Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (178)

Search Parameters:
Keywords = postproduction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 8482 KiB  
Article
Waste Heat Recovery in the Energy-Saving Technology of Stretch Film Production
by Krzysztof Górnicki, Paweł Obstawski and Krzysztof Tomczuk
Energies 2025, 18(15), 3957; https://doi.org/10.3390/en18153957 - 24 Jul 2025
Viewed by 337
Abstract
The stretch film production is highly energy intensive. The components of the technological line are powered by electrical energy, and the heat is used to change the physical state of the raw material (granules). The raw material is poured into FCR (the first [...] Read more.
The stretch film production is highly energy intensive. The components of the technological line are powered by electrical energy, and the heat is used to change the physical state of the raw material (granules). The raw material is poured into FCR (the first calender roller). To solidify the liquid raw material, the calendar must be cooled. The low-temperature heat, treated as waste heat, has dissipated in the atmosphere. Technological innovations were proposed: (a) the raw material comprises raw material (primary) and up to 80% recyclate (waste originating mainly from agriculture), (b) the use of low-temperature waste heat (the cooling of FCR in the process of foil stretch production). A heat recovery line based on two compressor heat pumps (HP, hydraulically coupled) was designed. The waste heat (by low-temperature HP) was transformed into high-temperature heat (by high-temperature HP) and used to prepare the raw material. The proposed technological line enables the management of difficult-to-manage post-production waste (i.e., agriculture and other economic sectors). It reduces energy consumption and raw materials from non-renewable sources (CO2 and other greenhouse gas emissions are reducing). It implements a closed-loop economy based on renewable energy sources (according to the European Green Deal). Full article
(This article belongs to the Special Issue Challenges and Research Trends of Energy Management)
Show Figures

Figure 1

26 pages, 4049 KiB  
Article
A Versatile UAS Development Platform Able to Support a Novel Tracking Algorithm in Real-Time
by Dan-Marius Dobrea and Matei-Ștefan Dobrea
Aerospace 2025, 12(8), 649; https://doi.org/10.3390/aerospace12080649 - 22 Jul 2025
Viewed by 339
Abstract
A primary objective of this research entails the development of an innovative algorithm capable of tracking a drone in real-time. This objective serves as a fundamental requirement across various applications, including collision avoidance, formation flying, and the interception of moving targets. Nonetheless, regardless [...] Read more.
A primary objective of this research entails the development of an innovative algorithm capable of tracking a drone in real-time. This objective serves as a fundamental requirement across various applications, including collision avoidance, formation flying, and the interception of moving targets. Nonetheless, regardless of the efficacy of any detection algorithm, achieving 100% performance remains unattainable. Deep neural networks (DNNs) were employed to enhance this performance. To facilitate real-time operation, the DNN must be executed within a Deep Learning Processing Unit (DPU), Neural Processing Unit (NPU), Tensor Processing Unit (TPU), or Graphics Processing Unit (GPU) system on board the UAV. Given the constraints of these processing units, it may be necessary to quantify the DNN or utilize a less complex variant, resulting in an additional reduction in performance. However, precise target detection at each control step is imperative for effective flight path control. By integrating multiple algorithms, the developed system can effectively track UAVs with improved detection performance. Furthermore, this paper aims to establish a versatile Unmanned Aerial System (UAS) development platform constructed using open-source components and possessing the capability to adapt and evolve seamlessly throughout the development and post-production phases. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

