Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (67)

Search Parameters:
Keywords = poplar diseases

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2273 KB  
Article
Characterization of Pathogenic Bacteria Associated with Wetwood Disease in Populus deltoides
by Yilei Jiang, Qilin Zhang, Xingyi Hu, Zekai Ren, Haiyan Tang and Kebing Du
Forests 2025, 16(9), 1414; https://doi.org/10.3390/f16091414 - 4 Sep 2025
Viewed by 633
Abstract
Populus species are highly susceptible to wetwood formation, which adversely affects tree growth, timber quality, and wood processing. In this study, 28 aerobic and 7 anaerobic bacterial strains were isolated and purified from I-69 poplar trees infected with wetwood using tissue-based pathogen isolation [...] Read more.
Populus species are highly susceptible to wetwood formation, which adversely affects tree growth, timber quality, and wood processing. In this study, 28 aerobic and 7 anaerobic bacterial strains were isolated and purified from I-69 poplar trees infected with wetwood using tissue-based pathogen isolation techniques. Preliminary screening identified three highly pathogenic isolates, including two aerobic strains (AB4 and AB14) and one anaerobic strain (ANAB1), all of which induced wetwood symptoms in 100% of inoculated seedlings with pronounced severity. Through comprehensive characterization, including morphological analysis, physiological–biochemical profiling, and 16S rRNA gene sequencing, these strains were taxonomically classified as Pantoea agglomerans (AB4), Escherichia fergusonii (AB14), and Enterobacter hormaechei (ANAB1). These 35 strains were subsequently inoculated into one-year-old healthy poplar seedlings through three distinct methods, including stem injection, root infection, and leaf infection. Experimental results demonstrated that only stem injection successfully induced wetwood symptoms, while root and leaf infection failed to produce pathological manifestations. For stem-inoculated specimens, pathogenicity was evaluated based on three diagnostic parameters, including heartwood discoloration length, pigmentation intensity, and affected tissue area ratio. Significant variability in symptom severity was observed among different bacterial strains. These findings expand the known diversity of bacterial species associated with wetwood development and provide valuable insights for understanding its etiology and for guiding future disease management strategies. Full article
(This article belongs to the Section Forest Health)
Show Figures

Figure 1

29 pages, 4978 KB  
Article
HPLC-DAD-ESI/MS and 2D-TLC Analyses of Secondary Metabolites from Selected Poplar Leaves and an Evaluation of Their Antioxidant Potential
by Loretta Pobłocka-Olech, Mirosława Krauze-Baranowska, Sylwia Godlewska and Katarzyna Kimel
Int. J. Mol. Sci. 2025, 26(13), 6189; https://doi.org/10.3390/ijms26136189 - 27 Jun 2025
Viewed by 1587
Abstract
Poplar leaves (Populi folium) are a herbal remedy traditionally used for the treatment of rheumatic diseases and prostate inflammation. The aim of our study was a comprehensive identification of secondary metabolites occurring in the leaves of Populus alba, Populus × [...] Read more.
Poplar leaves (Populi folium) are a herbal remedy traditionally used for the treatment of rheumatic diseases and prostate inflammation. The aim of our study was a comprehensive identification of secondary metabolites occurring in the leaves of Populus alba, Populus × candicans, and Populus nigra, in order to search for a source of raw plant material rich in active compounds. Total salicylate (TSC), flavonoid (TFC), and phenolic compound (TPC) contents were determined, and the antioxidant potential was assessed using DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,2′-azino-bis(3-ethylbenzothiazoline- 6-sulfonic acid) diammonium salt), and FRAP (ferric reducing antioxidant power) assays as well as 2D-TLC (two-dimensional thin layer chromatography) bioautography using DPPH, riboflavin-light-NBT (nitro blue tetrazolium chloride), and xanthine oxidase inhibition tests. Secondary metabolites present in the analyzed poplar leaves were identified under the developed HPLC-DAD-ESI/MS (high performance liquid chromatography with photodiode array detection and electrospray ionization mass spectrometric detection analysis conditions and using the 2D-TLC method. Among the 80 identified compounds, 13 were shown for the first time in the genus Populus. The most diverse and similar set of flavonoids characterized the leaves of P. × candicans and P. nigra, while numerous salicylic compounds were present in the leaves of P. alba and P. × candicans. All analyzed leaves are a rich source of phenolic compounds. The highest flavonoid content was found in the leaves of P. × candicans and P. nigra, while the leaves of P. alba were characterized by the highest content of salicylates. All examined poplar leaves demonstrated antioxidant potential in all the assays used, which decreased in the following order: P. nigra, P. × candicans, P. alba. Full article
(This article belongs to the Collection 30th Anniversary of IJMS: Updates and Advances in Biochemistry)
Show Figures

