Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (451)

Search Parameters:
Keywords = ponding of surface

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 10175 KB  
Article
Upwellings and Mantle Ponding Zones in the Lower Mantle Transition Zone (660–1000 km)
by Jean-Paul Montagner, Barbara Romanowicz, Mathurin Wamba and Gael Burgos
Geosciences 2025, 15(11), 413; https://doi.org/10.3390/geosciences15110413 - 30 Oct 2025
Viewed by 176
Abstract
Convective instabilities at various boundary layers in the earth’s mantle—including the core–mantle boundary, mantle transition zone and lithosphere-asthenosphere boundary— result in upwellings (mantle plumes) and downwellings (subducting slabs). While hotspot volcanism is traditionally linked to mantle plumes, their structure, origins, evolution, and death [...] Read more.
Convective instabilities at various boundary layers in the earth’s mantle—including the core–mantle boundary, mantle transition zone and lithosphere-asthenosphere boundary— result in upwellings (mantle plumes) and downwellings (subducting slabs). While hotspot volcanism is traditionally linked to mantle plumes, their structure, origins, evolution, and death remain subjects of ongoing debate. Recent progress in seismic tomography has revealed a complex plumbing system connecting the core–mantle boundary and the surface. In particular, recent seismic imaging results suggest the presence of large-scale ponding zones between 660 km and ∼1000 km, associated with several mantle plumes around the globe. The broad upwellings originating from the CMB spread laterally beneath the 660 km seismic discontinuity, forming extensive ponding zones several thousand kilometers wide and extending up from an approximately 1000 km depth. Similar ponding zones are also observed for downwellings, with stagnant subducting slabs, within the 660–1000 km depth range. Here, we review evidence for wide ponding zones characterized by low seismic velocities and anomalous radial and azimuthal anisotropies in light of recent high-resolution regional studies below La Réunion Island in the Indian Ocean and below St Helena/Ascension in the southern Atlantic Ocean. We review and discuss possible interpretations of these structures, as well as possible mineralogical, geodynamic implications and outlook for further investigations aiming to improve our understanding of the mantle plumbing system. Full article
(This article belongs to the Special Issue Seismology of the Dynamic Deep Earth)
Show Figures

Figure 1

19 pages, 2995 KB  
Article
Socio-Environmental Assessment of a Tailings Water Softening Technology for Reuse in Alternative Systems in Central Chile: An Approach to Industrial Ecology
by Marco A. Vargas, Luis A. Cisternas, Yasna Tapia and Ana Carvalho
Sustainability 2025, 17(20), 9269; https://doi.org/10.3390/su17209269 - 19 Oct 2025
Viewed by 383
Abstract
In north-central Chile, water reuse is essential due to the arid climate. Mining tailings ponds offer a promising opportunity for water recovery; however, the water quality often fails to meet the environmental standards for discharging liquid waste into marine and inland surface waters. [...] Read more.
In north-central Chile, water reuse is essential due to the arid climate. Mining tailings ponds offer a promising opportunity for water recovery; however, the water quality often fails to meet the environmental standards for discharging liquid waste into marine and inland surface waters. This study proposes a bioreactor-based technology for softening tailings water while also addressing the need to quantify its sustainability impacts. To achieve that, an evaluation of the environmental and social performance of the bioreactor is conducted, comparing it with established softening methods, using an industrial ecology approach. This evaluation aims to explore scalable alternatives for sustainable water management. Environmental impacts are quantified using the ReCiPe 2016, with data sourced from Ecoinvent v3.8 and Agrifootprint databases. Social risks are assessed through the Social Hotspot Database modeling in SimaPro 9.5.0.2. The results indicate that the bioreactor demonstrates greater sustainability compared to membrane-based systems, reducing greenhouse gas emissions by more than 95%. It also registers the lowest aggregated social risks due to its minimal energy intensity, lack of hazardous chemicals, and simplified infrastructure. In contrast, reverse osmosis, while delivering higher quality permeate, results in the highest environmental burdens and occupational hazards. This research validates the bioreactor as an enabler of industrial ecology, transforming tailings water into a circular resource. Full article
Show Figures

