developed biodegradable cup had a semicrystalline nature with a crystallinity index of 44.4%. Soil burial tests confirmed that the developed cups degraded completely within 30 days. These findings highlight the potential of corn and fruit processing waste for developing eco-friendly, biodegradable cups as sustainable alternatives to single-use plastics. Full article
Show Figures

Graphical abstract

25 pages, 6090 KB  
Article
Comparative Study of AlSi10Mg and 304 Stainless-Steel Fillers in PA12 Composites Manufactured Using Injection Moulding Process for Liners and Sleeve-Based Applications: Microstructure, Mechanical Properties, Thermal Stability, and Wear Behaviour
by Nabeel Maqsood, Bilal Islam, Karolis Stravinskas, Oleksandr Kapustynskyi, Romuald Petkevič, Alireza Shahidi and Genrik Mordas
Polymers 2025, 17(20), 2785; https://doi.org/10.3390/polym17202785 - 17 Oct 2025
Cited by 1 | Viewed by 439
Abstract
This study presents a comparative evaluation of injection-moulded PA12 composites reinforced with AlSi10Mg and 304 SS fillers, with emphasis on microstructure–property correlations linking powder morphology, mechanical performance, thermal stability, and tribological behaviour. Powder characterization revealed distinct morphologies—fine spherical AlSi10Mg particles (D50 ≈ 32 [...] Read more.
This study presents a comparative evaluation of injection-moulded PA12 composites reinforced with AlSi10Mg and 304 SS fillers, with emphasis on microstructure–property correlations linking powder morphology, mechanical performance, thermal stability, and tribological behaviour. Powder characterization revealed distinct morphologies—fine spherical AlSi10Mg particles (D50 ≈ 32 µm) dispersed uniformly in the matrix—while SS particles (D50 ≈ 245 µm) tended to agglomerate, leading to interfacial voids. Tensile testing showed that the elastic modulus of neat PA12 (0.95 GPa) increased by 20% and 28% with 20 wt% AlSi10Mg and SS, respectively. However, tensile strength decreased from 35.04 MPa (PA12) to 32.18 MPa (20 wt% AlSi10Mg) and 31.03 MPa (20 wt% 304 SS), consistent with stress concentrations around particle clusters. Hardness values remained nearly unchanged at 96–98 Shore D across all composites. Thermal analysis indicated that AlSi10Mg promoted crystallization, increasing crystallinity from 31% (PA12) to 34% and raising Tm by 2 °C. In contrast, 304 SS reduced crystallinity to 28% but significantly improved thermal stability, shifting Tonset from 405 °C (PA12) to 426 °C at 20 wt%. Tribological tests demonstrated substantial improvements: the coefficient of friction decreased from 0.42 (PA12) to 0.34 (AlSi10Mg) and 0.29 (304 SS), while wear rates dropped by 40% and 55%, respectively. SEM confirmed smoother worn surfaces in AlSi10Mg composites and abrasive grooves in 304 SS composites. The findings show that AlSi10Mg is advantageous for smoother surfaces and improved crystallinity, while SS enhances stiffness, wear resistance, and thermal endurance, providing design guidelines for PA12 composites in aerospace, automotive, and engineering applications. Full article
(This article belongs to the Special Issue Multifunctional Polymer Composite Materials, 2nd Edition)
Show Figures