Figure 1

19 pages, 9597 KB  
Article
Genomic Analysis Reveals the Fast-Growing Trait and Improvement Potential for Stress Resistance in the Elite Poplar Variety Populus × euramericana ‘Bofeng 3’
by Shanchen Zhong, Weixi Zhang, Changjun Ding, Zhengsai Yuan, Le Shen, Bingyu Zhang, Yanguang Chu and Xiaohua Su
Int. J. Mol. Sci. 2025, 26(12), 5526; https://doi.org/10.3390/ijms26125526 - 9 Jun 2025
Viewed by 816
Abstract
Enhancing stress tolerance represents a critical objective in the genetic improvement of poplar trees. Populus × euramericana ‘Bofeng 3’ is a nationally certified elite poplar variety that was approved as a premium pulpwood variety for the southern area of Northeastern China. This variety [...] Read more.
Enhancing stress tolerance represents a critical objective in the genetic improvement of poplar trees. Populus × euramericana ‘Bofeng 3’ is a nationally certified elite poplar variety that was approved as a premium pulpwood variety for the southern area of Northeastern China. This variety grows quickly, has good yield, and resists frost; however, its weaker drought and salt tolerance limits its broader use in diverse environments. The aim of this study is to understand the genetic basis of the fast growth and stress-adaptation traits of this variety and to provide support for future molecular breeding efforts. We present a chromosome-scale genome assembly of Populus × euramericana ‘Bofeng 3’, totaling 445.53 Mb, of which with 90.39% is anchored to 19 chromosomes, containing 33,309 protein-coding genes and 45.36% repetitive elements. Comparative genomics showed that ‘Bofeng 3’ has expanded gene families related to photosynthesis and metabolism, and contracted families involved in stress responses, distinguishing it from other Populus species. Under drought (9137 leaf, 9403 root differentially expressed genes (DEGs)) and salt stress (2840 leaf, 3807 root DEGs), trend analysis revealed specific expression patterns. Several unique and expanded genes, including those for photosynthetic proteins, peroxidases, gamma-aminobutyric acid metabolism, and disease resistance, showed stress-responsive trends. Weighted gene co-expression network analysis identified five modules (three positive, two negative) that significantly correlated with photosynthetic traits, highlighting key candidates such as bZIP transcription factors and auxin/indole acetic acid genes. This study determined the genetic basis underlying the rapid growth traits of Populus × euramericana ‘Bofeng 3’, while providing genomic resources to establish a robust foundation for future gene editing and molecular breeding studies, including critical candidate genetic resources for developing superior drought- and salt-tolerant poplar varieties via targeted genome editing technologies. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