Figure 1

18 pages, 3000 KB  
Article
Effect of Shading Ratio on Japanese Sea Bass (Lateolabrax japonicus) and Asian Sea Bass (Lates calcarifer) Aquaculture
by Yao-Chen Lee, I-Pei Kuo, Yung-Ting Chung and Shuenn-Der Yang
Fishes 2025, 10(10), 490; https://doi.org/10.3390/fishes10100490 - 1 Oct 2025
Viewed by 396
Abstract
Floating photovoltaic arrays on ponds may alter thermal and optical conditions that are relevant to aquaculture performance. This study compared 0% and 40% surface shading in two outdoor earthen-pond trials, one with Asian sea bass (Lates calcarifer) and one with Japanese [...] Read more.
Floating photovoltaic arrays on ponds may alter thermal and optical conditions that are relevant to aquaculture performance. This study compared 0% and 40% surface shading in two outdoor earthen-pond trials, one with Asian sea bass (Lates calcarifer) and one with Japanese sea bass (Lateolabrax japonicus). Temperature was logged hourly and summarized as daily means; water quality was sampled biweekly; fish were measured repeatedly, with endpoint growth compared within species. The result shows that shading lowered pond temperature and the diurnal temperature range and reduced the number of days above species benchmark temperatures. Indicators associated with phytoplankton, including suspended solids and chlorophyll a, were lower under shading, whereas dissolved inorganic nutrients were higher. In the Japanese sea bass trial, dissolved oxygen was higher without shading. Final body weight did not differ between treatments within either trial, but survival was higher with 40% shading. Principal component analysis and permutational multivariate analysis of variance indicated a treatment signal in multivariate water quality. Because the trials occurred in different years with one pond per treatment, inference was restricted to contrasts within each species. Overall, moderate surface shading cooled ponds and altered water quality without reducing growth. Full article
(This article belongs to the Section Sustainable Aquaculture)
Show Figures

Figure 1

15 pages, 14032 KB  
Article
Preliminary Study on the Activity of the Rupture Zone in the Eastern Segment of the Ba Co Fault in Ngari Prefecture, Tibet
by Yunsheng Yao, Yanxiu Shao and Bo Zhang
Geosciences 2025, 15(10), 377; https://doi.org/10.3390/geosciences15100377 - 1 Oct 2025
Viewed by 282
Abstract
The lack of research on the slip behavior of the NW-trending faults in the central Tibetan Plateau constrains our understanding of the deformation models for this region. The Ba Co Fault, located in the central Tibetan Plateau, is a NW–SE-trending right-lateral strike-slip fault. [...] Read more.
The lack of research on the slip behavior of the NW-trending faults in the central Tibetan Plateau constrains our understanding of the deformation models for this region. The Ba Co Fault, located in the central Tibetan Plateau, is a NW–SE-trending right-lateral strike-slip fault. Its eastern section has been active in the Holocene and plays an important accommodating role in the northward compression and east–west extension of the Tibetan Plateau. This study presents a detailed analysis of the geomorphic features of the eastern section of the Ba Co Fault in the Ngari Prefecture of Tibet, precisely measuring the newly discovered surface rupture zone on its eastern side and preliminarily discussing the activity of the fault based on the optically stimulated luminescence (OSL) dating results. The results reveal that the eastern segment of the Ba Co Fault displays geomorphic evidence of offset, including displaced Holocene alluvial–fluvial fans at the mountain front and partially offset ridges. A series of pressure ridges, trenches, counter-slope scarps, and shutter ridge ponds have developed along the fault trace. Some gullies exhibit a cumulative dextral displacement of approximately 16–52 m. The newly discovered co-seismic surface rupture zone extends for a total length of ~21 km, with a width ranging from 30 to 102 m. Pressure ridges within the rupture zone reach heights of 0.3–5.5 m, while trenches exhibit depths of 0.6–15 m. Optically stimulated luminescence (OSL) dating constrains the timing of the surface-rupturing earthquake to after 5.73 ± 0.17 ka. The eastern segment of the Ba Co Fault experienced a NW-trending compressional deformation regime during the Holocene, manifesting as a transpressional dextral strike-slip fault. Magnitude estimation indicates that this segment possesses the potential to generate earthquakes of M ≥ 6. The regional tectonic analysis indicates that the activity of the eastern section of the Ba Co Fault is related to the shear model of the conjugate strike-slip fault zone in the central Tibetan Plateau and may play a boundary role between different shear zones. Full article
Show Figures