Figure 1

25 pages, 4969 KB  
Article
Sustainable Approaches for Carbon Powder-Filled ABS: A Comparative Study of Injection Moulding and Fused Filament Fabrication Technologies
by Vojtech Senkerik, Ales Mizera, Pavel Stoklasek, Lucie Svacinova, Lovre Krstulovic-Opara, Michaela Karhankova, Lukas Miskarik, Petra Bagavac and Miroslav Manas
Polymers 2025, 17(19), 2593; https://doi.org/10.3390/polym17192593 - 25 Sep 2025
Viewed by 567
Abstract
The recycling of polymer composites remains a significant challenge due to both technical and economic obstacles. This study investigates the recycling potential of acrylonitrile butadiene styrene (ABS) composites filled with carbon powder (CP), employing injection moulding and fused filament fabrication (FFF) technologies. Laboratory-based [...] Read more.
The recycling of polymer composites remains a significant challenge due to both technical and economic obstacles. This study investigates the recycling potential of acrylonitrile butadiene styrene (ABS) composites filled with carbon powder (CP), employing injection moulding and fused filament fabrication (FFF) technologies. Laboratory-based experiments were conducted using ABS reinforced with 0.5, 1.0, and 1.5 wt.% CP to explore the tensile properties of mechanically recycled ABS+CP composites. The results indicate that CP addition positively influences tensile behaviour and that the ABS+CP composite maintains both tensile strength and stiffness after repeated processing. A concentration of 1.5 wt.% CP proved to be the optimal filler amount. The results for re-injection-moulded ABS + 1.5 wt.% CP demonstrate enhancements in tensile strength of approximately 3% and elastic modulus of approximately 15%, relative to virgin ABS. Similarly, such specimens reprocessed via FFF showed an average increase of 12% in tensile strength and of 27% in elastic modulus relative to virgin ABS across all three printing orientations (X, Y, and Z). These findings suggest improved interfacial adhesion and filler dispersion upon recycling. The study confirms the practical feasibility of ABS composite recycling and highlights their potential for structural and decorative use due to their appealing granite-like appearance. Full article
(This article belongs to the Special Issue 3D Printing and Molding Study in Polymeric Materials)
Show Figures

Figure 1

12 pages, 1290 KB  
Article
Aluminium Injection Mould Behaviour Using Additive Manufacturing and Surface Engineering
by Marcelo José de Lima, Jorge Luis Braz Medeiros, José de Souza, Carlos Otávio Damas Martins and Luciano Volcanoglo Biehl
Materials 2025, 18(17), 4216; https://doi.org/10.3390/ma18174216 - 8 Sep 2025
Viewed by 889
Abstract
This study evaluates the application of metal additive manufacturing—specifically the laser powder bed fusion (LPBF) process—for producing aluminium die-casting mould components, comparing 300-grade maraging steel inserts with conventional H13 tool steel. Efficient thermal management and mould durability are critical in aluminium injection moulding. [...] Read more.
This study evaluates the application of metal additive manufacturing—specifically the laser powder bed fusion (LPBF) process—for producing aluminium die-casting mould components, comparing 300-grade maraging steel inserts with conventional H13 tool steel. Efficient thermal management and mould durability are critical in aluminium injection moulding. Still, traditional machining limits the design of cooling channels, resulting in hot spots, accelerated wear, and a reduced service life. LPBF allows the fabrication of complex geometries, enabling conformal cooling channels to enhance thermal control. Component samples were manufactured using maraging steel via LPBF, machined to final dimensions, and subjected to duplex surface treatment (plasma nitriding + CrAlN PVD coating). Thermal performance, dimensional stability, mechanical properties, and wear resistance were experimentally assessed under conditions simulating industrial production. The results demonstrate that LPBF components with optimised cooling channels and surface engineering achieve higher thermal efficiency, an extended service life (up to 2.6×), improved hardness profiles (545 HV0.05 core, 1230 HV0.05 on nitrided surface and 2850 HV0.05 after PVD film deposition), and reduced maintenance frequencies compared to H13 inserts. The study confirms that additive manufacturing, combined with tailored surface treatments and optimised cooling design, overcomes the geometric and thermal limitations of conventional manufacturing, offering a reliable and productive solution for aluminium die-casting moulds. Full article
(This article belongs to the Special Issue 3D & 4D Printing in Engineering Applications, 2nd Edition)
Show Figures