10 pages, 447 KB  
Article
Predicted Drought Tolerance of Poplars and Aspens for Use in Resilient Landscapes
by Brandon M. Miller
Int. J. Plant Biol. 2025, 16(2), 61; https://doi.org/10.3390/ijpb16020061 - 2 Jun 2025
Viewed by 876
Abstract
Poplars and aspens (Populus L. spp.) are undervalued options for use in managed landscapes. The genus comprises a multitude of taxa often negatively associated with disease susceptibility and short lifespans; however, it also hosts a diverse range of abiotic stress tolerances. The [...] Read more.
Poplars and aspens (Populus L. spp.) are undervalued options for use in managed landscapes. The genus comprises a multitude of taxa often negatively associated with disease susceptibility and short lifespans; however, it also hosts a diverse range of abiotic stress tolerances. The objective of this study was to generate a relative scale of the predicted drought tolerance of Populus spp. to inform site and taxon selection in managed settings. Utilizing vapor pressure osmometry, this study examined seasonal osmotic adjustment and predicted leaf water potential at the turgor loss point (Ψpo) among several Populus taxa. All evaluated taxa demonstrated the ability to osmotically adjust (ΔΨπ100) throughout the growing season. Bigtooth aspen (P. grandidentata Michx.) exhibited the most osmotic adjustment (−1.1 MPa), whereas black cottonwood (P. trichocarpa Torr. & A. Gray ex Hook.) exhibited the least (−0.44 MPa). Across the taxa, the estimated mean Ψpo values in spring and summer were −1.8 MPa and −2.8 MPa, respectively. Chinese aspen (P. cathayana Rehder) exhibited the lowest Ψpo (−3.32 MPa), whereas black cottonwood exhibited the highest (−2.47 MPa). The results indicate that drought tolerance varies widely among these ten Populus species and hybrids; bigtooth aspen and Chinese aspen are the best suited to tolerating drought in managed landscapes. Full article
(This article belongs to the Section Plant Physiology)
Show Figures

Figure 1

20 pages, 8278 KB  
Article
The Comparative Study of the Antioxidant and Antibacterial Effects of Propolis Extracts in Veterinary Medicine
by Dovile Svetikiene, Gintaras Zamokas, Monika Jokubaite, Mindaugas Marksa, Liudas Ivanauskas, Lina Babickaite and Kristina Ramanauskiene
Vet. Sci. 2024, 11(8), 375; https://doi.org/10.3390/vetsci11080375 - 15 Aug 2024
Cited by 9 | Viewed by 6686
Abstract
Antimicrobial resistance (AMR) is one of the biggest threats to human and animal health. Efforts to combat AMR include the introduction of antimicrobial drugs as alternative treatment options. To contribute to an effective plan for the treatment of infectious diseases caused by bacteria, [...] Read more.
Antimicrobial resistance (AMR) is one of the biggest threats to human and animal health. Efforts to combat AMR include the introduction of antimicrobial drugs as alternative treatment options. To contribute to an effective plan for the treatment of infectious diseases caused by bacteria, the development of new antimicrobial agents is increasingly being explored. Propolis has garnered significant attention from both scientists and industry due to its extensive spectrum of biological activity. The growing interest in polyphenols of natural origin and their plant sources further encourages the investigation of their chemical composition and biological effects. Propolis serves as a rich source of phenolic compounds. Baltic region propolis, classified as poplar-type propolis, was selected for this study, and extracts were prepared using raw propolis materials from various Baltic countries. The production of liquid extracts utilized a combination of 70 percent ethanol, a mixture of water and poloxamer P407, and DES (deep eutectic solvent). The research aims to produce liquid propolis extracts using different solvents and to assess their chemical composition, antioxidant, and antimicrobial activity against different veterinary pathogens. Antioxidant activity was evaluated using DPPH (2,2-diphenyl-1-picrylhydrazyl), revealing antioxidant activity in all extracts, with results correlating with the total phenolic compound content. It was found that p-coumaric acid predominated in the studied propolis extracts (in ethanol extracts 1155.90–1506.65 mg/g, in DES extracts 321.13–954.76 mg/g, and in polymeric extracts 5.34–30.80 mg/g), with smaller amounts of ferulic acid and vanillin detected. Clinical and reference bacterial strains were collected from the Lithuanian University of Health Sciences, the Academy of Veterinary Medicine, and the Institute of Microbiology and Virology. To effectively treat bacterial infections, the antimicrobial activity of propolis extracts was tested against six pathogenic bacterial species and one pathogenic fungus (S. aureus, S. agalactiae, B. cereus, E. faecalis, E. coli, P. aeruginosa, and C. albicans). Antimicrobial activity studies demonstrated that DES propolis extracts exhibited stronger antimicrobial activity compared to ethanolic propolis extracts. The minimum inhibitory concentration (MIC) values of DES propolis extracts against the tested strains ranged between 50 and 1000 μg/mL. Considering the study results, it can be concluded that propolis from the Baltic region is abundant in phenolic compounds exhibiting antioxidant and antibacterial activities. Full article
(This article belongs to the Special Issue Antimicrobial Use in Companion Animals)
Show Figures

