Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = polysilsesquioxane backbone

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 40365 KB  
Article
Formation of Hybrid Spherical Silica Particles Using a Novel Alkoxy-Functional Polysilsesquioxane Macromonomer as a Precursor in an Acid-Catalyzed Sol-Gel Process
by Anna Kowalewska, Kamila Majewska-Smolarek, Agata S. Herc, Sławomir Kaźmierski and Joanna Bojda
Materials 2025, 18(14), 3357; https://doi.org/10.3390/ma18143357 - 17 Jul 2025
Viewed by 787
Abstract
The interest in macromolecular alkoxysilyl-functionalized hybrids (self-assembling or nanostructured), which could be used as precursors in biomimetic silica precipitation and for the synthesis of hollow spherical silica particles, is growing. Nevertheless, reports on all-organosilicon systems for bioinspired silica precipitation are scarce. Therefore, a [...] Read more.
The interest in macromolecular alkoxysilyl-functionalized hybrids (self-assembling or nanostructured), which could be used as precursors in biomimetic silica precipitation and for the synthesis of hollow spherical silica particles, is growing. Nevertheless, reports on all-organosilicon systems for bioinspired silica precipitation are scarce. Therefore, a new kind of polyalkoxysilane macromonomer–linear polysilsesquioxane (LPSQ) of ladder-like backbone, functionalized in side chains with trimethoxysilyl groups (LPSQ-R-Si(OMe)3), was designed following this approach. It was obtained by photoinitiated thiol-ene addition of 3-mercaptopropyltrimethoxysilane to the vinyl-functionalized polysilsesquioxane precursor, carried out in situ in tetraethoxysilane (TEOS). The mixture of LPSQ-R-Si(OMe)3 and TEOS (co-monomers) was used in a sol–gel process conducted under acidic conditions (0.5 M HCl/NaCl) in the presence of Pluronic® F-127 triblock copolymer as a template. LPSQ-R-Si(OMe)3 played a key role for the formation of microparticles of a spherical shape that were formed under the applied conditions, while their size (as low as 3–4 µm) was controlled by the stirring rate. The hybrid materials were hydrophobic and showed good thermal and oxidative stability. Introduction of zinc acetate (Zn(OAc)2) as an additive in the sol–gel process influenced the pH of the reaction medium, which resulted in structural reinforcement of the hybrid microparticles owing to more effective condensation of silanol groups and a relative increase of the content of SiO2. The proposed method shows directions in designing the properties of hybrid materials and can be translated to other silicon–organic polymers and oligomers that could be used to produce hollow silica particles. The established role of various factors (macromonomer structure, pH, and stirring rate) allows for the modulation of particle morphology. Full article
Show Figures

Graphical abstract

16 pages, 2940 KB  
Article
Organic–Inorganic Hybrid Ladder-like Polysilsesquioxanes as Compatibilized Nanofiller for Nanocomposite Materials
by Dominique Mouysset, Marion Rollet, Emily Bloch, Stéphane Gastaldi, Eric Besson and Trang N. T. Phan
Molecules 2024, 29(24), 5832; https://doi.org/10.3390/molecules29245832 - 11 Dec 2024
Cited by 1 | Viewed by 1350
Abstract
Nanocomposite materials composed of an organic matrix and an inorganic nanofiller have been the subject of intense research in recent years. Indeed, the synergy between these two phases confers improved properties thanks to an increased surface–volume ratio, which reinforces the interactions between the [...] Read more.
Nanocomposite materials composed of an organic matrix and an inorganic nanofiller have been the subject of intense research in recent years. Indeed, the synergy between these two phases confers improved properties thanks to an increased surface–volume ratio, which reinforces the interactions between the particles and the polymer matrix. These interactions depend on many factors such as the shape, size and dispersion of the nanoobjects. Polysilsesquioxanes (PSQs) are a silicon polymer family that offers different sizes, shapes and structures and possesses ceramics properties (i.e., high thermal and/or oxidative resistance and high chain rigidity), thanks to the siloxane backbone. In this article, we propose to incorporate polymer-grafted ladder polysilsesquioxanes (LPSQs) as nanofillers in thermoplastic matrices. Chloride-functionalized LPSQs were synthesized from two different precursors and thoroughly characterized by 1H, 13C and 29Si NMR, as well as by SEC and WAXS. The well-defined LPSQ was then converted into an azide analog. The resulting hybrid material was functionalized with poly(ethylene glycol) (PEG) chains and incorporated into poly(ethylene oxide) or poly(methyl methacrylate) matrices. We found that the viscoelastic properties of the nanocomposite materials were impacted by plasticizing or the reinforcement effect depending on the grafted PEG chain length. Full article
Show Figures