Figure 1

23 pages, 5300 KB  
Article
Biodegradable Antioxidant Composites with Almond Skin Powder
by Irene Gil-Guillén, Idalina Gonçalves, Paula Ferreira, Chelo González-Martínez and Amparo Chiralt
Polymers 2025, 17(16), 2201; https://doi.org/10.3390/polym17162201 - 12 Aug 2025
Viewed by 704
Abstract
Almond skin (AS) from industrial almond peeling is considered an agri-food waste with adequate composition to obtain composite films for food packaging due to its richness in polysaccharides, proteins, and phenolic compounds. Composite films based on amorphous polylactic acid (PLA) or partially acetylated [...] Read more.
Almond skin (AS) from industrial almond peeling is considered an agri-food waste with adequate composition to obtain composite films for food packaging due to its richness in polysaccharides, proteins, and phenolic compounds. Composite films based on amorphous polylactic acid (PLA) or partially acetylated polyvinilalcohol (PVA) were obtained by melt blending and compression moulding, incorporating different ratios of defatted AS powder (0, 5, 10, and 15 wt.%). The filler was better integrated in the polar PVA matrix, where more interactions were detected with the filler compounds, affecting glass transition and crystallization of the polymer. The AS particles provided the films with the characteristic colour of the powder and strong UV light-blocking effect, while improving the oxygen barrier capacity of both polymeric matrices (24% in PLA with 15% AS and 42% in PVA with 10% AS). The water vapour permeability increased in PLA (by 192% at 15% AS), but decreased in PVA films, especially with low AS content (by 19% with 5% particles). The filler also provided the PLA and PVA films with antioxidant properties due to its phenolic richness, improving the oxygen barrier capacity of the materials and delaying the unsaturated oil oxidation. This was reflected in the lower peroxide and conjugated dienes and trienes values of the sunflower oil packaged in single-dose bags of the different materials. The high oxygen barrier capacity of the PVA bags mainly controlled the preservation of the oil, which made the effect of the antioxidant AS powder less noticeable. Full article
Show Figures

Graphical abstract

16 pages, 8792 KB  
Article
Application of a 3D-Printed Part with Conformal Cooling in High-Pressure Die Casting Mould and Evaluation of Stress State During Exploitation
by Marcin Małysza, Robert Żuczek, Dorota Wilk-Kołodziejczyk, Krzysztof Jaśkowiec, Adam Bitka, Mirosław Głowacki, Łukasz Zięba and Stanisław Pysz
Materials 2024, 17(23), 5988; https://doi.org/10.3390/ma17235988 - 6 Dec 2024
Cited by 2 | Viewed by 1907
Abstract
The article addresses stress formation in the structural 3D-printed elements of a high-pressure die casting die mould used for production of aluminum castings. The 3D-printed elements with conformal cooling are manufactured of 18Ni300 powder. Initial numerical calculations were performed on a test die [...] Read more.
The article addresses stress formation in the structural 3D-printed elements of a high-pressure die casting die mould used for production of aluminum castings. The 3D-printed elements with conformal cooling are manufactured of 18Ni300 powder. Initial numerical calculations were performed on a test die mould made of standard steel X40CrMoV5 to determine temperature distribution and stress state, providing a baseline for comparing 3D-printed 18Ni300 parts. A database for 18Ni300 material was developed, including optimal heat treatment parameters: aged at 560 °C for 8 h. The resulting tensile strength of approximately ~1600 MPa, yield strength 1550 MPa, and elongation 6–7%, with properties temperature-dependent from 20 °C to 600 °C. Results show that conformal cooling increases stress gradients, highlighting the demands on fatigue strength at elevated temperatures. The study revealed that the heat treatment significantly influences the final properties, with tensile strengths of 1400–2000 MPa and elongation from 1 to 8%. While the heat treatment has a greater impact on the mechanical properties than the printing parameters, optimizing the printing settings remains crucial for ensuring density and quality in the die moulds under cyclic loads. Full article
Show Figures

