Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (336)

Search Parameters:
Keywords = potting mix

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1471 KiB  
Article
Impact of Basalt Rock Powder on Ryegrass Growth and Nutrition on Sandy and Loamy Acid Soils
by Charles Desmalles, Lionel Jordan-Meille, Javier Hernandez, Cathy L. Thomas, Sarah Dunham, Feifei Deng, Steve P. McGrath and Stephan M. Haefele
Agronomy 2025, 15(8), 1791; https://doi.org/10.3390/agronomy15081791 - 25 Jul 2025
Viewed by 453
Abstract
Enhanced weathering of silicate rocks in agriculture is an option for atmospheric CO2 removal and fertility improvement. The objective of our work is to characterise some of the agricultural consequences of a basaltic powder amendment on soil-crop systems. Two doses of basalt [...] Read more.
Enhanced weathering of silicate rocks in agriculture is an option for atmospheric CO2 removal and fertility improvement. The objective of our work is to characterise some of the agricultural consequences of a basaltic powder amendment on soil-crop systems. Two doses of basalt (80 and 160 t ha−1) were applied to two types of slightly acid soils (sandy or silty clayey), derived from long-term trials at Bordeaux (INRAE, France) and Rothamsted Research (England), respectively. For each soil, half of the pots were planted with ryegrass; the other half were left bare. Thus, the experiment had twelve treatments with four replications per treatment. Soil pH increased with the addition of basalt (+0.8 unit), with a 5% equivalence of that of reactive chalk. The basalt contained macro- and micronutrients. Some cations extractable in the basalt before being mixed to the soil became more extractable with increased weathering, independent of plant cover. Plant uptake generally increased for macronutrients and decreased for micronutrients, due to increased stock (macro) and reduced availability (micronutrients and P), related to pH increases. K supplied in the basalt was responsible for a significant increase in plant yield on the sandy soil, linked to an average basalt K utilisation efficiency of 33%. Our general conclusion is that rock dust applications have to be re-evaluated at each site with differing soil characteristics. Full article
(This article belongs to the Section Grassland and Pasture Science)
Show Figures

Figure 1

22 pages, 3974 KiB  
Article
Selection for Low-Nitrogen Tolerance Using Multi-Trait Genotype Ideotype Distance Index (MGIDI) in Poplar Varieties
by Jinhong Niu, Dongxu Jia, Zhenyuan Zhou, Mingrong Cao, Chenggong Liu, Qinjun Huang and Jinhua Li
Agronomy 2025, 15(7), 1754; https://doi.org/10.3390/agronomy15071754 - 21 Jul 2025
Viewed by 275
Abstract
The screening of poplar varieties that demonstrate tolerance to low nitrogen (N) represents a promising strategy for improving nitrogen-use efficiency in trees. Such an approach could reduce reliance on N fertilizers while mitigating environmental pollution associated with their cultivation. In this study, a [...] Read more.
The screening of poplar varieties that demonstrate tolerance to low nitrogen (N) represents a promising strategy for improving nitrogen-use efficiency in trees. Such an approach could reduce reliance on N fertilizers while mitigating environmental pollution associated with their cultivation. In this study, a total of 87 poplar varieties were evaluated in a controlled greenhouse pot experiment. Under both low-nitrogen (LN) and normal-nitrogen (NN) conditions, 18 traits spanning four categories—growth performance, leaf morphology, chlorophyll fluorescence, and N isotope parameters were measured. For 13 of these traits (growth, leaf morphology, chlorophyll fluorescence), genetic variation and parameters, including genotypic values, were analyzed using best linear unbiased prediction (BLUP) within a linear mixed model (LMM). LN tolerance of tested poplar varieties was comprehensively assessed with three MGIDI strategies by integrating means, BLUPs, and low-nitrogen tolerance coefficient (LNindex) to rank poplar varieties. The results exhibited highly significant differences across all traits between LN and NN experiments, as well as among varieties. LN stress markedly inhibited growth, altered leaf morphology, and reduced chlorophyll fluorescence parameters in young poplar plants. Among the selection strategies, the MGIDI_LNindex approach demonstrated the highest selection differential percent (SD% = 10.5–35.23%). Using a selection intensity (SI) of 20%, we systematically identified 17 superior genotypes across all three strategies. In a thorough, comprehensive MGIDI-based evaluation, these varieties exhibited exceptional adaptability and stability under LN stress. The selected genotypes represent valuable genetic resources for developing improved poplar cultivars with enhanced low-nitrogen tolerance. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