Figure 1

20 pages, 5845 KB  
Article
Study on Optimization of Structure of Porous Lateral Flow Storage Tank
by Qiwen Gao, Jiangang Feng, Hui Xu and Rui Zhang
Appl. Sci. 2025, 15(19), 10536; https://doi.org/10.3390/app151910536 - 29 Sep 2025
Viewed by 340
Abstract
Sediment buildup in storage tanks over extended operation periods may compromise their efficiency. To prevent pollutant deposition in storage tanks and enhance their hydraulic self-cleaning efficiency, this study addressed the unique structural configuration of lateral flow in storage tanks. Conducting numerical simulations to [...] Read more.
Sediment buildup in storage tanks over extended operation periods may compromise their efficiency. To prevent pollutant deposition in storage tanks and enhance their hydraulic self-cleaning efficiency, this study addressed the unique structural configuration of lateral flow in storage tanks. Conducting numerical simulations to investigate the hydraulic characteristics within storage tanks, an integrated approach combining physical experiments and response surface methodology (RSM) was employed to optimize flow distribution. Key findings reveal that tangential and normal velocity differences lead to flow distribution nonuniformity, exacerbated by increased inflow Froude number (Fr) and reduced relative weir height (hi). Based on the flow-splitting mechanism, an optimized “combined raised baffle” was proposed. Through single-factor experiments, Plackett–Burman (PB) screening, and RSM experiments, the optimal combination for maximal flow uniformity was determined as h1 = 1.27, h2 = 1.23, and h3 = 1.24, achieving an 87.18% improvement in Qy compared to the initial design. After optimization, the incoming flow pattern of the inlet channel of the storage pond was improved, and the difference between tangential and normal flow velocity in the flow field was significantly reduced. This research provides a novel approach and methodological paradigm for optimizing storage tanks and other hydraulic structures, demonstrating significant academic and engineering value. Full article
Show Figures

Figure 1

19 pages, 20899 KB  
Article
Spatiotemporal Dynamics of Roadside Water Accumulation and Its Hydrothermal Impacts on Permafrost Stability: Integrating UAV and GPR
by Minghao Liu, Bingyan Li, Yanhu Mu, Jing Luo, Fei Yin and Fan Yu
Remote Sens. 2025, 17(17), 3110; https://doi.org/10.3390/rs17173110 - 6 Sep 2025
Viewed by 911
Abstract
The Gonghe–Yushu Expressway (GYE) traverses the degrading permafrost region of the Qinghai–Xizang Plateau, where climate warming has resulted in widespread water ponding, posing significant engineering challenges. However, the spatiotemporal dynamics of this water accumulation and its impacts on permafrost embankment stability remain inadequately [...] Read more.
The Gonghe–Yushu Expressway (GYE) traverses the degrading permafrost region of the Qinghai–Xizang Plateau, where climate warming has resulted in widespread water ponding, posing significant engineering challenges. However, the spatiotemporal dynamics of this water accumulation and its impacts on permafrost embankment stability remain inadequately understood. This study integrates high-resolution unmanned aerial vehicle (UAV) remote sensing with ground-penetrating radar (GPR) to characterize the spatial patterns of water ponding and to quantify the spatial distribution, seasonal dynamics, and hydrothermal effects of roadside water on permafrost sections of the GYE. UAV-derived point cloud models, optical 3D models, and thermal infrared imagery reveal that approximately one-third of the 228 km study section of GYE exhibits water accumulation, predominantly occurring near the embankment toe in flat terrain or poorly drained areas. Seasonal monitoring showed a nearly 90% reduction in waterlogged areas from summer to winter, closely corresponding to climatic variations. Statistical analysis demonstrated significantly higher embankment distress rates in waterlogged areas (14.3%) compared to non-waterlogged areas (5.7%), indicating a strong correlation between surface water and accelerated permafrost degradation. Thermal analysis confirmed that waterlogged zones act as persistent heat sources, intensifying permafrost thaw and consequent embankment instability. GPR surveys identified notable subsurface disturbances beneath waterlogged sections, including a significant lowering of the permafrost table under the embankment and evidence of soil loosening due to hydrothermal erosion. These findings provide valuable insights into the spatiotemporal evolution of water accumulation along transportation corridors and inform the development of climate-adaptive strategies to mitigate water-induced risks in degrading permafrost regions. Full article
(This article belongs to the Special Issue Remote Sensing of Water Dynamics in Permafrost Regions)
Show Figures