Figure 1

22 pages, 7689 KB  
Article
Influence of SS316L Nanoparticles on the Sintered Properties of Two-Component Micro-Powder Injection Moulded Bimodal SS316L/Zirconia Bi-Materials
by Al Basir, Abu Bakar Sulong, Norhamidi Muhamad, Afifah Z. Juri, Nashrah Hani Jamadon, Farhana Mohd Foudzi, Nabilah Afiqah Mohd Radzuan and Kambiz Rashidi
Materials 2024, 17(22), 5536; https://doi.org/10.3390/ma17225536 - 13 Nov 2024
Viewed by 1386
Abstract
Two-component micro-powder injection moulding (2C-μPIM) is a prospective approach for fabricating bi-material micro-components of stainless steel 316L (SS316L) and 3 mol% yttria-stabilised zirconia (3YSZ) at an appealing cost. However, the fundamental challenge lies in preventing the formation of large-scale cracks at the interface [...] Read more.
Two-component micro-powder injection moulding (2C-μPIM) is a prospective approach for fabricating bi-material micro-components of stainless steel 316L (SS316L) and 3 mol% yttria-stabilised zirconia (3YSZ) at an appealing cost. However, the fundamental challenge lies in preventing the formation of large-scale cracks at the interface of two different materials during sintering. This study investigated how SS316L nanoparticles in bimodally configured SS316L powder that incorporated both nanoparticles and microparticles influenced the sintering of 2C-μPIM-processed miniature bi-materials made of bimodal SS316L and 3YSZ. In this study, feedstocks were developed by integrating monomodal (micro-sized) SS316L powder, three types of nano/micro-bimodal SS316L powders, and 3YSZ powder individually with palm stearin and low-density polyethylene binders. The results indicated that increasing the SS316L nanoparticle content to 45 vol.% caused a 19.5% increase in the critical powder loading in the bimodal SS316L powder as compared to that in the monomodal SS316L powder. The addition of SS316L nanoparticles increased the relative density and hardness of the sintered bi-materials, with the maximum values obtained being 96.8% and 1156.8 HV, respectively. Field emission scanning electron microscopy investigations revealed that adding 15 vol.% and 30 vol.% SS316L nanoparticle contents reduced interface cracks in bi-materials significantly, while 45 vol.% resulted in a crack-free interface. Full article
(This article belongs to the Special Issue Advances in Materials Processing (3rd Edition))
Show Figures

Figure 1

15 pages, 2526 KB  
Article
Elaboration and Characterization of Electrodes from Robinia pseudoacacia and Azadirachta indica Charcoal Powder with Coconut Bio-Pitch as a Binder
by Epiphane Zingbe, Damgou Mani Kongnine, Bienvenu M. Agbomahena, Pali Kpelou and Essowè Mouzou
Materials 2024, 17(21), 5156; https://doi.org/10.3390/ma17215156 - 23 Oct 2024
Cited by 1 | Viewed by 1264
Abstract
Carbon-based electrodes have recently been most widely used in P-MFC due to their desirable properties such as biocompatibility, chemical stability, affordable price, corrosion resistance, and ease of regeneration. In general, carbon-based electrodes, particularly graphite, are produced using a complex process based on petroleum [...] Read more.
Carbon-based electrodes have recently been most widely used in P-MFC due to their desirable properties such as biocompatibility, chemical stability, affordable price, corrosion resistance, and ease of regeneration. In general, carbon-based electrodes, particularly graphite, are produced using a complex process based on petroleum derivatives at very high temperatures. This study aims to produce electrodes from bio-pitch and charcoal powder as an alternative to graphite electrodes. The carbons used to manufacture the electrodes were obtained by the carbonisation of Robinia pseudoacacia and Azadirachta indica wood. These carbons were pulverised, sieved to 50 µm, and used as the raw materials for electrode manufacturing. The binder used was bio-pitch derived from coconut shells as the raw materials. The density and coking value of the bio-pitch revealed its potential as a good alternative to coal-tar pitch for electrode manufacturing. The electrodes were made by mixing 66.50% of each carbon powder and 33.50% of bio-pitch. The resulting mixture was moulded into a cylindrical tube 8 mm in diameter and 80 mm in length. The raw electrodes obtained were subjected to heat treatment at 800 °C or 1000 °C in an inert medium. The electrical resistivity obtained by the four-point method showed that N1000 has an electrical resistivity at least five times lower than all the electrodes developed and two times higher than that of G. Fourier-transform infrared spectroscopy (FTIR) was used to determine the compositional features of the samples and their surface roughness was characterised by atomic force microscopy (AFM). Charge transfer was determined by electrical impedance spectroscopy (EIS). The FTIR of the electrodes showed that N1000 has a spectrum that is more similar to that of G compared to the others. The EIS showed the high ionic mobility of the ions and therefore that N1000 has a higher charge transfer compared to G and the others. AFM analysis revealed that N1000 had the highest surface roughness in this study. Full article
(This article belongs to the Collection Advanced Biomass-Derived Carbon Materials)
Show Figures