17 pages, 1426 KiB  
Article
Combination of Chitosan and Essential Oils for Tomatoes Protection Against the Insect Pest Spodoptera littoralis (Lepidoptera: Noctuidae)
by Thomas Drozdz, Philippe Couzi, Manuel Massot, Barbara Conti, Roberta Ascrizzi and David Siaussat
Insects 2025, 16(7), 718; https://doi.org/10.3390/insects16070718 - 12 Jul 2025
Cited by 1 | Viewed by 546
Abstract
Tomatoes are one of the most popular vegetables. The high level of production in the world is often offset by numerous losses that occur during production in the field or in the post-production stages. Preservation in its fresh form is a challenge, particularly [...] Read more.
Tomatoes are one of the most popular vegetables. The high level of production in the world is often offset by numerous losses that occur during production in the field or in the post-production stages. Preservation in its fresh form is a challenge, particularly due to pest attacks on stored food. A promising natural and inexpensive solution to protect against pests is the use of chitosan (CH), which can be associated with essential oils (EOs) with repellent effects. In previous studies, some protective effects have been demonstrated using chitosan films coated with EOs. In this study, we tested CH-EOs associations on tomato fruits to evaluate their efficacy against attacks by the pest Spodoptera littoralis (Boisduval, 1833), taking into account parameters such as age and body mass of the larvae and the effect over time (10 days) of the treatments. Our study highlights the potential of the combination of CH and cinnamon EO as an environmentally friendly solution to protect tomatoes from S. littoralis attack. Here we found a repellent effect of cinnamon EO combined with CH on S. littoralis larvae, with no effect on larval attractiveness or repellence for CH alone and the four other EOs tested. The main compound in cinnamon EO, (E)-cinnamaldehyde, had no overall repellent effect on larvae, but had specific effects when larval age, body mass, and post-treatment time were taken into account. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

16 pages, 8362 KiB  
Article
Analysis of Selected Spark Plasma Sintering Parameters on the Mechanical Properties of Sintered X30Cr13 Steel
by Anna Kulakowska, Teresa Bajor and Anna Kawalek
Materials 2025, 18(13), 3084; https://doi.org/10.3390/ma18133084 - 29 Jun 2025
Viewed by 374
Abstract
This paper presents the possibilities of using the reaction sintering method for the production of tool steel used in medicine. The applied method enables the sintering of powders in one technological process. The SPS (spark plasma sintering) process is a technology in which [...] Read more.
This paper presents the possibilities of using the reaction sintering method for the production of tool steel used in medicine. The applied method enables the sintering of powders in one technological process. The SPS (spark plasma sintering) process is a technology in which electric pulses generate heat and pressure, which allows for the quick and effective connection of powder particles into a homogeneous material with high density and good mechanical properties. As a result, a product of small dimensions and a precisely defined chemical composition, established at the stage of preparing the powder mixture, is obtained. The advantages of the applied production process are the sintering time and small amounts of post-production waste compared to conventional methods of producing a finished product from steel. The method of producing a semi-finished product is particularly useful in the case of small-scale and small-sized production. The subject of the research was the analysis of the conditions for obtaining X30Cr13 martensitic steel used for the production of surgical instruments. This paper analyzes the effect of sintering temperature and time on sinterability and on selected physical and mechanical properties of the obtained materials. The sintering parameters of the starting mixture have been optimized to obtain the highest possible sinter properties, such as density and hardness. Based on the analysis of the results, it was found that the powder preparation method for the SPS process and the grain size significantly affect the microstructure and mechanical properties of the final product. The optimal sintering parameters for X30Cr13 steel are a temperature of 950 °C and a sintering time of 12 min. Furthermore, the use of the SPS method allows for a reduction in the manufacturing costs of martensitic steel semi-finished products. Full article
Show Figures