17 pages, 8540 KiB  
Article
Effects of N-P-K Ratio in Root Nutrient Solutions on Ectomycorrhizal Formation and Seedling Growth of Pinus armandii Inoculated with Tuber indicum
by Li Huang, Rui Wang, Fuqiang Yu, Ruilong Liu, Chenxin He, Lanlan Huang, Shimei Yang, Dong Liu and Shanping Wan
Agronomy 2025, 15(7), 1749; https://doi.org/10.3390/agronomy15071749 - 20 Jul 2025
Viewed by 344
Abstract
Ectomycorrhizal symbiosis is a cornerstone of ecosystem health, facilitating nutrient uptake, stress tolerance, and biodiversity maintenance in trees. Optimizing Pinus armandiiTuber indicum mycorrhizal synthesis enhances the ecological stability of coniferous forests while supporting high-value truffle cultivation. This study conducted a pot [...] Read more.
Ectomycorrhizal symbiosis is a cornerstone of ecosystem health, facilitating nutrient uptake, stress tolerance, and biodiversity maintenance in trees. Optimizing Pinus armandiiTuber indicum mycorrhizal synthesis enhances the ecological stability of coniferous forests while supporting high-value truffle cultivation. This study conducted a pot experiment to compare the effects of three root nutrient regulations—Aolu 318S (containing N-P2O5-K2O in a ratio of 15-9-11 (w/w%)), Aolu 328S (11-11-18), and Youguduo (19-19-19)—on the mycorrhizal synthesis of P. armandiiT. indicum. The results showed that root nutrient supplementation significantly improved the seedling crown, plant height, ground diameter, biomass dry weight, and mycorrhizal infection rate of both the control and mycorrhizal seedlings, with the slow-release fertilizers Aolu 318S and 328S outperforming the quick-release fertilizer Youguduo. The suitable substrate composition in this experiment was as follows: pH 6.53–6.86, organic matter content 43.25–43.49 g/kg, alkali-hydrolyzable nitrogen 89.25–90.3 mg/kg, available phosphorus 83.69–87.32 mg/kg, available potassium 361.5–364.65 mg/kg, exchangeable magnesium 1.17–1.57 mg/kg, and available iron 33.06–37.3 mg/kg. It is recommended to mix the Aolu 318S and 328S solid fertilizers evenly into the substrate, with a recommended dosage of 2 g per plant. These results shed light on the pivotal role of a precise N-P-K ratio regulation in fostering sustainable ectomycorrhizal symbiosis, offering a novel paradigm for integrating nutrient management with mycorrhizal biotechnology to enhance forest restoration efficiency in arid ecosystems. Full article
Show Figures

Figure 1

13 pages, 710 KiB  
Article
A Phytoremediation Efficiency Assessment of Cadmium (Cd)-Contaminated Soils in the Three Gorges Reservoir Area, China
by Yinhua Guo, Wei Liu, Lixiong Zeng, Liwen Qiu, Di Wu, Hao Wen, Rui Yuan, Dingjun Zhang, Rongbin Tang and Zhan Chen
Plants 2025, 14(14), 2202; https://doi.org/10.3390/plants14142202 - 16 Jul 2025
Viewed by 301
Abstract
To investigate the remediation efficiency of different plant species on cadmium (Cd)-contaminated soil, this study conducted a pot experiment with two woody species (Populu adenopoda and Salix babylonica) and two herbaceous species (Artemisia argyi and Amaranthus hypochondriacus). Soils were [...] Read more.
To investigate the remediation efficiency of different plant species on cadmium (Cd)-contaminated soil, this study conducted a pot experiment with two woody species (Populu adenopoda and Salix babylonica) and two herbaceous species (Artemisia argyi and Amaranthus hypochondriacus). Soils were collected from an abandoned coal mine and adjacent pristine natural areas within the dam-adjacent section of the Three Gorges Reservoir Area to establish three soil treatment groups: unpolluted soil (T1, 0.18 mg·kg−1 Cd), a 1:1 mixture of contaminated and unpolluted soil (T2, 0.35 mg·kg−1 Cd), and contaminated coal mine soil (T3, 0.54 mg·kg−1 Cd). This study aimed to investigate the growth status of plants, Cd accumulation and translocation characteristics, and the relationship between them and soil environmental factors. Woody plants exhibited significant advantages in aboveground biomass accumulation. Under T3 treatment, the Cd extraction amount of S. babylonica (224.93 mg) increased by about 36 times compared to T1, and the extraction efficiency (6.42%) was significantly higher than other species. Among the herbaceous species, A. argyi showed the maximum Cd extraction amount (66.26 mg) and extraction efficiency (3.11%) during T2 treatment. While A. hypochondriacus exhibited a trend of increasing extraction amount but decreasing extraction efficiency with increasing concentration. With the exception of S. babylonica under T1 treatment (BCF = 0.78), the bioconcentration factor was greater than 1 in both woody (BCF = 1.39–6.42) and herbaceous species (BCF = 1.39–3.11). However, herbaceous plants demonstrated significantly higher translocation factors (TF = 1.58–3.43) compared to woody species (TF = 0.31–0.87). There was a significant negative correlation between aboveground phosphorus (P) content and root Cd (p < 0.05), while underground nitrogen (N) content was positively correlated to aboveground Cd content (p < 0.05). Soil total N and available P were significantly positively correlated with plant Cd absorption, whereas total potassium (K) showed a negative correlation. This study demonstrated that woody plants can achieve long-term remediation through biomass advantages, while herbaceous plants, with their high transfer efficiency, are suitable for short-term rotation. In the future, it is suggested to conduct a mixed planting model of woody and herbaceous plants to remediate Cd-contaminated soils in the tailing areas of reservoir areas. This would synergistically leverage the dual advantages of root retention and aboveground removal, enhancing remediation efficiency. Concurrent optimization of soil nutrient management would further improve the Cd remediation efficiency of plants. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