Graphical abstract

21 pages, 3305 KB  
Article
A Mix-Design Method for the Specific Surface Area of Eco-Concrete Based on Statistical Analysis
by Guofa Dong, Jiale Zhang, Abdolhossein Naghizadeh, Chuangzhou Wu, Zhen Zhang and Xinyu Zhan
Sustainability 2025, 17(17), 7932; https://doi.org/10.3390/su17177932 - 3 Sep 2025
Viewed by 594
Abstract
Ecological concrete designed by empirical method does not consider the mesoscopic influence of aggregates, resulting in problems such as low strength, excessive porosity, and poor stability with different gradations, which severely restricts the development and application of ecological concrete. To achieve the refined [...] Read more.
Ecological concrete designed by empirical method does not consider the mesoscopic influence of aggregates, resulting in problems such as low strength, excessive porosity, and poor stability with different gradations, which severely restricts the development and application of ecological concrete. To achieve the refined design of ecological concrete, a mesoscopic specific surface area design method based on statistical analysis is proposed. First, the meso-aggregate model with sub-millimeter precision was established using a high-precision 3D scanner, and CloudCompare was used to calculate the specific surface area of the mesoscopic aggregate model, laying the foundation for the statistical analysis of specific surface area. Second, statistical analysis methods verified that the mean specific surface area of 20 aggregates from a single random sampling reliably estimates the mean of the overall aggregate population. Third, the optimal water–cement ratio was calculated considering the water absorption characteristics and the mortar-wrapping capacity of aggregates; standard cubic specimens were prepared using this optimal water–cement ratio, with aggregates evenly coated with mortar and no obvious mortar settlement. Fourth, the cubic compressive strength of specimens naturally cured for 7 days was tested; experimental results showed that the cubic compressive strength of specimens formed by this project’s design method increased by more than 30% compared to the empirical design method. The results indicate that using the average volume-specific surface area of 20 aggregates to assess the overall average volume-specific surface area of aggregates is both reliable and relatively efficient. Based on the reliable estimation of the overall average volume-specific surface area of aggregates derived from this method, measurements were taken of the thickness of water films adsorbed on dry aggregates and the thickness of mortar coatings on surface-dry aggregates. Further, the optimal water–cement ratio for eco-concrete was deduced, and a comprehensive set of feasible refined methods for eco-concrete mix proportion design was proposed. In contrast to the empirical method, concrete designed via the subject’s methodology exhibits a marked enhancement in compressive strength while retaining favorable pore characteristics—rendering it well-suited for deployment in the slope protection of reservoirs and ponds and thereby facilitating the realization of ecological slope protection functionality. Full article
(This article belongs to the Section Sustainable Materials)
Show Figures

Figure 1

21 pages, 12309 KB  
Article
Analysis of Surface Runoff and Ponding Infiltration Patterns Induced by Underground Block Caving Mining—A Case Study
by Shihui Jiao, Yong Zhao, Tianhong Yang, Xin Wen, Qingshan Ma, Qianbai Zhao and Honglei Liu
Appl. Sci. 2025, 15(17), 9516; https://doi.org/10.3390/app15179516 - 29 Aug 2025
Viewed by 495
Abstract
Surface subsidence induced by underground mining in mining areas significantly alters surface topography and hydrogeological conditions, forming depressions and fissures, thereby affecting regional runoff-ponding processes and groundwater infiltration patterns. Accurate assessment of infiltration volumes in subsidence zones under heavy rainfall is crucial for [...] Read more.
Surface subsidence induced by underground mining in mining areas significantly alters surface topography and hydrogeological conditions, forming depressions and fissures, thereby affecting regional runoff-ponding processes and groundwater infiltration patterns. Accurate assessment of infiltration volumes in subsidence zones under heavy rainfall is crucial for designing underground drainage systems and evaluating water-inrush risks in open-pit to underground transition mines. Taking the surface subsidence area of the Dahongshan Iron Mine as a case study, this paper proposes a rainfall infiltration calculation method based on the precise delineation of surface ponding-infiltration zones. By numerically simulating the subsidence range, the study divides the area into two distinct infiltration characteristic zones under different mining states: the caved zone and the water-conducting fracture zone. The rainfall infiltration volume under storm conditions was calculated separately for each zone. The results indicate that high-intensity mining-induced subsidence leads to a nonlinear surge in stormwater infiltration, primarily due to the significant expansion of the highly permeable caved zone. The core mechanism lies in the area expansion of the caved zone as a rapid infiltration channel, which dominates the overall infiltration capacity multiplication. These findings provide a scientific basis for the design of mine drainage systems and the prevention of water-inrush disasters. Full article
(This article belongs to the Special Issue Rock Mechanics and Mining Engineering)
Show Figures