Figure 1

24 pages, 11727 KiB  
Article
Experimental Evaluation of Residual Oil Saturation in Solvent-Assisted SAGD Using Single-Component Solvents
by Fernando Rengifo Barbosa, Amin Kordestany and Brij Maini
Energies 2025, 18(13), 3362; https://doi.org/10.3390/en18133362 - 26 Jun 2025
Viewed by 318
Abstract
The massive heavy oil reserves in the Athabasca region of northern Alberta depend on steam-assisted gravity drainage (SAGD) for their economic exploitation. Even though SAGD has been successful in highly viscous oil recovery, it is still a costly technology because of the large [...] Read more.
The massive heavy oil reserves in the Athabasca region of northern Alberta depend on steam-assisted gravity drainage (SAGD) for their economic exploitation. Even though SAGD has been successful in highly viscous oil recovery, it is still a costly technology because of the large energy input requirement. Large water and natural gas quantities needed for steam generation imply sizable greenhouse gas (GHG) emissions and extensive post-production water treatment. Several methods to make SAGD more energy-efficient and environmentally sustainable have been attempted. Their main goal is to reduce steam consumption whilst maintaining favourable oil production rates and ultimate oil recovery. Oil saturation within the steam chamber plays a critical role in determining both the economic viability and resource efficiency of SAGD operations. However, accurately quantifying the residual oil saturation left behind by SAGD remains a challenge. In this experimental research, sand pack Expanding Solvent SAGD (ES-SAGD) coinjection experiments are reported in which Pentane -C5H12, and Hexane -C6H14 were utilised as an additive to steam to produce Long Lake bitumen. Each solvent is assessed at three different constant concentrations through time using experiments simulating SAGD to quantify their impact. The benefits of single-component solvent coinjection gradually diminish as the SAGD process approaches its later stages. ES-SAGD pentane coinjection offers a smaller improvement in recovery factor (RF) (4% approx.) compared to hexane (8% approx.). Between these two single-component solvents, 15 vol% hexane offered the fastest recovery. The obtained data in this research provided compelling evidence that the coinjection of solvent under carefully controlled operating conditions, reduced overall steam requirement, energy consumption, and residual oil saturation allowing proper adjustment of oil and water relative permeability curve endpoints for field pilot reservoir simulations. Full article
(This article belongs to the Special Issue Enhanced Oil Recovery: Numerical Simulation and Deep Machine Learning)
Show Figures

Figure 1

15 pages, 3069 KiB  
Article
Research on Weakly Supervised Face Segmentation Technology Based on Visual Large Models in New Media Post-Production
by Baihui Tang and Sanxing Cao
Appl. Sci. 2025, 15(12), 6843; https://doi.org/10.3390/app15126843 - 18 Jun 2025
Viewed by 267
Abstract
Face segmentation is a critical component in new media post-production, enabling the precise separation of facial regions from complex backgrounds at the pixel level. With the increasing demand for flexible and efficient segmentation solutions across diverse media scenarios—such as variety shows, period dramas, [...] Read more.
Face segmentation is a critical component in new media post-production, enabling the precise separation of facial regions from complex backgrounds at the pixel level. With the increasing demand for flexible and efficient segmentation solutions across diverse media scenarios—such as variety shows, period dramas, and other productions—there is a pressing need for adaptable methods that can perform reliably under varying conditions. However, existing approaches primarily depend on fully supervised learning, which requires extensive manual annotation and incurs high labor costs. To overcome these limitations, we propose a novel weakly supervised face segmentation framework that leverages large-scale vision models to automatically generate high-quality pseudo-labels. These pseudo-labels are then used to train segmentation networks in a dual-model architecture, where two complementary models collaboratively enhance segmentation performance. Our method significantly reduces the reliance on manual labeling while maintaining competitive accuracy. Extensive experiments demonstrate that our approach not only improves segmentation precision and efficiency but also streamlines post-production workflows, lowering human effort and accelerating project timelines. Furthermore, this framework reduced reliance on annotations in the field of weakly supervised learning for facial image processing in the new media post-production scenario. Full article
Show Figures