16 pages, 728 KiB  
Article
Agronomic Use of Urban Composts from Decentralized Composting Scenarios: Implications for a Horticultural Crop and Soil Properties
by Cristina Álvarez-Alonso, María Dolores Pérez-Murcia, Natalia Manrique, F. Javier Andreu-Rodríguez, Miguel Ángel Mira-Urios, Ignacio Irigoyen, Marga López, Luciano Orden, Raúl Moral, Isabel Nogués and María Ángeles Bustamante
Agronomy 2025, 15(7), 1520; https://doi.org/10.3390/agronomy15071520 - 22 Jun 2025
Viewed by 493
Abstract
Circular economy in the context of municipal organic waste management has boosted the emergence of novel composting scenarios, such as community composting and decentralized urban composting in small installations, which favors localized management and valorization of organic waste streams. However, there is little [...] Read more.
Circular economy in the context of municipal organic waste management has boosted the emergence of novel composting scenarios, such as community composting and decentralized urban composting in small installations, which favors localized management and valorization of organic waste streams. However, there is little information about the agronomic use of the composts obtained from these new organic waste management systems as an alternative for inorganic fertilization in crop production. In this work, municipal solid waste-derived composts from two decentralized composting scenarios (CM1 and CM2 from community composting, and CM3 and CM4 from decentralized urban small-scale composting plants) were applied and mixed in the top layer of a calcareous clayey-loam soil to assess their effects as alternative substitutes for conventional soil inorganic fertilization (IN) during two successive cultivation cycles of lettuce (Lactuca sativa L.) grown in pots with the amended soils. These treatments were also compared with an organic waste (goat–rabbit manure, E) and a control treatment without fertilization (B). The effects of the fertilizing treatments on the crop yield and quality, as well as on the properties of the soil considered were studied. In general, the application of the different composts did not produce negative effects on lettuce yield and quality. The compost-derived fertilization showed similar lettuce yields compared to the inorganic and manure-derived fertilizations (IN and E, respectively), and higher yields than the soil without amendment (B), with increases in the initial yield values of B, for the first cycle from 34.2% for CM1 to 53.8% for CM3, and from 20.3% for CM3 to 92.4% for CM1 in the second cycle. Furthermore, the organically amended soils showed a better crop development, obtaining higher values than the control treatment in the parameters studied. In addition, the incorporation of the organic treatments improved the soil characteristics, leading to 1.3 and 1.2 times higher organic matter contents in the soils with CM2 and in the soils with CM1, CM3, and E, respectively, compared to the control soil without fertilizing treatment (B), and 2.0 and 1.8 times greater organic matter contents, respectively, compared to soil with inorganic fertilization (IN). Therefore, the use of municipal solid waste-derived composts from these new organic waste management systems, such as the decentralized composting scenarios studied (community composting and urban decentralized small-scale composting plants), is presented, not only as a sustainable valorization method, but also as an alternative for the use of inorganic fertilizers in lettuce cultivation, while enhancing soil properties, contributing to increasing the circularity of agriculture. Full article
Show Figures

Graphical abstract

31 pages, 2678 KiB  
Article
Effect of Biochar, Hydrogel and Soil Liming on Nutrient Leaching in a Coarse-Textured Soil
by Joba Purkaystha, Shiv O. Prasher, Muhammad T. Afzal, Jaskaran Dhiman and Christopher Nzediegwu
Sustainability 2025, 17(12), 5396; https://doi.org/10.3390/su17125396 - 11 Jun 2025
Viewed by 631
Abstract
Nutrient leaching from agricultural fields can degrade soil fertility and groundwater quality, especially in coarse-textured soils. Use of biochar, lime, and hydrogel in these soils can enhance nutrient and water use efficiencies, thus reducing water pollution, and aiding in sustainable agricultural production. Amending [...] Read more.
Nutrient leaching from agricultural fields can degrade soil fertility and groundwater quality, especially in coarse-textured soils. Use of biochar, lime, and hydrogel in these soils can enhance nutrient and water use efficiencies, thus reducing water pollution, and aiding in sustainable agricultural production. Amending soils with biochar, lime, hydrogel, or their combinations may reduce leaching, but the effects of single versus combined amendments remain unclear. A three-year pot experiment under field conditions was conducted on a loamy sand soil to enhance water and nutrient retention capacity of this soil. Soil samples were mixed with all possible combinations of 1% biochar (B), l% lime (L), and 0.5% hydrogel (H), i.e., BL, BH, HL, and BHL. The amendments were arranged in a randomized complete block design with four blocks. The results showed that compared to control, amendments B, H, BH, HL, and BHL significantly decreased (p ≤ 0.05) nitrate-N leaching per unit biomass by 58–88%, and L, H, BH, BHL significantly reduced (p ≤ 0.05) orthophosphate-P leaching per unit biomass by 34–98%. Compared to the control, the marketable yield significantly increased (p ≤ 0.05) by 24–38% under BH, HL, and BHL in 2019, and by 17–52% under amendments B, L, H, BL, BH, HL, and BHL in 2020. These results were not seen in the first year due to soil conditioning for biochar and lime. Amendments H, BH, HL, and BHL show potential to improve water use efficiency, reduce nutrient leaching, and support sustainable crop production. Full article
Show Figures