Figure 1

29 pages, 11185 KB  
Article
Assessment of the Volume, Spatial Diversity, Functioning, and Structure of Sediments in Water Bodies Within the Słubia River Catchment (Myślibórz Lakeland, Poland)
by Witold Jucha, Aleksandra Bobrek, Weronika Ceglarek, Piotr Cybul, Izabela Grabiec, Nikola Kachnowicz, Michał Kijowski, Natalia Konderak, Paulina Mareczka, Daniel Okupny, Zofia Sotek, Izabela Rysak and Piotr Trzepla
Water 2025, 17(17), 2530; https://doi.org/10.3390/w17172530 - 26 Aug 2025
Viewed by 1183
Abstract
Water reservoirs play a crucial role in the environment in many aspects: hydrology, geochemistry, sediment lithology, geo- and biodiversity, landscape, etc. First of all, it is necessary to have accurate information about the spatial distribution of these objects in a given area to [...] Read more.
Water reservoirs play a crucial role in the environment in many aspects: hydrology, geochemistry, sediment lithology, geo- and biodiversity, landscape, etc. First of all, it is necessary to have accurate information about the spatial distribution of these objects in a given area to assess their size and functioning. Maps and contemporary spatial databases are often incomplete or outdated, especially in regard to small objects, of variable surface area and condition. This article uses the following approach: high-resolution terrain models derived from airborne laser scanning (ALS) were used for visual interpretation of extensive, flat depressions representing water body basins, thus determining the total number of objects, and classifying them as kettle holes, lakes, ponds, and other types of reservoirs (e.g., overbank basins, oxbow lakes). Using an aerial orthophotomap, the objects were subsequently verified as to how many basins are currently occupied by water bodies. The next step was to determine a number of topographic and morphometric parameters for each object in order to assess their functioning conditions. For selected objects, the assessment was expanded to include a geochemical and lithological analysis of the sediments. The study was conducted in the catchment of the Słubia River (136 km2), located in Central Europe, in northwestern Poland. In the Słubia catchment, a total of 931 water body basins were mapped. The dominant forms are kettle holes (<1 ha), representing nearly 80% of all objects. At present, kettle holes are largely devoid of water bodies and subject to a strong human impact. In addition to those, 118 lake basins were identified (>1 ha, the largest being Lake Morzycko, 360 ha), half of which are occupied by water reservoirs. Ponds and other reservoirs were represented by 37 and 47 objects, respectively. From the perspective of contemporary sediment-forming processes in the documented sedimentary basins, the most favorable conditions for biogenous sediment accumulation exist in the catchments of the upper and medium courses of the Słubia River valley. Although the lithological diversity and thickness of individual sediment types in the Słubia catchment represent local features, they corroborate the results of previous telmatologic research conducted in Myślibórz Lakeland. Full article
(This article belongs to the Section Water Erosion and Sediment Transport)
Show Figures

Graphical abstract

17 pages, 2439 KB  
Article
Why Does the Water Color in a Natural Pool Turn into Reddish-Brown “Pumpkin Soup”?
by Donglin Li, Mingyang Zhao, Qi Liu, Lizeng Duan, Huayu Li, Yun Zhang, Qingyan Gao, Haonan Zhang and Bofeng Qiu
Sustainability 2025, 17(16), 7255; https://doi.org/10.3390/su17167255 - 11 Aug 2025
Viewed by 753
Abstract
Inland aquatic ecosystems, encompassing lakes, reservoirs, and ponds, serve as vital repositories of water resources and provide essential ecological, social, and cultural services. Water color, a key indicator of water quality, reflects the complex interactions among physicochemical, biological, and environmental drivers. Heilong Pool [...] Read more.
Inland aquatic ecosystems, encompassing lakes, reservoirs, and ponds, serve as vital repositories of water resources and provide essential ecological, social, and cultural services. Water color, a key indicator of water quality, reflects the complex interactions among physicochemical, biological, and environmental drivers. Heilong Pool (HP) in Southwest China, which consists of a Clear Pool (CP) and a Turbid Pool (TP), has recently exhibited an anomalous reddish-brown “pumpkin soup” phenomenon in the CP, while the TP remains unchanged. This unusual phenomenon has raised widespread public concern regarding water resource security and its potential association with geological disasters. To elucidate the ecological and geochemical mechanisms of this phenomenon, we employed a multifaceted analytical approach that included assessing nutrient elements, quantifying heavy metal concentrations, analyzing dissolved substances, characterizing algal community composition, and applying δD-δ18O isotope analytical models. Our findings illustrated that while Bacillariophyta predominate (>79.3% relative abundance) in the algal community of HP, they were not the primary determinant of water color changes. Instead, Fe(OH)3 colloidal particles, originating from groundwater–surface water interactions and controlled by redox environment dynamics periodically, emerged as the principal factors of the reddish-brown discoloration. The genesis of the “pumpkin soup” water coloration was attributed to the precipitation-induced displacement of anoxic groundwater from confined karst conduits. Subsequent exfiltration and atmospheric exposure facilitate oxidative precipitation, forming authigenic rust-hued Fe(OH)3 colloidal complexes. This study provides new insights into the geochemical and hydrological mechanisms underlying water color anomalies in karst-dominated catchments. Full article
Show Figures