Figure 1

16 pages, 1431 KiB  
Article
Cenostigma bracteosum Hydroethanolic Extract: Chemical Profile, Antibacterial Activity, Cytotoxicity, and Gel Formulation Development
by Addison R. Almeida, Francisco A. S. D. Pinheiro, Marília G. M. Fideles, Roberto B. L. Cunha, Vitor P. P. Confessor, Kátia N. Matsui, Weslley S. Paiva, Hugo A. O. Rocha, Gislene Ganade, Laila S. Espindola, Waldenice A. Morais and Leandro S. Ferreira
Pharmaceutics 2025, 17(6), 780; https://doi.org/10.3390/pharmaceutics17060780 - 14 Jun 2025
Viewed by 557
Abstract
Background:Cenostigma bracteosum (Tul.) Gagnon & G.P. Lewis (Fabaceae), popularly known as “catingueira”, is a plant widely distributed in the Caatinga biome, which comprises 11% of the Brazilian territory. While this species is of interest given local knowledge, formal reports are lacking in [...] Read more.
Background:Cenostigma bracteosum (Tul.) Gagnon & G.P. Lewis (Fabaceae), popularly known as “catingueira”, is a plant widely distributed in the Caatinga biome, which comprises 11% of the Brazilian territory. While this species is of interest given local knowledge, formal reports are lacking in the literature, warranting targeted investigation. This study aimed to prepare and characterize a hydroethanolic extract of C. bracteosum leaves, prepare carbopol gels containing the extract, and evaluate their cytotoxicity and antibacterial activity against Staphylococcus aureus and Escherichia coli. Methods: The initial extract was prepared in an ultrasonic bath using ethanol/water (70:30, v/v). The extract (1 mg/mL) was analyzed by liquid chromatography coupled with mass spectrometry (UHPLC-MS/MS). Carbopol-based gels containing 1% and 3% of C. bracteosum extract were prepared and characterized in terms of pH, conductivity, spreadability, and rheology. The cytotoxicity was determined by the MTT method using MC3T3-E1 pre-osteoblast cells and L929-CCL1 fibroblast cells. The antibacterial activity of the extract and gels was evaluated using the agar diffusion method against S. aureus and E. coli. Results: The C. bracteosum leaves extract demonstrated antibacterial activity against S. aureus and E. coli, were not cytotoxic for the assessed cells at concentrations up to 100 μg/mL, and its analysis by UHPLC-MS/MS allowed the annotation of 18 metabolites, mainly of the phenolic acid and flavonoids glycoside classes, together with a biflavonoid. The prepared gels remained stable over the 30-day post-production analysis period. Conclusions: These findings provide a better understanding of the chemical diversity of the secondary metabolites of a common Caatinga biome species—C. bracteosum—specifically present in leaves hydroethanolic extract and gel formulation adapted for skin application with activity against S. aureus. Full article
Show Figures

Graphical abstract

27 pages, 3258 KiB  
Article
Production and Evaluation of Lime Fertilizers with the Addition of Biomass Combustion Waste
by Sławomir Obidziński, Paweł Cwalina, Aneta Sienkiewicz, Małgorzata Kowczyk-Sadowy, Jolanta Piekut, Jacek Mazur and Michał Panasewicz
Materials 2025, 18(12), 2732; https://doi.org/10.3390/ma18122732 - 11 Jun 2025
Viewed by 628
Abstract
The study identified the optimal material, e.g., raw composition and moisture content, and process parameters for the non-pressure agglomeration of carbonate lime combined with biomass waste, e.g., calcium sulfate (ECO-ZEC), post-production residue (PPR), and fly ash using a molasses-based binder. The chemical analysis [...] Read more.
The study identified the optimal material, e.g., raw composition and moisture content, and process parameters for the non-pressure agglomeration of carbonate lime combined with biomass waste, e.g., calcium sulfate (ECO-ZEC), post-production residue (PPR), and fly ash using a molasses-based binder. The chemical analysis revealed that the CaO content in the granules ranged from 34% to 52%, with the highest calcium concentration observed in formulations containing carbonate limestone. Among the waste-based additives, PPR exhibited a calcium content only 7% lower than that of pure carbonate lime, whereas ECO-ZEC and fly ash contained 20% and 30% less calcium, respectively. Due to the low MgO levels in the tested granules, they cannot be classified as calcium–magnesium fertilizers. Regarding heavy metal content, concentrations of cadmium and lead remained below the permissible regulatory limits. The highest levels of these elements were detected in the fly ash-enriched granules, consistent with the known chemical composition of this waste type. The tested waste materials ECO-ZEC, PPR, and fly ash demonstrated alkaline pH values ranging from 12.37 for fly ash and 12.28 for PPR to 8.84 for ECO-ZEC. The reference carbonate lime showed a slightly lower pH of 8.82. Mechanical strength testing indicated that the addition of PPR improved the mechanical resistance of the granules compared to the reference sample. Conversely, the inclusion of ECO-ZEC and fly ash reduced this parameter. Notably, granules containing fly ash and PPR exhibited prolonged disintegration times in water, suggesting their potential application as slow-release fertilizers. The findings of this study demonstrate that industrial waste materials generated from biomass combustion can serve as effective components in the production of innovative lime-based fertilizers. This innovative approach not only promotes the recycling of by-products but also supports the development of sustainable agriculture by reducing the environmental burdens associated with waste disposal and encouraging resource efficiency. Full article
Show Figures