Graphical abstract

20 pages, 5439 KiB  
Article
The Efficient Degradation of Oxytetracycline in Wastewater Using Fe/Mn-Modified Magnetic Oak Biochar: Pathways and Mechanistic Investigation
by Yujie Zhou, Yuzhe Fu, Xiaoxue Niu, Bohan Wu, Xinghan Liu, Fu Hao, Zichuan Ma, Hao Cai and Yuheng Liu
Magnetochemistry 2025, 11(6), 49; https://doi.org/10.3390/magnetochemistry11060049 - 6 Jun 2025
Cited by 1 | Viewed by 1117
Abstract
Antibiotic resistance has been recognized as a global threat to human health. Therefore, it is urgent to develop effective strategies to address the contamination of water environments caused by antibiotics. In this study, Fe/Mn bimetallic-modified biochar (FMBC) was synthesized through a one-pot oxidation/reduction-hydrothermal [...] Read more.
Antibiotic resistance has been recognized as a global threat to human health. Therefore, it is urgent to develop effective strategies to address the contamination of water environments caused by antibiotics. In this study, Fe/Mn bimetallic-modified biochar (FMBC) was synthesized through a one-pot oxidation/reduction-hydrothermal co-precipitation method, demonstrating an exceptional photocatalytic-Fenton degradation performance for oxytetracycline (OTC). Characterization techniques including FTIR, SEM, XRD, VSM, and N2 adsorption–desorption analysis confirmed that the Fe/Mn bimetals were successfully loaded onto the surface of biochar in the form of Fe3O4 and MnFe2O4 mixed crystals and exhibited favorable paramagnetic properties that facilitate magnetic recovery. A key innovation is the utilization of biochar’s inherent phenol/quinone structures as reactive sites and electron transfer mediators, which synergistically interact with the loaded bimetallic oxides to significantly enhance the generation of highly reactive ·OH radicals, thereby boosting catalytic activity. Even after five recycling cycles, the material exhibited minimal changes in degradation efficiency and bimetallic crystal structure, indicating its notable stability and reusability. The photocatalytic degradation experiment conducted in a Fenton-like reaction system demonstrates that, under the conditions of pH 4.0, a H2O2 concentration of 5.16 mmol/L, a catalyst dosage of 0.20 g/L, and an OTC concentration of 100 mg/L, the optimal degradation efficiency of 98.3% can be achieved. Additionally, the pseudo-first-order kinetic rate constant was determined to be 4.88 min−1. Furthermore, this study elucidated the detailed degradation mechanisms, pathways, and the influence of various ions, providing valuable theoretical insights and technical support for the degradation of antibiotics in real wastewater. Full article
(This article belongs to the Special Issue Applications of Magnetic Materials in Water Treatment)
Show Figures