Figure 1

24 pages, 3057 KB  
Article
Spatiotemporal Extraction of Aquaculture Ponds Under Complex Surface Conditions Based on Deep Learning and Remote Sensing Indices
by Weirong Qin, Mohd Hasmadi Ismail, Mohammad Firuz Ramli, Junlin Deng and Ning Wu
Sustainability 2025, 17(16), 7201; https://doi.org/10.3390/su17167201 - 8 Aug 2025
Viewed by 648
Abstract
The extraction of water surfaces and aquaculture targets from remote sensing imagery has been challenging for operations under different regions and conditions, especially since the model parameters must be optimized manually. This study addresses the requirement for large-scale monitoring of global aquaculture using [...] Read more.
The extraction of water surfaces and aquaculture targets from remote sensing imagery has been challenging for operations under different regions and conditions, especially since the model parameters must be optimized manually. This study addresses the requirement for large-scale monitoring of global aquaculture using the Google Earth Engine (GEE) platform to extract high-accuracy, long-term data series of water surfaces such as aquaculture ponds. A Composite Water Index (CWI) method is proposed to distinguish water surfaces from non-water surfaces with remote sensing data recorded with Sentinel-2 satellite, thereby minimizing manual intervention in aquaculture management. The CWI approach is implemented based on three index algorithms of remote sensing analysis such as the Water Index (WI), the Modified Normalized Difference Water Index (MNDWI) and the Automated Water Extraction Index with Shadow (AWEIsh). The values of the three index methods are obtained from 1000 grid points extracted with an overlaid map with three layers. A ternary regression method is then introduced to generate the coefficients of CWI. Experimental results show that the classification accuracy of the WI is higher than that of the MNDWI and the AWEIsh, leading to a more significant coefficient weight in the ternary regression. When different numbers of mean distribution points are used to calculate the indices, it is found that the highest R2 value can be achieved when using the coefficient value corresponding to 600 points, and an accuracy of 94% can be achieved by the CWI method for water surface classification. The CWI algorithm can also be used to monitor the change in aquaculture ponds in Johor, Malaysia; it was discovered that the total aquaculture area has expanded by 23.27 km from 2016 to 2023. This study provides a potential means for long-term observation and tracking of changes in aquaculture ponds and water surfaces, as well as water management and water protection. Specifically, the proposed Composite Water Index (CWI) model achieved a mean mIoU of 0.84 and an overall pixel accuracy (oPA) of 0.94, which significantly outperformed WI (mIoU = 0.79), MNDWI (mIoU = 0.75), and AWEIsh (mIoU = 0.77), with p-values < 0.01. These improvements demonstrate the robustness and statistical superiority of the proposed approach in aquaculture pond extraction. Full article
Show Figures