Figure 1

18 pages, 12276 KB  
Article
Early Poplar (Populus) Leaf-Based Disease Detection through Computer Vision, YOLOv8, and Contrast Stretching Technique
by Furkat Bolikulov, Akmalbek Abdusalomov, Rashid Nasimov, Farkhod Akhmedov and Young-Im Cho
Sensors 2024, 24(16), 5200; https://doi.org/10.3390/s24165200 - 11 Aug 2024
Cited by 6 | Viewed by 2214
Abstract
Poplar (Populus) trees play a vital role in various industries and in environmental sustainability. They are widely used for paper production, timber, and as windbreaks, in addition to their significant contributions to carbon sequestration. Given their economic and ecological importance, effective [...] Read more.
Poplar (Populus) trees play a vital role in various industries and in environmental sustainability. They are widely used for paper production, timber, and as windbreaks, in addition to their significant contributions to carbon sequestration. Given their economic and ecological importance, effective disease management is essential. Convolutional Neural Networks (CNNs), particularly adept at processing visual information, are crucial for the accurate detection and classification of plant diseases. This study introduces a novel dataset of manually collected images of diseased poplar leaves from Uzbekistan and South Korea, enhancing the geographic diversity and application of the dataset. The disease classes consist of “Parsha (Scab)”, “Brown-spotting”, “White-Gray spotting”, and “Rust”, reflecting common afflictions in these regions. This dataset will be made publicly available to support ongoing research efforts. Employing the advanced YOLOv8 model, a state-of-the-art CNN architecture, we applied a Contrast Stretching technique prior to model training in order to enhance disease detection accuracy. This approach not only improves the model’s diagnostic capabilities but also offers a scalable tool for monitoring and treating poplar diseases, thereby supporting the health and sustainability of these critical resources. This dataset, to our knowledge, will be the first of its kind to be publicly available, offering a valuable resource for researchers and practitioners worldwide. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

29 pages, 15222 KB  
Article
Detection Model and Spectral Disease Indices for Poplar (Populus L.) Anthracnose Based on Hyperspectral Reflectance
by Zhicheng Jia, Qifeng Duan, Yue Wang, Ke Wu and Hongzhe Jiang
Forests 2024, 15(8), 1309; https://doi.org/10.3390/f15081309 - 26 Jul 2024
Cited by 4 | Viewed by 1591
Abstract
Poplar (Populus L.) anthracnose is an infectious disease that seriously affects the growth and yields of poplar trees, and large-scale poplar infections have led to huge economic losses in the Chinese poplar industry. To efficiently and accurately detect poplar anthracnose for improved [...] Read more.
Poplar (Populus L.) anthracnose is an infectious disease that seriously affects the growth and yields of poplar trees, and large-scale poplar infections have led to huge economic losses in the Chinese poplar industry. To efficiently and accurately detect poplar anthracnose for improved prevention and control, this study collected hyperspectral data from the leaves of four types of poplar trees, namely healthy trees and those with black spot disease, early-stage anthracnose, and late-stage anthracnose, and constructed a poplar anthracnose detection model based on machine learning and deep learning. We then comprehensively analyzed poplar anthracnose using advanced hyperspectral-based plant disease detection methodologies. Our research focused on establishing a detection model for poplar anthracnose based on small samples, employing the Design of Experiments (DoE)-based entropy weight method to obtain the best preprocessing combination to improve the detection model’s overall performance. We also analyzed the spectral characteristics of poplar anthracnose by comparing typical feature extraction methods (principal component analysis (PCA), variable combination population analysis (VCPA), and the successive projection algorithm (SPA)) with the vegetation index (VI) method (spectral disease indices (SDIs)) for data dimensionality reduction. The results showed notable improvements in the SDI-based model, which achieved 89.86% accuracy. However, this was inferior to the model based on typical feature extraction methods. Nevertheless, it achieved 100% accuracy for early-stage anthracnose and black spot disease in a controlled environment respectively. We conclude that the SDI-based model is suitable for low-cost detection tasks and is the best poplar anthracnose detection model. These findings contribute to the timely detection of poplar growth and will greatly facilitate the forestry sector’s development. Full article
(This article belongs to the Special Issue Artificial Intelligence and Machine Learning Applications in Forestry)
Show Figures