Figure 1

20 pages, 1942 KiB  
Article
Physiological Responses and the Dust Retention Ability of Different Turfgrass Mixture Ratios Under Continuous Drought
by Junrui Wang, Haimei Li, Dehong Gong, Xiujun Liu, Bingqi Liu and Xiao Guo
Plants 2025, 14(11), 1667; https://doi.org/10.3390/plants14111667 - 30 May 2025
Viewed by 435
Abstract
Drought is one of the main environmental disturbances limiting the growth and production of turfgrass in China and around the world. To study the performance under drought conditions of different mixing ratios (Lolium perenne L., Festuca elata Keng., Poa pratensis L.), a [...] Read more.
Drought is one of the main environmental disturbances limiting the growth and production of turfgrass in China and around the world. To study the performance under drought conditions of different mixing ratios (Lolium perenne L., Festuca elata Keng., Poa pratensis L.), a water-controlled pot experiment was conducted. The mixing ratios used were 2:3:5, 2:6:2, and 2:2:6 for Lolium perenne, Festuca elata, and Poa pratensis, respectively. The relative water content (RWC), proline (Pro) content, and other physiological and ecological variables of three turfgrass monocultures and their three ratio mixtures (a total of six different treatments) were measured under drought as well as dust stress at various time points. The results revealed that, under drought stress, the dust retention performance of the mixing ratio treatments was better than the monocultures, with the best performance in the 2:6:2 mix and the worst in the Poa pratensis monoculture. Additionally, during the 21 days of drought stress, as time increased, the appearance quality (TQ) of the turfgrass gradually declined over time; its RWC gradually decreased; its chlorophyll (Chl) content, peroxidase (POD) activity, and superoxide dismutase (SOD) activity all showed a trend of initially increasing then decreasing; and its soluble sugar (Sol), malondialdehyde (MDA), and Pro content increased continuously. A comprehensive evaluation of physiological and ecological variables, using the membership function method, showed that the six types of turfgrass treatments ranked as follows (from strongest to weakest) in drought resistance: 2:6:2 mix > Festuca elata monoculture > 2:3:5 mix > 2:2:6 mix > Lolium perenne monoculture > Poa pratensis monoculture. The dust retention capability was assessed through quantitative measurements, and the ranking of dust retention amounts in descending order was as follows: Festuca elata > 2:6:2 mix > 2:2:6 mix > Poa pratensis > Lolium perenne > 2:3:5 mix. We conclude that, in practical applications, the degree of drought can be appropriately controlled within a certain range to achieve maximum dust retention benefits from turfgrass. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

13 pages, 907 KiB  
Article
Investigating Black Soldier Fly Larval (Hermetia illucens) Frass Applications as a Partial Peat Replacement and Liquid Fertilizer in Brassicaceae Crop Production
by Maria Y. Chavez, Armando Villa Ignacio, Joshua K. Craver and Jennifer Bousselot
Agrochemicals 2025, 4(2), 8; https://doi.org/10.3390/agrochemicals4020008 - 29 May 2025
Viewed by 741
Abstract
Insect frass is the left-over side stream from mass rearing insects as food and feed. Research indicates that black soldier fly, Hermetia illucens, larvae (BSFL) frass can improve the yield of leafy greens while also increasing nutrient uptake. Two studies evaluated the [...] Read more.
Insect frass is the left-over side stream from mass rearing insects as food and feed. Research indicates that black soldier fly, Hermetia illucens, larvae (BSFL) frass can improve the yield of leafy greens while also increasing nutrient uptake. Two studies evaluated the impact of BSFL frass on two Brassicaceae crops: kale (Brassica oleracea) and mustard (Sinapis alba). In Study 1, greenhouse potting mixes comprised of 10% BSFL frass produced kale and mustard fresh and dry weights, relative chlorophyll concentrations, and nitrogen concentration in plant tissues that were comparable to a 100% peat mix control. In mustard tissue, phosphorus and potassium concentrations were higher in the BSFL 10% treatment compared to the control. This provides further motive for incorporating frass into peat-based substrates to reduce peat consumption and extraction. In Study 2, Liquid BSFL frass tea was applied to kale in an outdoor container study. The frass tea only treatment produced the worst outcomes for yield. However, a mixture of frass tea and traditional fertilizer resulted in comparable yield to a control provided the same volume in solely fertilizer. With further research, frass tea could be supplemented to reduce conventional fertilizers. Full article
(This article belongs to the Section Fertilizers and Soil Improvement Agents)
Show Figures

Figure 1

22 pages, 2043 KiB  
Article
5′-Guanidino Xylofuranosyl Nucleosides as Novel Types of 5′-Functionalized Nucleosides with Biological Potential
by Jennifer Szilagyi, Tânia Moreira, Rafael Santana Nunes, Joana Silva, Celso Alves, Alice Martins, Rebeca Alvariño, Niels V. Heise, René Csuk and Nuno M. Xavier
Pharmaceuticals 2025, 18(5), 734; https://doi.org/10.3390/ph18050734 - 16 May 2025
Viewed by 723
Abstract
Background/Objectives: While various nucleoside and nucleotide analogs have been approved as anticancer and antiviral drugs, their limitations, including low bioavailability and chemotherapeutic resistance, encourage the development of novel structures. In this context, and motivated by our previous findings on bioactive 3′-O-substituted [...] Read more.
Background/Objectives: While various nucleoside and nucleotide analogs have been approved as anticancer and antiviral drugs, their limitations, including low bioavailability and chemotherapeutic resistance, encourage the development of novel structures. In this context, and motivated by our previous findings on bioactive 3′-O-substituted xylofuranosyl nucleosides and 5-guanidine xylofuranose derivatives, we present herein the synthesis and biological evaluation of 5′-guanidino furanosyl nucleosides comprising 6-chloropurine and uracil moieties and a 3-O-benzyl xylofuranosyl unit. Methods: The synthetic methodology was based on the N-glycosylation of a 5-azido 3-O-benzyl xylofuranosyl acetate donor with the silylated nucleobase and a subsequent one-pot sequential two-step protocol involving Staudinger reduction of the thus-obtained 5-azido uracil and N7/N9-linked purine nucleosides followed by guanidinylation with N,N′-bis(tert-butoxycarbonyl)-N′′-triflylguanidine. The molecules were evaluated for their anticancer and anti-neurodegenerative diseases potential. Results: 5′-Guanidino 6-chloropurine nucleosides revealed dual anticancer and butyrylcholinesterase (BChE)-inhibitory effects. Both N9/N7-linked nucleosides exhibited mixed-type and selective submicromolar/micromolar BChE inhibiton. The N9 regioisomer was the best inhibitor (Ki/Ki′ = 0.89 μM/2.96 μM), while showing low cytotoxicity to FL83B hepatocytes and no cytotoxicity to human neuroblastoma cells (SH-SY5Y). Moreover, the N9-linked nucleoside exhibited selective cytotoxicity to prostate cancer cells (DU-145; IC50 = 27.63 μM), while its N7 regioisomer was active against all cancer cells tested [DU-145, IC50 = 24.48 μM; colorectal adenocarcinoma (HCT-15, IC50 = 64.07 μM); and breast adenocarcinoma (MCF-7, IC50 = 43.67 μM)]. In turn, the 5′-guanidino uracil nucleoside displayed selective cytotoxicity to HCT-15 cells (IC50 = 76.02 μM) and also showed neuroprotective potential in a Parkinson’s disease SH-SY5Y cells’ damage model. The active molecules exhibited IC50 values close to or lower than those of standard drugs, and comparable, or not significant, neuro- and hepatotoxicity. Conclusions: These findings demonstrate the interest of combining guanidine moieties with nucleoside frameworks towards the search for new therapeutic agents. Full article
Show Figures