Figure 1

21 pages, 3801 KB  
Article
Influence of Snow Redistribution and Melt Pond Schemes on Simulated Sea Ice Thickness During the MOSAiC Expedition
by Jiawei Zhao, Yang Lu, Haibo Zhao, Xiaochun Wang and Jiping Liu
J. Mar. Sci. Eng. 2025, 13(7), 1317; https://doi.org/10.3390/jmse13071317 - 9 Jul 2025
Viewed by 572
Abstract
The observations of atmospheric, oceanic, and sea ice data from the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition were used to analyze the influence of snow redistribution and melt-pond processes on the evolution of sea ice thickness (SIT) in [...] Read more.
The observations of atmospheric, oceanic, and sea ice data from the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition were used to analyze the influence of snow redistribution and melt-pond processes on the evolution of sea ice thickness (SIT) in 2019 and 2020. To mitigate the effect of missing atmospheric observations from the time of the expedition, we used ERA5 atmospheric reanalysis along the MOSAiC drift trajectory to force the single-column sea ice model Icepack. SIT simulations from six combinations of two melt-pond schemes and three snow-redistribution configurations of Icepack were compared with observations and analyzed to investigate the sources of model–observation discrepancies. The three snow-redistribution configurations are the bulk scheme, the snwITDrdg scheme, and one simulation conducted without snow redistribution. The bulk scheme describes snow loss from level ice to leads and open water, and snwITDrdg describes wind-driven snow redistribution and compaction. The two melt-pond schemes are the TOPO scheme and the LVL scheme, which differ in the distribution of melt water. The results show that Icepack without snow redistribution simulates excessive snow–ice formation, resulting in an SIT thicker than that observed in spring. Applying snow-redistribution schemes in Icepack reduces snow–ice formation while enhancing the congelation rate. The bulk snow-redistribution scheme improves the SIT simulation for winter and spring, while the bias is large in simulations using the snwITDrdg scheme. During the summer, Icepack underestimates the sea ice surface albedo, resulting in an underestimation of SIT at the end of simulation. The simulations using the TOPO scheme are characterized by a more realistic melt-pond evolution compared to those using the LVL scheme, resulting in a smaller bias in SIT simulation. Full article
(This article belongs to the Special Issue Recent Research on the Measurement and Modeling of Sea Ice)
Show Figures

Figure 1

15 pages, 2700 KB  
Article
Rainfall-Driven Nitrogen Dynamics in Catchment Ponds: Comparing Forest, Paddy Field, and Orchard Systems
by Mengdie Jiang, Yue Luo, Hengbin Xiao, Peng Xu, Ronggui Hu and Ronglin Su
Agriculture 2025, 15(14), 1459; https://doi.org/10.3390/agriculture15141459 - 8 Jul 2025
Viewed by 507
Abstract
The event scale method, employed for assessing changes in nitrogen (N) dynamics pre- and post-rain, provides insights into its transport to surface water systems. However, the relationships between N discharge in catchments dominated by different land uses and water quality remain unclear. This [...] Read more.
The event scale method, employed for assessing changes in nitrogen (N) dynamics pre- and post-rain, provides insights into its transport to surface water systems. However, the relationships between N discharge in catchments dominated by different land uses and water quality remain unclear. This study quantified variations in key N components in ponds across forest, paddy field, and orchard catchments before and after six rainfall events. The results showed that nitrate (NO3-N) was the main N component in the ponds. Post-rainfall, N concentrations increased, with ammonium (NH4+-N) and particulate nitrogen (PN) exhibiting significant elevations in agricultural ponds. Orchard catchments contributed the highest N load to the ponds, while forest catchments contributed the lowest. Following a heavy rainstorm event, total nitrogen (TN) loads in the ponds within forest, paddy field, and orchard catchments reached 6.68, 20.93, and 34.62 kg/ha, respectively. These loads were approximately three times higher than those observed after heavy rain events. The partial least squares structural equation model (PLS-SEM) identified that rainfall amount and changes in water volume were the dominant factors influencing N dynamics. Furthermore, the greater slopes of forest and orchard catchments promoted more N loss to the ponds post-rain. In paddy field catchments, larger catchment areas were associated with decreased N flux into the ponds, while larger pond surface areas minimized the variability in N concentration after rainfall events. In orchard catchment ponds, pond area was positively correlated with N concentrations and loads. This study elucidates the effects of rainfall characteristics and catchment heterogeneity on N dynamics in surface waters, offering valuable insights for developing pollution management strategies to mitigate rainfall-induced alterations. Full article
(This article belongs to the Special Issue Soil-Improving Cropping Systems for Sustainable Crop Production)
Show Figures