Figure 1

24 pages, 5031 KiB  
Article
Polydimethylsiloxane as a Modifier of the Processing, Surface and Mechanical Properties of the Linear Low-Density Polyethylene Recyclate
by Arkadiusz Kloziński, Przemysław Postawa, Paulina Jakubowska and Milena Trzaskalska
Materials 2025, 18(11), 2552; https://doi.org/10.3390/ma18112552 - 29 May 2025
Viewed by 525
Abstract
This study investigated the effect of adding polydimethylsiloxane (PDMS) on the processing, surface and mechanical properties of linear low-density polyethylene (rLLDPE) recyclate generated as post-production waste in the rotational molding process. Polymer blends containing 0.1, 0.2, 0.4, 1.0 and 2.0 wt.% of polydimethylsiloxane [...] Read more.
This study investigated the effect of adding polydimethylsiloxane (PDMS) on the processing, surface and mechanical properties of linear low-density polyethylene (rLLDPE) recyclate generated as post-production waste in the rotational molding process. Polymer blends containing 0.1, 0.2, 0.4, 1.0 and 2.0 wt.% of polydimethylsiloxane were produced during twin-screw extrusion, followed by cold granulation. The addition of the modifier at the adopted concentration range lowered the water absorption of the recyclate and contributed to a slight increase in processing shrinkage; however, it did not significantly affect its processability (MFR~const). The modification carried out increased the hydrophobic character of the recyclate surface (the wetting angle for water was enhanced) and decreased the value of the dynamic friction coefficient. It also contributed to an improvement in surface gloss. The deterioration of point hardness and scratch hardness of the recyclate was noted with an increase in the PDMS content in the mixture. The addition of polydimethylsiloxane caused changes in the nature of resulting cracks (increased width and reduced longitudinal deformation), which led to surface smoothing and increased the sliding effects. There was no negative effect of PDMS addition on the mechanical properties (static tensile) of the recyclate. The impact strength of rLLDPE deteriorated slightly. The research conducted shows the high application potential of PDMS as a modifier of the surface properties of low-density polyethylene linear recyclate and of selected processing properties, which can contribute to the shortening of the production cycle, thus potentially increasing its attractiveness compared to the original raw materials. Full article
(This article belongs to the Section Polymeric Materials)
Show Figures

Figure 1

14 pages, 4295 KiB  
Article
LC-MS/MS-Based Determination and Optimization of Linoleic Acid Oxides in Baijiu and Their Variation with Storage Time
by Cheng Fang, Xiaotong Zhuang, Zhanguo Li, Yongfang Zou, Jizhou Pu, Dong Wang and Yan Xu
Metabolites 2025, 15(4), 246; https://doi.org/10.3390/metabo15040246 - 2 Apr 2025
Viewed by 825
Abstract
Background: Post-production storage plays a pivotal role in developing the characteristic flavor profile of Baijiu, a traditional alcoholic beverage in China. While aging markers remain crucial for quality authentication, the identification of reliable metabolic indicators for chronological determination requires further exploration. [...] Read more.
Background: Post-production storage plays a pivotal role in developing the characteristic flavor profile of Baijiu, a traditional alcoholic beverage in China. While aging markers remain crucial for quality authentication, the identification of reliable metabolic indicators for chronological determination requires further exploration. Methods: This study establishes a novel liquid chromatography-tandem mass spectrometry (LC-MS/MS) methodology for quantifying five linoleic acid-derived oxidative metabolites in Baijiu: 9,12,13-trihydroxy-10(E)-octadecenoic acid (9,12,13-TriHOME), 9,10-Dihydroxy-12-octadecenoic acid (9,10-DiHOME), 9-oxo-(10E,12Z)-octadecadienoic acid (9-OxoODE), 9-hydroxy-(10E,12Z)-octadecadienoic acid (9-HODE) and 13-hydroxyoctadeca-(9Z,11E)-octadecadienoic acid (13-HODE). Results: The optimized protocol demonstrated exceptional sensitivity with limits of detection at 0.4 ppb through membrane-filtered direct dilution. Calibration curves exhibited excellent linearity (R2 > 0.9990) across 1.0–100.0 ppb ranges. Method validation revealed satisfactory recovery rates (87.25–119.44%) at three spiking levels (10/20/50 ppb) with precision below 6.96% RSD. Application to authentic samples showed distinct temporal accumulation patterns. Light-aroma Baijiu exhibited storage duration-dependent increases in all five oxides. Strong aroma variants demonstrated significant positive correlations for 9,12,13-TriHOME, 9,10-DiHOME, and 9-OxoODE with aging time. Conclusions: These findings systematically characterize linoleic acid oxidation products as potential aging markers, providing both methodological advancements and new insights into Baijiu aging mechanisms. Full article
Show Figures