Figure 1

14 pages, 5184 KB  
Article
Sustainable Composites from Waste Polypropylene Added with Thermoset Composite Waste or Recovered Carbon Fibres
by Ehsan Zolfaghari, Giulia Infurna, Sabina Alessi, Clelia Dispenza and Nadka Tz. Dintcheva
Polymers 2024, 16(20), 2922; https://doi.org/10.3390/polym16202922 - 18 Oct 2024
Cited by 3 | Viewed by 1902
Abstract
In order to limit the ever-increasing consumption of new resources for material formulations, regulations and legislation require us to move from a linear to a circular economy and to find efficient ways to recycle, reuse and recover materials. Taking into account the principles [...] Read more.
In order to limit the ever-increasing consumption of new resources for material formulations, regulations and legislation require us to move from a linear to a circular economy and to find efficient ways to recycle, reuse and recover materials. Taking into account the principles of material circularity and waste reuse, this research study aims to produce thermoplastic composites using two types of industrial waste from neighbouring companies, namely waste polypropylene (wPP) from household production and carbon-fibre-reinforced epoxy composite scrap from a pultrusion company. The industrial scrap of the carbon-fibre-reinforced epoxy composites was either machined/ground to powder (pCFRC) and used directly as a reinforcement agent or subjected to a chemical digestion process to recover the carbon fibres (rCFs). Both pCFRC and rCF, at different weight ratios, were melt-blended with wPP. Prior to melt blending, both pCFRC and rCF were analysed for morphology by scanning electron microscopy (SEM). The pCFRC powder contains epoxy resin fragments with spherical to ellipsoidal shape and carbon fibre fragments. The rCFs are clean from the matrix, but they are slightly thicker and corrugated after the matrix digestion. Further, the morphologies of wPP/pCFRC and wPP/rCF were also investigated by SEM, while the thermal behaviour, i.e., transitions and changes in crystallinity, and thermal resistance were evaluated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), respectively. The strength of the interaction between the filler (i.e., pCFRC or rCF) and the wPP matrix and the processability of these composites were assessed by rheological studies. Finally, the mechanical properties of the systems were characterised by tensile tests, and as found, both pCFRC and rCF exert reinforcement effects, although better results were obtained using rCF. The wPP/pCFRC results are more heterogeneous than those of the wPP/rCF due to the presence of epoxy and carbon fibre fragments, and this heterogeneity could be considered responsible for the mechanical behaviour. Further, the presence of both pCFRC and rCF leads to a restriction of polymer chain mobility, which leads to an overall reduction in ductility. All the results obtained suggest that both pCFRC and rCF are good candidates as reinforcing fillers for wPP and that these complex systems could potentially be processed by injection or compression moulding. Full article
(This article belongs to the Special Issue Progress in Recycling of (Bio)Polymers and Composites, 2nd Edition)
Show Figures