Graphical abstract

12 pages, 2023 KiB  
Article
Oligonuclear Manganese Complexes with Multiple Redox Properties for High-Contrast Electrochromism
by Yi-Ting Wu, Hao-Tian Deng, Li-Yi Zhang, Meng-Die Li, Feng-Rong Dai and Zhong-Ning Chen
Molecules 2025, 30(9), 2054; https://doi.org/10.3390/molecules30092054 - 5 May 2025
Viewed by 448
Abstract
This study is dedicated to the design of multiple redox-active oligonuclear manganese complexes supported with a bis(tetradentate) ligand (TPDP = 1,3-bis(bis(2-pyridinylmethyl)amino)-2-propanol) for high-contrast electrochromism based on the reversible redox process between Mn(II) (colorless) and Mn(III) (dark brown). Pentanuclear Mn5 complex 1 (colorless) [...] Read more.
This study is dedicated to the design of multiple redox-active oligonuclear manganese complexes supported with a bis(tetradentate) ligand (TPDP = 1,3-bis(bis(2-pyridinylmethyl)amino)-2-propanol) for high-contrast electrochromism based on the reversible redox process between Mn(II) (colorless) and Mn(III) (dark brown). Pentanuclear Mn5 complex 1 (colorless) was synthesized via a one-pot reaction of Mn2+ and TPDP, while tetranuclear Mn4 complex 2 (brown) was obtained through aerial oxidation of complex 1. Mn5 complex 1 features a central MnCl6 unit connected to two Mn2(μ-TPDP) fragments through μ3-Cl and μ-Cl, whereas Mn4 complex 2 adopts a symmetric tetranuclear structure with two mixed-valence Mn2II,III(μ-TPDP)(μ-Cl) fragments that are further linked by μ-oxo. Electrochemical studies revealed multi-step reversible redox properties for both complexes, attributed to MnII/MnIII processes with significant electronic coupling (ΔE1/2 = 0.27–0.37 V) between Mn centers. Spectroelectrochemical analysis revealed dynamic optical modulation through the tunable d-d transition and ligand-to-metal charge transfer (LMCT) state through reversible multiple redox processes based on Mn(II) ⇆ Mn(III) interconversion. The fabricated electrochromic device (ECD) exhibited reversible and high optical contrast between the colored state (dark brown) and the bleaching state (colorless). The results highlight the potential of polynuclear manganese complexes as high-contrast electrochromic materials for next-generation smart windows and adaptive optical technologies. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Inorganic Chemistry, 3rd Edition)
Show Figures