Figure 1

14 pages, 4240 KiB  
Article
Assessing Immunization Coverage and the Negative Impact of Local Vaccine Production Cessation in Ecuador
by Esteban Ortiz-Prado, Lissette Carolina Villacreses-Brito, Jorge Vasconez-Gonzalez, Cristina Anabel Jacome, Marlon Arias-Intriago and Juan S. Izquierdo-Condoy
Vaccines 2025, 13(4), 348; https://doi.org/10.3390/vaccines13040348 - 25 Mar 2025
Cited by 1 | Viewed by 1306
Abstract
Background: The COVID-19 pandemic highlighted vaccine importance while exposing inequities in global immunization, especially in LMICs like Ecuador. Local vaccine production ensures supply, reduces reliance on imports, and boosts health security. Understanding the relationship between local production and vaccination outcomes is crucial to [...] Read more.
Background: The COVID-19 pandemic highlighted vaccine importance while exposing inequities in global immunization, especially in LMICs like Ecuador. Local vaccine production ensures supply, reduces reliance on imports, and boosts health security. Understanding the relationship between local production and vaccination outcomes is crucial to addressing emerging public health challenges. Objective: The objective was to assess the impact of local vaccine production cessation on vaccination coverage rates for BCG- and DTP-containing vaccines. Methodology: This retrospective cross-sectional study analyzed vaccine coverage data from 2004 to 2023, focusing on key vaccines such as BCG and DTP, to assess the impact of the cessation of local vaccine production. Mann–Whitney U tests were conducted to compare vaccination coverage during the periods of local production (2004–2013) and post-production cessation (2014–2023). Historical context and policy implications were also evaluated to provide a comprehensive perspective. Results: A significant decline in vaccine coverage was observed following the cessation of local production. For BCG, median coverage decreased from 100% during the production period to 87.8% post-cessation (p < 0.0001). Similarly, DTP coverage dropped from a median of 99.5% to 83.4% (p < 0.0001). The findings highlight the critical role of local production in maintaining high vaccination rates and ensuring immunization equity. Conclusions: Reinvesting in local vaccine production is pivotal to improving immunization outcomes and strengthening Ecuador’s health security. International collaboration and strategic planning can help overcome current challenges, positioning Ecuador as a regional leader in vaccine production and public health resilience. Full article
(This article belongs to the Special Issue Impact of Immunization Safety Monitoring on Vaccine Coverage)
Show Figures