Figure 1

17 pages, 15472 KB  
Article
Stabilization of Fish Protein-Based Adhesive by Reduction of Its Hygroscopicity
by Branka Mušič, Jaka Gašper Pečnik and Andreja Pondelak
Polymers 2024, 16(15), 2195; https://doi.org/10.3390/polym16152195 - 1 Aug 2024
Cited by 4 | Viewed by 2899
Abstract
Protein-based fish adhesives have historically been used in various bonding applications; however, due to the protein’s high affinity for water absorption, these adhesives become destabilized in high-moisture environments, resulting in reduced bondline strength and early failure. This limitation makes them unsuitable for industrial [...] Read more.
Protein-based fish adhesives have historically been used in various bonding applications; however, due to the protein’s high affinity for water absorption, these adhesives become destabilized in high-moisture environments, resulting in reduced bondline strength and early failure. This limitation makes them unsuitable for industrial applications with higher demands. To address this issue, water-insoluble raw powder materials such as iron, copper, or zeolite were incorporated into natural fish adhesives. In this study, the hygroscopicity, dry matter content, thermal analysis (TGA/DSC), FT-IR spectroscopy, surface tension measurements, vapour permeability, and scanning electron microscope (SEM) of the modified adhesives were determined. In addition, the bonding properties of the modified adhesives were evaluated by the tensile shear strength of the lap joints, and mould growth was visually inspected. The resulting modified protein-based adhesives demonstrated improved stability in high humidity environments. Enhancing the hygroscopic properties of protein-based fish adhesives has the potential to unlock new opportunities and applications, providing a healthier and more environmentally sustainable alternative to petroleum-based adhesives. Full article
(This article belongs to the Special Issue Degradation and Stabilization of Polymer Materials 2nd Edition)
Show Figures

Graphical abstract

21 pages, 8143 KB  
Article
Debinding of Yttria-Stabilised Zirconia/Bimodal Stainless Steel 316L Bi-Materials Produced through Two-Component Micro-Powder Injection Moulding
by Al Basir, Abu Bakar Sulong, Norhamidi Muhamad, Afifah Z. Juri, Nashrah Hani Jamadon, Farhana Mohd Foudzi and Nabilah Afiqah Mohd Radzuan
Polymers 2024, 16(13), 1831; https://doi.org/10.3390/polym16131831 - 27 Jun 2024
Viewed by 2852
Abstract
The fabrication of bi-material micro-components via two-component micro-powder injection moulding (2C-µPIM) from 3 mol% yttria-stabilised zirconia (3YSZ) and micro/nano bimodal stainless steel 316L (SS 316L) powders has received insufficient attention. Apart from this, retaining the bonding between ceramic and metal at different processing [...] Read more.
The fabrication of bi-material micro-components via two-component micro-powder injection moulding (2C-µPIM) from 3 mol% yttria-stabilised zirconia (3YSZ) and micro/nano bimodal stainless steel 316L (SS 316L) powders has received insufficient attention. Apart from this, retaining the bonding between ceramic and metal at different processing stages of 2C-µPIM is challenging. This study investigated the solvent and thermal debinding mechanisms of green bi-material micro-parts of 3YSZ and bimodal SS 316L without collapsing the ceramic/metal joining. In this research, feedstocks were prepared by integrating the powders individually with palm stearin and low-density polyethylene binders. The results demonstrated that during the solvent debinding process, the palm stearin removal rate in the bi-materials composed of 3YSZ and bimodally configured SS 316L feedstocks intensified with an increase in temperature. The establishment of interconnected pores in the solvent-debound components facilitated the thermal debinding process, which removed 99% of the binder system. Following sintering, the debound bi-materials exhibited a relative density of 95.3%. According to a study of the microstructures using field emission scanning electron microscopy, an adequate bond between 3YSZ and bimodal SS 316L was established in the micro-part after sintering. The bi-material sintered at 1350 °C had the highest hardness of 1017.4 HV along the joining region. Full article
(This article belongs to the Special Issue Molding Process of Polymers and Composites)
Show Figures