Figure 1

19 pages, 5421 KB  
Article
Poplar Bud (Populus) Extraction and Chinese Propolis Counteract Oxidative Stress in Caenorhabditis elegans via Insulin/IGF-1 Signaling Pathway
by Shuo Wang, Chengchao Yang, Yaling Luo, Qingyi Chen, Mengyang Xu, Yuntao Ji, Xiasen Jiang and Changqing Qu
Antioxidants 2024, 13(7), 860; https://doi.org/10.3390/antiox13070860 - 18 Jul 2024
Cited by 3 | Viewed by 1770
Abstract
Poplar buds are characterized by a high content of phenolic compounds, which exhibit a broad spectrum of biological activities. However, the relationship between Chinese propolis and poplar buds based on their antioxidant capacities and underlying mechanisms remains unclear. This study aimed to investigate [...] Read more.
Poplar buds are characterized by a high content of phenolic compounds, which exhibit a broad spectrum of biological activities. However, the relationship between Chinese propolis and poplar buds based on their antioxidant capacities and underlying mechanisms remains unclear. This study aimed to investigate the antioxidant properties of poplar bud (Populus) extract (PBE) and Chinese propolis (CP) and to elucidate the mechanisms behind their activity. High-performance liquid chromatography (HPLC) analysis revealed that both PBE and CP contain a significant amount of phenolic acids and flavonoids. 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and ferric-reducing antioxidant power (FRAP) assays demonstrated that PBE and CP possess excellent antioxidant activity. Furthermore, administration of PBE and CP improved the survival rate of C. elegans under oxidative stress. They also decreased the levels of reactive oxygen species (ROS) and malondialdehyde (MDA), while enhancing the activity of antioxidant enzymes (SOD, CAT). PBE and CP intervention upregulated the expression of key genes daf-16, sod-3, hsp-16.2, and skn-1 in nematodes. This suggests that the antioxidant activity of PBE and CP is dependent on daf-16 and skn-1 signaling pathways. In conclusion, poplar bud extracts ha have the potential to become a substitute for propolis and a potential therapeutic agent for treating diseases associated with oxidative damage. Full article
Show Figures

Graphical abstract

13 pages, 3133 KB  
Article
Tenacity of Animal Disease Viruses on Wood Surfaces Relevant to Animal Husbandry
by Martin J. Oettler, Franz J. Conraths, Uwe Roesler, Sven Reiche, Timo Homeier-Bachmann and Nicolai Denzin
Viruses 2024, 16(5), 789; https://doi.org/10.3390/v16050789 - 15 May 2024
Viewed by 1557
Abstract
The aim of this study was to analyse the hygienic suitability of wood often used in animal husbandry. To this end, the inactivation of viruses (Enterovirus E as a surrogate for non-enveloped viruses and Newcastle disease virus as a surrogate for enveloped viruses) [...] Read more.
The aim of this study was to analyse the hygienic suitability of wood often used in animal husbandry. To this end, the inactivation of viruses (Enterovirus E as a surrogate for non-enveloped viruses and Newcastle disease virus as a surrogate for enveloped viruses) on germ carriers consisting of various types of wood was studied over an extended period to assess the biosafety of wood as an agricultural building material. The study was designed to assess the intrinsic biocidal activity of the wood itself, without the use of a disinfectant. The laboratory tests were based on German test guidelines and current European standards. Five different types of wood germ carriers, i.e., spruce (Picea abies), pine (Pinus sylvestris), poplar (Populus sp.), beech (Fagus sylvatica) and Douglas fir (Pseudotsuga menziesii), as well as stainless-steel carriers, were inoculated with enveloped and non-enveloped viruses and stored for up to four months, and the remaining infectivity of the viruses was continuously assessed. The results showed that intact, finely sawn timber with a low depth of roughness had an inactivating effect on the viruses up to 7.5 decadal logarithmic levels. For the non-enveloped virus, inactivation was fastest on Douglas fir wood, with the target reduction for effective inactivation (reduction by factor 4.0 log10) being achieved after two weeks, and for the enveloped virus on pine wood, it was already achieved from the day of drying. The hygienic effects of the wood carriers may be due to their hygroscopic properties and wood constituents. These effects offer potential for further investigation, including tests with other wood species rich in extractives. Full article
(This article belongs to the Special Issue Strategies for Preventing Viral Diseases of Domestic Animals)
Show Figures