Figure 1

26 pages, 959 KiB  
Article
Use of Selected Environmental Lactic Acid Bacteria During Industrial Production of Heat-Treated Nitrite-Free Organic Sausage
by Piotr Szymański, Anna Okoń, Dorota Zielińska, Beata Łaszkiewicz, Danuta Kołożyn-Krajewska and Zbigniew J. Dolatowski
Foods 2025, 14(6), 1028; https://doi.org/10.3390/foods14061028 - 18 Mar 2025
Cited by 2 | Viewed by 652
Abstract
This study aimed to evaluate the potential of lactic acid bacteria (LAB) isolated from organic acid whey as an alternative to nitrites in heat-treated organic sausages. Eleven LAB strains were screened for their ability to develop sensory characteristics similar to traditionally cured meat. [...] Read more.
This study aimed to evaluate the potential of lactic acid bacteria (LAB) isolated from organic acid whey as an alternative to nitrites in heat-treated organic sausages. Eleven LAB strains were screened for their ability to develop sensory characteristics similar to traditionally cured meat. Based on the results, Lactiplantibacillus plantarum S21 was selected for further experiments. Four sausage treatments were produced: control cured (C), salted (S), salted with L. plantarum S21 at 107 CFU/g (LP), and salted with acid whey (AW). The pH value, oxidation-reduction potential (ORP), antioxidant activity of peptides (ABTS•+), thiobarbituric acid-reactive substance (TBARS), fatty acid profile, and microbiological quality were assessed post-production and after 14 days of cold storage. After production, the LP and AW sausages had a lower pH than the cured (C) and uncured (S) control samples. LP sausages exhibited a stable pink colour due to myoglobin conversion to nitrosylmyoglobin, comparable to the cured control. The LP sausages were similar in overall sensory quality to the cured (C) samples and were superior to the S and AW sausages after storage. The lowest ORP value was observed in treatment C after production, whereas after storage, no significant differences were found between the treatments. The highest antioxidant activity of peptides was observed in the LP sausages. It was shown that the LP and AW treatments had lower saturated fatty acid content and higher monounsaturated and polyunsaturated fatty acid content than the C and S treatments. Nevertheless, the C treatment had the lowest TBARS value. Lower total viable counts were found in the C and LP treatments than in the S and AW treatments after storage. Our research demonstrates the potential of L. plantarum S21 for producing heat-treated sausages without nitrites, assuming the implementation of additional anti-botulinum barriers. Nevertheless, further studies on the role of bacteria in meat oxidation processes are needed. Full article
Show Figures

Figure 1

23 pages, 2691 KiB  
Article
Production and Quality Assessment of Fertilizer Pellets from Compost with Sewage Sludge Ash (SSA) Addition
by Paweł Cwalina, Sławomir Obidziński, Aneta Sienkiewicz, Małgorzata Kowczyk-Sadowy, Jolanta Piekut, Ewelina Bagińska and Jacek Mazur
Materials 2025, 18(5), 1145; https://doi.org/10.3390/ma18051145 - 4 Mar 2025
Cited by 2 | Viewed by 1259
Abstract
This article examines the process of pressure agglomeration of garden waste compost mixed with sewage sludge ash (SSA) to produce granulated fertilizer material, using a flat die rotating compaction roller system. The study evaluated the effects of adding SSA at mass fractions of [...] Read more.
This article examines the process of pressure agglomeration of garden waste compost mixed with sewage sludge ash (SSA) to produce granulated fertilizer material, using a flat die rotating compaction roller system. The study evaluated the effects of adding SSA at mass fractions of 0%, 10%, 20%, 30%, 40%, and 50% on the process of pelleting and the quality of pellets. Increasing the SSA content from 0% to 50% reduced the power demand of the pellet mill by 13.5% (from 4.92 kW to 4.25 kW), decreased the kinetic strength of the pellets by 0.7% (from 98.21% to 97.56%), and slightly increased the pellet density, by 2.6% (from 1641.17 kg·m−3 to 1684.09 kg·m−3). The high density of the pellets, i.e., over 1600 kg·m−3, indicates that they are of market quality. A chemical analysis revealed that SSA addition positively influenced fertilizer properties. A higher SSA content (up to 50%) decreased the nitrogen content (1.4% to 0.73%) but significantly increased the phosphorus content (0.32% to 2.67%). The potassium content remained stable, at approximately 1.3%. The process of co-pelleting also diluted the heavy metals present in SSA, reducing the final product’s lead and cadmium levels to meet the standards set for fertilizers. Although the SSA contained high levels of heavy metals (lead: 93.89 mg·kgd.m.−1, cadmium: 11.28 mg·kgd.m.−1), these elements were not detected in the compost. Co-pelleting of compost and SSA produces high-density, high-quality fertilizer pellets with favorable nutrient profiles and heavy metal contents, complying with regulatory standards. Moreover, by converting garden waste and SSA into valuable agricultural products, the process supports sustainable waste management. This study evaluated the impact of SSA additives on the composition and water absorption of the granulate, providing insights into its suitability as an eco-friendly fertilizer alternative and its potential implications for sustainable agricultural practices. Full article
Show Figures