Figure 1

19 pages, 15081 KB  
Article
Production of Permanent Magnets from Recycled NdFeB Powder with Powder Extrusion Moulding
by Stefan Rathfelder, Stephan Schuschnigg, Christian Kukla, Clemens Holzer and Carlo Burkhardt
J. Manuf. Mater. Process. 2024, 8(2), 81; https://doi.org/10.3390/jmmp8020081 - 18 Apr 2024
Cited by 5 | Viewed by 6393
Abstract
In the last fifteen years, several groups have investigated metal injection moulding (MIM) of NdFeB powder to produce isotropic or anisotropic rare earth magnets of greater geometric complexity than that achieved by the conventional pressing and sintering approach. However, due to the powder’s [...] Read more.
In the last fifteen years, several groups have investigated metal injection moulding (MIM) of NdFeB powder to produce isotropic or anisotropic rare earth magnets of greater geometric complexity than that achieved by the conventional pressing and sintering approach. However, due to the powder’s high affinity for oxygen and carbon uptake, sufficient remanence and coercivity remains difficult. This article presents a novel approach to producing NdFeB magnets from recycled material using Powder Extrusion Moulding (PEM) in a continuous process. The process route uses powder obtained from recycling rare earth magnets through Hydrogen Processing of Magnetic Scrap (HPMS). This article presents the results of tailored powder processing, the production of mouldable feedstock based on a special binder system, and moulding with PEM to produce green and sintered parts. The magnetic properties and microstructures of debinded and sintered samples are presented and discussed, focusing on the influence of filling ratio and challenging processing conditions on interstitial content as well as density and magnetic properties. Full article
Show Figures

Figure 1

16 pages, 9080 KB  
Article
High-Quality Spherical Silver Alloy Powder for Laser Powder Bed Fusion Using Plasma Rotating Electrode Process
by Hao Li, Shenghuan Zhang, Qiaoyu Chen, Zhaoyang Du, Xingyu Chen, Xiaodan Chen, Shiyi Zhou, Shuwen Mei, Linda Ke, Qinglei Sun, Zuowei Yin, Jie Yin and Zheng Li
Micromachines 2024, 15(3), 396; https://doi.org/10.3390/mi15030396 - 14 Mar 2024
Cited by 8 | Viewed by 3053
Abstract
The plasma rotating electrode process (PREP) is an ideal method for the preparation of metal powders such as nickel-based, titanium-based, and iron-based alloys due to its low material loss and good degree of sphericity. However, the preparation of silver alloy powder by PREP [...] Read more.
The plasma rotating electrode process (PREP) is an ideal method for the preparation of metal powders such as nickel-based, titanium-based, and iron-based alloys due to its low material loss and good degree of sphericity. However, the preparation of silver alloy powder by PREP remains challenging. The low hardness of the mould casting silver alloy leads to the bending of the electrode rod when subjected to high-speed rotation during PREP. The mould casting silver electrode rod can only be used in low-speed rotation, which has a negative effect on particle refinement. This study employed continuous casting (CC) to improve the surface hardness of S800 Ag (30.30% higher than mould casting), which enables a high rotation speed of up to 37,000 revolutions per minute, and silver alloy powder with an average sphericity of 0.98 (5.56% higher than gas atomisation) and a sphericity ratio of 97.67% (36.28% higher than gas atomisation) has been successfully prepared. The dense S800 Ag was successfully fabricated by laser powder bed fusion (LPBF), which proved the feasibility of preparing high-quality powder by the “CC + PREP” method. The samples fabricated by LPBF have a Vickers hardness of up to 271.20 HV (3.66 times that of mould casting), leading to a notable enhancement in the strength of S800 Ag. In comparison to GA, the S800 Ag powder prepared by “CC + PREP” exhibits greater sphericity, a higher sphericity ratio and less satellite powder, which lays the foundation for dense LPBF S800 Ag fabrication. Full article
(This article belongs to the Special Issue Advanced Micro- and Nano-Manufacturing Technologies)
Show Figures