Figure 1

14 pages, 6354 KiB  
Article
Spent Pleurotus ostreatus Substrate Has Potential for Controlling the Plant-Parasitic Nematode, Radopholus similis in Bananas
by Anthony Fredrick Tazuba, Walter Ocimati, Geofrey Ogwal, Betty Nyangwire, Francis Onyilo and Guy Blomme
Agronomy 2025, 15(5), 1040; https://doi.org/10.3390/agronomy15051040 - 26 Apr 2025
Viewed by 755
Abstract
Spent mushroom substrate (SMS), a waste product from mushroom cultivation, in addition to being rich in essential nutrients for crop growth, contains actively growing mushroom mycelia and metabolites that suppress some plant pathogens and pests. SMS thus has potential for fostering the suppressiveness [...] Read more.
Spent mushroom substrate (SMS), a waste product from mushroom cultivation, in addition to being rich in essential nutrients for crop growth, contains actively growing mushroom mycelia and metabolites that suppress some plant pathogens and pests. SMS thus has potential for fostering the suppressiveness of soil-borne pathogens of farms. This study determined the potential of using the spent Pleurotus ostreatus substrate (SPoS) to suppress the plant-parasitic nematode Radopholus similis in bananas. R. similis is the most economically important nematode in bananas worldwide. The effect of SPoS on R. similis was assessed through two in vivo (potted plants) experiments between May 2023 and June 2024. Five-month-old East African highland banana (genome AAA) plantlets that are highly susceptible to R. similis were used. In the first experiment, the plantlets were established in 3 L pots containing (i) pre-sterilized soil, (ii) pre-sterilized soil inoculated with nematodes, (iii) pre-sterilized soil mixed with 30% (v/v) SPoS, (iv) pre-sterilized soil mixed with 30% (v/v) SPoS followed by nematode inoculation, (v) SPoS without soil, and (vi) SPoS without soil inoculated with nematodes. The SPoS was already decomposed; thus, it may or may not have contained active mycelia. The nematodes were introduced two weeks after the SPoS application. In the second experiment, SPoS was introduced two weeks after nematode inoculation. The SPoS treatments without soil were not evaluated in the second experiment. Both experiments were monitored over a three-month period. Each screenhouse treatment contained four plants and was replicated thrice. In the first experiment, data were collected on changes in soil nutrient content, below- and aboveground biomass, root deaths, root necrosis due to nematode damage, and R. similis population in root tissues and soil. In the second experiment, data were collected on root deaths and the number of nematodes in root tissues and the soil. The SPoS improved crop biomass yield, reduced root damage, and colonization by R. similis. The potential of SPoS to improve the management of R. similis and banana production under field conditions needs to be determined. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

20 pages, 4531 KiB  
Article
Successional Allelopathic Interactions of Amaranthus palmeri S. Wats. and Cereals
by Filiz Erbas
Sustainability 2025, 17(9), 3871; https://doi.org/10.3390/su17093871 - 25 Apr 2025
Viewed by 333
Abstract
Plant allelochemicals can affect the germination and growth of other plant species. Petri and pot experiments were conducted to detect the interaction of Amaranthus palmeri with cereals (barley, oat, wheat, and triticale). Aqueous extracts of different tissues of A. palmeri and cereals at [...] Read more.
Plant allelochemicals can affect the germination and growth of other plant species. Petri and pot experiments were conducted to detect the interaction of Amaranthus palmeri with cereals (barley, oat, wheat, and triticale). Aqueous extracts of different tissues of A. palmeri and cereals at several concentrations were used to measure the inhibitory effects on the germination of other plants in the Petri experiments. A. palmeri plants and cereals grown at two different densities were incorporated into a potting mix at two different growing stages to determine the inhibitory effects on the germination and growth of other plants in pot experiments. The relative germination inhibition of A. palmeri was present in the following order: barley > oat > triticale > wheat. The relative germination inhibition of cereals was present in the following order: oat > triticale > barley > wheat. The above-ground parts of the plants were more effective than the roots. The germination of A. palmeri was only affected by wheat, while barley was better at reducing the dry weight in pot experiments. Wheat was found to be the only cereal affected by A. palmeri. Despite the prevailing hypothesis that these plants do not affect each other’s germination and development in nature, it was concluded that using wheat and barley as a cover crop can support A. palmeri management, and delaying wheat planting in the presence of A. palmeri can protect cereals from allelopathic interference. Full article
(This article belongs to the Section Sustainable Agriculture)
Show Figures

Figure 1

17 pages, 2142 KiB  
Article
Response of Soil Enzyme and Plant Stoichiometry to Root Interactions: Insights from Mixed Plantings of Moso Bamboo
by Yilin Ning, Jie Zhang, Anke Wang, Qifeng Wu, Qunfang Yu, Kaiwen Huang, Yufang Bi and Xuhua Du
Forests 2025, 16(5), 722; https://doi.org/10.3390/f16050722 - 23 Apr 2025
Viewed by 448
Abstract
Root interactions are crucial in regulating soil microbial metabolism and plant nutrient allocation strategies, especially in mixed plantings. However, the effects of mixed planting and direct root contact on soil properties and plant nutrient allocation remain unclear. Thus, we established potted plants with [...] Read more.
Root interactions are crucial in regulating soil microbial metabolism and plant nutrient allocation strategies, especially in mixed plantings. However, the effects of mixed planting and direct root contact on soil properties and plant nutrient allocation remain unclear. Thus, we established potted plants with Moso bamboo (Phyllostachys edulis) and Phoebe chekiangensis and created a physical barrier to the root system without blocking chemical communication using four treatments: mixed planting with root segregation (MT), mixed planting without root segregation (MS), pure Moso bamboo with root segregation (BT), and pure Moso bamboo without root segregation (BS). We investigated changes in soil and Moso bamboo nutrient content, soil enzyme activity, and microbial metabolic limitation. The results show that mixed planting and root segregation significantly affected soil and plant nutrient content and soil enzyme activities. Compared to the two pure Moso bamboo treatments, mixed planting increased microbial carbon limitation but decreased microbial nitrogen limitation. Physical segregation between roots increased microbial carbon use efficiency (CUE) compared to no segregation. Random forest analyses revealed that the best predictors of soil C and N limitations and CUE were microbial biomass and dissolved organic nitrogen (DON), respectively. Partial least squares path modeling indicated that mixed planting and root separation, directly and indirectly, affected soil microbial metabolic limitation through their effects on soil nutrients, microbial biomass, and enzyme activities. Carbon limitation significantly increased plant nutrient contents. Our study provides further insights into factors influencing nutrient limitation, CUE, and plant nutrient allocation strategies in mixed Moso bamboo plantations. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