Figure 1

14 pages, 17602 KB  
Article
Comparative Study on the Effectiveness of Three Inoculation Methods for Valsa sordida in Populus alba var. pyramidalis
by Wanna Shen, Long Pan, Yuchen Fu, Yutian Suo, Yinan Zhang, Huixiang Liu, Xiaohua Su and Jiaping Zhao
Biology 2024, 13(4), 251; https://doi.org/10.3390/biology13040251 - 9 Apr 2024
Cited by 3 | Viewed by 1984
Abstract
A key step in the study of tree pathology is the identification of an appropriate method for inoculating pathogens of diseases in branches and trunks. Pathogens of diseases in branches and trunks are commonly inoculated through punching, burning, and toothpick inoculation. However, there [...] Read more.
A key step in the study of tree pathology is the identification of an appropriate method for inoculating pathogens of diseases in branches and trunks. Pathogens of diseases in branches and trunks are commonly inoculated through punching, burning, and toothpick inoculation. However, there is a lack of comparative analyses of the inoculation outcomes of these three methods. In this work, six-year-old P. alba var. pyramidalis were inoculated with V. sordida using punching, burning, and toothpick techniques to investigate the differences in the effectiveness of these inoculation methods. Results reveal that the incidence rate was 93.55% in the toothpick inoculation group, significantly higher than the 80.65% in the burning inoculation group (chi-square, n = 90, p = 0.007), while punching inoculation exhibited significant pathological responses in the early stages, with spontaneous healing in the later stage. Additionally, toothpick inoculation was more efficient in inducing Valsa canker when inoculating the pathogen at the bottom of the tree, with lower intra- and inter-row spacing (stand density) providing better outcomes than higher intra- and inter-row spacing. The results of this study demonstrate that toothpick inoculation is an optimal option for studying the artificial inoculation of V. sordida in six-year-old P. alba var. pyramidalis, providing technical support for research on poplar diseases and offering a theoretical basis for the inoculation of other diseases in the branch and trunk. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

18 pages, 602 KB  
Article
Stability Analysis of a Delayed Paranthrene tabaniformis (Rott.) Control Model for Poplar Forests in China
by Meiyan Wang, Leilei Han and Yuting Ding
Mathematics 2024, 12(6), 827; https://doi.org/10.3390/math12060827 - 12 Mar 2024
Cited by 3 | Viewed by 1340
Abstract
Forest pests and diseases can diminish forest biodiversity, damage forest ecosystem functions, and have an impact on water conservation. Therefore, it is necessary to analyze the interaction mechanism between plants and pests. In this paper, the prevention and control of a specific pest—namely [...] Read more.
Forest pests and diseases can diminish forest biodiversity, damage forest ecosystem functions, and have an impact on water conservation. Therefore, it is necessary to analyze the interaction mechanism between plants and pests. In this paper, the prevention and control of a specific pest—namely the larva of Paranthrene tabaniformis (Rott.) (hereinafter referred to as larva)—are studied. Based on the invasion mechanism of the larva in poplar, we establish a delayed differential equation and analyze the existence and stability of equilibria. Next, we assess the existence of a Hopf bifurcation to determine the range of parameters that ensures that the equilibria are stable. Then, we select a set of parameters to verify the results of the stability analysis. Finally, we provide biological explanations and effective theoretical control methods for poplar pests and diseases. Full article
(This article belongs to the Special Issue The Theory of Differential Equations and Their Applications)
Show Figures