Figure 1

32 pages, 1731 KiB  
Review
The Cow Paradox—A Scoping Review of Dairy Bovine Welfare in India Using the Five Freedoms
by Chirantana Mathkari
Animals 2025, 15(3), 454; https://doi.org/10.3390/ani15030454 - 6 Feb 2025
Viewed by 2470
Abstract
India, the leading producer and consumer of milk, houses 307 million cattle, nearly a third of the world’s total. A ban on cow slaughter exists in the majority of the Indian states. Intricately interweaved with the disputable yet publicly acknowledged sentiment of the [...] Read more.
India, the leading producer and consumer of milk, houses 307 million cattle, nearly a third of the world’s total. A ban on cow slaughter exists in the majority of the Indian states. Intricately interweaved with the disputable yet publicly acknowledged sentiment of the cow’s sacrality, and with the animal’s utility value, the ban is capable of influencing the humans’ treatment of the dairy animals. Against this background, this research aims to evaluate the welfare state of the Indian dairy bovines by analyzing their welfare at various life phases using the Five Freedoms framework. A scoping review of the relevant published studies that met all inclusion criteria was conducted using bibliographic databases Google Scholar, Scopus, and ScienceDirect. Data were extracted and organized using Microsoft Excel, version 22H2. The literature reviewed demonstrates a loss of one or more freedoms in multiple phases of the bovines’ productive lives, and a parallel loss of two or more freedoms in their post-productive lives; indicating the role of religious values, legislation, and the animal’s economic utility in their treatment. This study highlights the role of culturally shaped human influences on dairy husbandry and creates grounds for studying human–bovine relationships through interdisciplinary lenses to generate culturally viable solutions to improve cattle welfare and promote a sustainable inter-species coexistence. Full article
(This article belongs to the Section Animal Welfare)
Show Figures

Figure 1

23 pages, 1942 KiB  
Review
Mechanism of Action and Therapeutic Potential of Xanthohumol in Prevention of Selected Neurodegenerative Diseases
by Anna Długosz, Błażej Błaszak, Damian Czarnecki and Joanna Szulc
Molecules 2025, 30(3), 694; https://doi.org/10.3390/molecules30030694 - 5 Feb 2025
Cited by 1 | Viewed by 1907
Abstract
Xanthohumol (XN), a bioactive plant flavonoid, is an antioxidant, and as such, it exhibits numerous beneficial properties, including anti-inflammatory, antimicrobial, and antioxidative effects. The main dietary source of XN is beer, where it is introduced through hops. Although the concentration of XN in [...] Read more.
Xanthohumol (XN), a bioactive plant flavonoid, is an antioxidant, and as such, it exhibits numerous beneficial properties, including anti-inflammatory, antimicrobial, and antioxidative effects. The main dietary source of XN is beer, where it is introduced through hops. Although the concentration of XN in beer is low, the large quantities of hop-related post-production waste present an opportunity to extract XN residues for technological or pharmaceutical purposes. The presented study focuses on the role of XN in the prevention of neurodegenerative diseases, analyzing its effect at a molecular level and including its signal transduction and metabolism. The paper brings up XN’s mechanism of action, potential effects, and experimental and clinical studies on Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS). Additionally, challenges and future research directions on XN, including its bioavailability, safety, and tolerance, have been discussed. Full article
(This article belongs to the Special Issue Natural Products with Pharmaceutical Activities)
Show Figures

Graphical abstract

Back to TopTop