Figure 1

14 pages, 1326 KB  
Article
Nutritional and Physico-Chemical Characteristics of Innovative Bars Enriched with Aronia melanocarpa By-Product Powder
by Bogdan Constantin Bratosin, Gheorghe-Adrian Martău, Călina Ciont, Floricuța Ranga, Elemér Simon, Katalin Szabo, Sorina Darjan, Bernadette-Emőke Teleky and Dan Cristian Vodnar
Appl. Sci. 2024, 14(6), 2338; https://doi.org/10.3390/app14062338 - 11 Mar 2024
Cited by 8 | Viewed by 3055
Abstract
In a quest to meet the rising demand for nutrient-rich products, this study delves into the realm of innovative bars enriched with Aronia melanocarpa by-product powder. By repurposing waste material from fruit pressing, the research unveils a sustainable approach to enhancing the health [...] Read more.
In a quest to meet the rising demand for nutrient-rich products, this study delves into the realm of innovative bars enriched with Aronia melanocarpa by-product powder. By repurposing waste material from fruit pressing, the research unveils a sustainable approach to enhancing the health profile of food products. Two variants of bars were used: one as a control and the other enriched with freeze-dried aronia by-product powder. Both bars had similar nutrient content, containing approximately 10% fibre, 12.20% protein, 20.51% fat, and 429–430 kcal calories. The investigation showcases a remarkable 61% increase in antioxidant activity in bars enriched with freeze-dried aronia powder compared to traditional bars. In vitro digestion tests demonstrated enhanced nutrient release in aronia powder-enriched bars. Moreover, a 70-day storage analysis demonstrated the microbiological stability of the bars, which is essential for their commercial viability (final total viable cell count 4.41 log10 CFU/g). Also, total fungi-yeast and moulds increased to 4.17 ± 0.131 log10 CFU/g for aronia bars and to 3.91 ± 0.107 log10 CFU/g for control bars after 70 days of storage. This collaborative research effort not only sheds light on the nutritional and physico–chemical characteristics of the innovative bars but also propels the development of functional food products with heightened antioxidant content and bioactive compounds. Full article
(This article belongs to the Special Issue Advanced Food Processing Technologies and Food Quality)
Show Figures

Figure 1

17 pages, 6040 KB  
Article
Design of Sustainable Aluminium-Based Feedstocks for Composite Extrusion Modelling (CEM)
by José L. Aguilar-García, Eduardo Tabares Lorenzo, Antonia Jimenez-Morales and Elisa M. Ruíz-Navas
Materials 2024, 17(5), 1093; https://doi.org/10.3390/ma17051093 - 27 Feb 2024
Cited by 2 | Viewed by 1625
Abstract
Additive manufacturing (AM) has become one of the most promising manufacturing techniques in recent years due to the geometric design freedom that this technology offers. The main objective of this study is to explore Composite Extrusion Modelling (CEM) with aluminium as an alternative [...] Read more.
Additive manufacturing (AM) has become one of the most promising manufacturing techniques in recent years due to the geometric design freedom that this technology offers. The main objective of this study is to explore Composite Extrusion Modelling (CEM) with aluminium as an alternative processing route for aluminium alloys. This process allows for working with pellets that are deposited directly, layer by layer. The aim of the technique is to obtain aluminium alloy samples for industrial applications with high precision, without defects, and which are processed in an environmentally friendly manner. For this purpose, an initial and preliminary study using powder injection moulding (PIM), necessary for the production of samples, has been carried out. The first challenge was the design of a sustainable aluminium-based feedstock. The powder injection moulding technique was used as a first approach to optimise the properties of the feedstock through a combination of water-soluble polymer, polyethyleneglycol (PEG), and cellulose acetate butyrate (CAB) wich produces low CO2 emissions. To do this, a microstructural characterisation was carried out and the critical solid loading and rheological properties of the feedstocks were studied. Furthermore, the debinding conditions and sintering parameters were adjusted in order to obtain samples with the required density for the following processes and with high geometrical accuracy. In the same way, the printing parameters were optimised for proper material deposition. Full article
Show Figures

Figure 1

Back to TopTop