Figure 1

71 pages, 34184 KB  
Review
Editing Metabolism, Sex, and Microbiome: How Can We Help Poplar Resist Pathogens?
by Maxim A. Kovalev, Natalya S. Gladysh, Alina S. Bogdanova, Nadezhda L. Bolsheva, Mikhail I. Popchenko and Anna V. Kudryavtseva
Int. J. Mol. Sci. 2024, 25(2), 1308; https://doi.org/10.3390/ijms25021308 - 21 Jan 2024
Cited by 4 | Viewed by 3844
Abstract
Poplar (Populus) is a genus of woody plants of great economic value. Due to the growing economic importance of poplar, there is a need to ensure its stable growth by increasing its resistance to pathogens. Genetic engineering can create organisms with [...] Read more.
Poplar (Populus) is a genus of woody plants of great economic value. Due to the growing economic importance of poplar, there is a need to ensure its stable growth by increasing its resistance to pathogens. Genetic engineering can create organisms with improved traits faster than traditional methods, and with the development of CRISPR/Cas-based genome editing systems, scientists have a new highly effective tool for creating valuable genotypes. In this review, we summarize the latest research data on poplar diseases, the biology of their pathogens and how these plants resist pathogens. In the final section, we propose to plant male or mixed poplar populations; consider the genes of the MLO group, transcription factors of the WRKY and MYB families and defensive proteins BbChit1, LJAMP2, MsrA2 and PtDef as the most promising targets for genetic engineering; and also pay attention to the possibility of microbiome engineering. Full article
(This article belongs to the Special Issue CRISPR-Cas Systems and Genome Editing)
Show Figures

Graphical abstract

12 pages, 3901 KB  
Article
Transcriptome Analysis and Reactive Oxygen Species Detection Suggest Contrasting Molecular Mechanisms in Populus canadensis’ Response to Different Formae Speciales of Marssonina brunnea
by Yanfeng Zhang and Longyan Tian
Genes 2024, 15(1), 116; https://doi.org/10.3390/genes15010116 - 18 Jan 2024
Cited by 2 | Viewed by 1840
Abstract
Revealing plant–pathogen interactions is important for resistance breeding, but it remains a complex process that presents many challenges. Marssonina leaf spot of poplars (MLSP) is the main disease in poplars; in China, its pathogens consist of two formae speciales, namely, Marssonina brunnea f. sp. [...] Read more.
Revealing plant–pathogen interactions is important for resistance breeding, but it remains a complex process that presents many challenges. Marssonina leaf spot of poplars (MLSP) is the main disease in poplars; in China, its pathogens consist of two formae speciales, namely, Marssonina brunnea f. sp. Monogermtubi (MO) and M. brunnea f. sp. Multigermtubi (MU). However, the mechanism of the molecular interaction between poplars and the two formae speciales, especially for an incompatible system, remains unclear. In this study, we conducted transcriptome sequencing and reactive oxygen species (ROS) staining based on the interactions between Populus canadensis and the two formae speciales. The results show that the gene expression patterns of P. canadensis induced by MO and MU were significantly different, especially for the genes associated with biotic stress. Furthermore, MO and MU also triggered distinct ROS reactions of P. canadensis, and ROS (mainly H2O2) burst was only observed around the cells penetrated by MU. In conclusion, this study suggested that P. canadensis experienced different resistance reactions in response to the two formae speciales of M. brunnea, providing valuable insights for further understanding the host–pathogen interactions of MLSP. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