30 pages, 4548 KiB  
Article
Effects of Auricularia heimuer Residue Amendment on Soil Quality, Microbial Communities, and Maize Growth in the Black Soil Region of Northeast China
by Ying Wang, Jionghua Wang, Keqing Qian, Yuting Feng, Jiangyan Ao, Yinzhen Zhai, Yu Li, Xiao Li, Bo Zhang and Han Yu
Agriculture 2025, 15(8), 879; https://doi.org/10.3390/agriculture15080879 - 17 Apr 2025
Viewed by 580
Abstract
This study reveals how microbial diversity relates to soil properties in Auricularia heimuer residue–chicken manure composting, presenting sustainable waste recycling solutions. These microbial-straw strategies are adaptable to various agroecological regions, offering flexible residue valorization approaches for local conditions, crops, and resources. This study [...] Read more.
This study reveals how microbial diversity relates to soil properties in Auricularia heimuer residue–chicken manure composting, presenting sustainable waste recycling solutions. These microbial-straw strategies are adaptable to various agroecological regions, offering flexible residue valorization approaches for local conditions, crops, and resources. This study examined the effects of composting Auricularia heimuer residue and chicken manure at three ratios (6:4, 7:3, 8:2) on soil properties, lignocellulose content, enzyme activity, microbial diversity, and maize growth. The compost was mixed into potting soil at different proportions (0:10 to 10:0). During composting, the temperature remained above 50 °C for more than 14 days, meeting safety and sanitation requirements. The composting process resulted in a pH range of 7–8, a stable moisture content of 60%, a color change from brown to gray-brown, the elimination of unpleasant odors, and the formation of loose aggregates. Lignocellulose content steadily decreased, while lignocellulosic enzyme activity and actinomycete abundance increased, indicating suitability for field application. Compared with the control (CK), total nitrogen, total phosphorus, and total potassium in the soil increased by 57.81–77.91%, 4.5–19.28%, and 301.09–577.2%, respectively. Lignin, cellulose, and hemicellulose increased 50.6–83.49%, 59.6–340.33%, and 150.86–310.5%, respectively. The activities of lignin peroxidase, cellulase, and hemicellulase increased by 9.05–36.31%, 6.7–36.66%, and 37.39–52.16%, respectively. Maize root weight, plant biomass, and root number increased by 120.87–138.59%, 117.83–152.86%, and 29.03–75.81%, respectively. In addition, composting increased the relative abundance of actinomycetes while decreasing the abundance of ascomycetes and ascomycetes. The relative abundance of Sphingomonas and Gemmatimonas increased, whereas pathogenic fungi such as Cladosporium and Fusarium decreased. Compost application also enhanced bacterial and fungal diversity, with bacterial diversity indices ranging from 6.744 to 9.491 (B1), 5.122 to 9.420 (B2), 8.221 to 9.552 (B3), and 6.970 to 9.273 (CK). Fungal diversity indices ranged from 4.811 to 8.583 (B1), 1.964 to 9.160 (B2), 5.170 to 9.022 (B3), and 5.893 to 7.583 (CK). Correlation analysis of soil physicochemical properties, lignocellulose content, enzymes, microbial community composition, and diversity revealed that total nitrogen, total phosphorus, total potassium, and lignocellulose content were the primary drivers of rhizosphere microbial community dynamics. These factors exhibited significant correlations with the dominant bacterial and fungal taxa. Additionally, bacterial and fungal diversity increased with the incorporation of Auricularia heimuer residue. In conclusion, this study elucidates the relationships between microbial diversity and soil properties across different proportions of Auricularia heimuer residue and chicken manure composting, offering alternative strategies for waste recycling and sustainable agricultural development. At present, the production of biobiotics using waste culture microorganisms is still in the laboratory research stage, and no expanded experiments have been carried out. Therefore, how to apply waste bacterial bran to the production of biocontrol biotics on a large scale needs further research. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

Back to TopTop