Figure 1

26 pages, 9572 KB  
Article
Geochemical Characteristics and Risk Assessment of PTEs in the Supergene Environment of the Former Zoige Uranium Mine
by Na Zhang, Zeming Shi, Chengjie Zou, Yinghai Zhu and Yun Hou
Toxics 2025, 13(7), 561; https://doi.org/10.3390/toxics13070561 - 30 Jun 2025
Cited by 1 | Viewed by 523
Abstract
Carbonaceous–siliceous–argillaceous rock-type uranium deposits, a major uranium resource in China, pose significant environmental risks due to heavy metal contamination. Geochemical investigations in the former Zoige uranium mine revealed elevated As, Cd, Cr, Cu, Ni, U, and Zn concentrations in soils and sediments, particularly [...] Read more.
Carbonaceous–siliceous–argillaceous rock-type uranium deposits, a major uranium resource in China, pose significant environmental risks due to heavy metal contamination. Geochemical investigations in the former Zoige uranium mine revealed elevated As, Cd, Cr, Cu, Ni, U, and Zn concentrations in soils and sediments, particularly at river confluences and downstream regions, attributed to leachate migration from ore bodies and tailings ponds. Surface samples exhibited high Cd bioavailability. The integrated BCR and mineral analysis reveals that Acid-soluble and reducible fractions of Ni, Cu, Zn, As, and Pb are governed by carbonate dissolution and Fe-Mn oxide dynamics via silicate weathering, while residual and oxidizable fractions show weak mineral-phase dependencies. Positive Matrix Factorization identified natural lithogenic, anthropogenic–natural composite, mining-related sources. Pollution assessments using geo-accumulation index and contamination factor demonstrated severe contamination disparities: soils showed extreme Cd pollution, moderate U, As, Zn contamination, and no Cr, Pb pollution (overall moderate risk); sediments exhibited extreme Cd pollution, moderate Ni, Zn, U levels, and negligible Cr, Pb impacts (overall extreme risk). USEPA health risk models indicated notable non-carcinogenic (higher in adults) and carcinogenic risks (higher in children) for both age groups. Ecological risk assessments categorized As, Cr, Cu, Ni, Pb, and Zn as low risk, contrasting with Cd (extremely high risk) and sediment-bound U (high risk). These findings underscore mining legacy as a critical environmental stressor and highlight the necessity for multi-source pollution mitigation strategies. Full article
(This article belongs to the Special Issue Assessment and Remediation of Heavy Metal Contamination in Soil)
Show Figures

Graphical abstract

19 pages, 8913 KB  
Article
The Effects of Nearshore Forest Thinning on Upland Habitat Use by Pond-Breeding Amphibians in a Montane Coniferous Forest
by Andrew McIntyre, Karen L. Pope, Adam K. Cummings, Shawn J. Wheelock and Jonah Piovia-Scott
Forests 2025, 16(7), 1059; https://doi.org/10.3390/f16071059 - 26 Jun 2025
Viewed by 600
Abstract
Forest thinning treatments are expanding in scope and scale to counter increasing wildfire risk. Such treatments are being applied in aquatic-adjacent forests that provide a critical habitat for sensitive amphibians, yet little is known about the impact of these treatments. We used a [...] Read more.
Forest thinning treatments are expanding in scope and scale to counter increasing wildfire risk. Such treatments are being applied in aquatic-adjacent forests that provide a critical habitat for sensitive amphibians, yet little is known about the impact of these treatments. We used a 5-year (2017–2021) before–after–control–impact experiment to investigate the effects of hand-thinning on pond-breeding amphibian activity around an ephemeral lake in the southern Cascade Range of California. We found that hand-thinning had no detectable negative effects on long-toed salamanders (Ambystoma macrodactylum) and western toads (Anaxyrus boreas) and significantly increased adult Sierran chorus frog (Pseudacris sierra) activity (χ2 = 4.70, df = 1, p = 0.030) in upland habitats. These results are consistent with pre-treatment habitat associations—chorus frog activity was higher when tree density was lower, and the treatment reduced tree density; adult long-toed salamanders and western toads were positively associated with canopy closure, which was not significantly reduced by the treatment. In addition, late-season surface activity of adult long-toed salamanders and chorus frogs was strongly associated with fall rain events when they tend to cluster very near the lake edge. Hand-thinning in aquatic-adjacent habitat may have minimal negative impacts, and even some positive impacts, on pond-breeding amphibians in coniferous forests, especially if treatments are not implemented during periods of high amphibian activity and do not substantially alter canopy closure. Full article
(This article belongs to the Section Forest Biodiversity)
Show Figures

Figure 1

Back to TopTop