15 pages, 3687 KB  
Article
Microecological Shifts in the Rhizosphere of Perennial Large Trees and Seedlings in Continuous Cropping of Poplar
by Junkang Sui, Chenyu Li, Yinping Wang, Xiangyu Li, Rui Liu, Xuewen Hua, Xunli Liu and Hui Qi
Microorganisms 2024, 12(1), 58; https://doi.org/10.3390/microorganisms12010058 - 28 Dec 2023
Cited by 6 | Viewed by 1648
Abstract
The cultivation of poplar trees is hindered by persistent cropping challenges, resulting in reduced wood productivity and increased susceptibility to soil-borne diseases. These issues primarily arise from alterations in microbial structure and the infiltration of pathogenic fungi. To investigate the impact on soil [...] Read more.
The cultivation of poplar trees is hindered by persistent cropping challenges, resulting in reduced wood productivity and increased susceptibility to soil-borne diseases. These issues primarily arise from alterations in microbial structure and the infiltration of pathogenic fungi. To investigate the impact on soil fertility, we conducted an analysis using soil samples from both perennial poplar trees and three successive generations of continuously cropped poplar trees. The quantity and community composition of bacteria and fungi in the rhizosphere were assessed using the Illumina MiSeq platform. The objective of this study is to elucidate the impact of continuous cropping challenges on soil fertility and rhizosphere microorganisms in poplar trees, thereby establishing a theoretical foundation for investigating the mechanisms underlying these challenges. The study found that the total bacteria in the BT group is 0.42 times higher than the CK group, and the total fungi is 0.33 times lower than the CK group. The BT and CK groups presented relatively similar bacterial richness and diversity, while the indices showed a significant (p < 0.05) higher fungal richness and diversity in the CK group. The fractions of Bacillus were 2.22% and 2.41% in the BT and CK groups, respectively. There was a 35.29% fraction of Inocybe in the BT group, whereas this was barely observed in the CK group. The fractions of Geopora were 26.25% and 5.99%, respectively in the BT and CK groups. Modifying the microbial community structure in soil subjected to continuous cropping is deemed as the most effective approach to mitigate the challenges associated with this agricultural practice. Full article
(This article belongs to the Special Issue Rhizosphere Microbial Community 2.0)
Show Figures

Figure 1

13 pages, 4806 KB  
Article
Coniolariella gamsii Causes Poplar Leaf Spot Disease in Xinjiang, China
by Chuli Liu, Hailong Lu, Hongjin Chen, Shuikang Chen, Caixia Wang, Zhiyong Zhou and Rong Ma
Diversity 2023, 15(12), 1190; https://doi.org/10.3390/d15121190 - 30 Nov 2023
Cited by 1 | Viewed by 1953
Abstract
Populus laurifolia is one of the most valuable tree species in the world and an important silvicultural tree species in the Xinjiang Uygur Autonomous Region, China. In July 2017, an unreported brown leaf spot disease was observed on P. laurifolia in Altay City, [...] Read more.
Populus laurifolia is one of the most valuable tree species in the world and an important silvicultural tree species in the Xinjiang Uygur Autonomous Region, China. In July 2017, an unreported brown leaf spot disease was observed on P. laurifolia in Altay City, Xinjiang. The causal agent of this leaf spot disease was isolated, and Koch’s postulates were performed to confirm its pathogenicity. Based on a morphological characterization and phylogenetic analyses, the causal organism was identified to be a fungal species, Coniolariella gamsii. The optimum mycelial growth conditions for C. gamsii are on PLPDA (Populus leaves potato dextrose agar) medium, at 28 °C, in the dark. The sporulation time when using PLPDA medium (12 days) is much less than that for PDA medium (25 days). Pathogenicity tests revealed that C. gamsii can also infect two other Populus species (P. bolleana and P. tomentosa). This is the first report of C. gamsii causing brown leaf spot disease on P. laurifolia, and the optimum culture and sporulation conditions have also been optimized for the first time. This study provides a theoretical basis for the diagnosis of this disease and the monitoring of the disease’s occurrence and epidemic status. Full article
(This article belongs to the Special Issue Recent Advances in Plant-Pathogen Interactions - 2nd Edition)
Show Figures

Figure 1

Back to TopTop