Figure 1

17 pages, 5738 KB  
Article
Effect of Synthetic Low-Odor Thiol-Based Hardeners Containing Hydroxyl and Methyl Groups on the Curing Behavior, Thermal, and Mechanical Properties of Epoxy Resins
by Young-Hun Kim, Jeong Ju Baek, Ki Cheol Chang, Baek Soo Park, Won-Gun Koh and Gyojic Shin
Polymers 2023, 15(13), 2947; https://doi.org/10.3390/polym15132947 - 4 Jul 2023
Cited by 4 | Viewed by 3282
Abstract
A novel thiol-functionalized polysilsesqioxane containing hydroxyl and methyl groups was synthesized using a simple acid-catalyzed sol–gel method to develop an epoxy hardener with low odor, low volatile organic compound (VOC) emissions, and fast curing at low temperatures. The synthesized thiol-based hardeners were characterized [...] Read more.
A novel thiol-functionalized polysilsesqioxane containing hydroxyl and methyl groups was synthesized using a simple acid-catalyzed sol–gel method to develop an epoxy hardener with low odor, low volatile organic compound (VOC) emissions, and fast curing at low temperatures. The synthesized thiol-based hardeners were characterized using Fourier transform infrared spectroscopy, nuclear magnetic resonance, thermogravimetric analysis (TGA), and gel permeation chromatography and compared with commercially available hardeners in terms of odor intensity and VOC emissions using the air dilution olfaction method and VOC analysis. The curing behavior and thermal and mechanical properties of the epoxy compounds prepared with the synthesized thiol-based hardeners were also evaluated. The results showed that synthetic thiol-based hardeners containing methyl and hydroxyl groups initiated the curing reaction of epoxy compounds at 53 °C and 45 °C, respectively. In contrast, commercial thiol-based hardeners initiated the curing reaction at 67 °C. Additionally, epoxy compounds with methyl-containing synthetic thiol-based hardeners exhibited higher TGA at a 5% weight loss temperature (>50 °C) and lap shear strength (20%) than those of the epoxy compounds with commercial thiol-based hardeners. Full article
(This article belongs to the Special Issue Research and Application of Polymer Adhesives)
Show Figures

Graphical abstract

24 pages, 21527 KB  
Article
Hybrid Fluorescent Poly(silsesquioxanes) with Amide- and Triazole-Containing Side Groups for Light Harvesting and Cation Sensing
by Maria Nowacka, Tomasz Makowski and Anna Kowalewska
Materials 2020, 13(20), 4491; https://doi.org/10.3390/ma13204491 - 10 Oct 2020
Cited by 10 | Viewed by 3126
Abstract
Hybrid polymers containing pyrene (Py) units bound to linear poly(silsesquioxane) (LPSQ) chains through flexible linkers containing heteroatoms (S, N, O) (LPSQ-triazole-Py and LPSQ-amide-Py) exhibit intense fluorescence emission, both in very diluted solutions (c = 10−8 mol/L) and in the solid state. The [...] Read more.
Hybrid polymers containing pyrene (Py) units bound to linear poly(silsesquioxane) (LPSQ) chains through flexible linkers containing heteroatoms (S, N, O) (LPSQ-triazole-Py and LPSQ-amide-Py) exhibit intense fluorescence emission, both in very diluted solutions (c = 10−8 mol/L) and in the solid state. The materials are thermally stable and exhibit good thin film forming abilities. Their optical and physicochemical properties were found to be strongly dependent on the structure of the side chains. Comparative studies with octahedral silsesquioxane (POSS) analogues (POSS-triazole-Py and POSS-amide-Py) emphasized the role of the specific double-strand architecture of the LPSQ backbone and distribution of side Py groups for their photo-luminescent properties. The new hybrid materials were tested as fluorescence energy donors to red-emitting dyes (Nile Red and Coumarine 6). All the silsesquioxanes studied were found to be able to transfer FL emission energy to Coumarin 6, irrespectively of their spatial structure. However, due to the differences in the wavelength range of FL emission, only LPSQ-triazole-Py were able to act as energy donors to Nile Red. The Py-grafted LPSQ may be also applied for development of soluble and highly emissive chemosensors. Their fluorescent nature was explored for the detection of Cu(II), Fe(III), Co(II), Ag(I), Hg(II), Mg(II), Ca(II), Pb(II) and Zn(II). The morphology of the side chains and hydrogen-bonding interactions influenced the sensing capacity of all the studied materials. Full article
Show Figures

Figure 1

20 pages, 6300 KB  
Article
SiO2/Ladder-Like Polysilsesquioxanes Nanocomposite Coatings: Playing with the Hybrid Interface for Tuning Thermal Properties and Wettability
by Massimiliano D’Arienzo, Sandra Dirè, Elkid Cobani, Sara Orsini, Barbara Di Credico, Carlo Antonini, Emanuela Callone, Francesco Parrino, Sara Dalle Vacche, Giuseppe Trusiano, Roberta Bongiovanni and Roberto Scotti
Coatings 2020, 10(10), 913; https://doi.org/10.3390/coatings10100913 - 23 Sep 2020
Cited by 17 | Viewed by 5378
Abstract
The present study explores the exploitation of ladder-like polysilsesquioxanes (PSQs) bearing reactive functional groups in conjunction with SiO2 nanoparticles (NPs) to produce UV-curable nanocomposite coatings with increased hydrophobicity and good thermal resistance. In detail, a medium degree regular ladder-like structured poly (methacryloxypropyl) [...] Read more.
The present study explores the exploitation of ladder-like polysilsesquioxanes (PSQs) bearing reactive functional groups in conjunction with SiO2 nanoparticles (NPs) to produce UV-curable nanocomposite coatings with increased hydrophobicity and good thermal resistance. In detail, a medium degree regular ladder-like structured poly (methacryloxypropyl) silsesquioxane (LPMASQ) and silica NPs, either naked or functionalized with a methacrylsilane (SiO2@TMMS), were blended and then irradiated in the form of a film. Material characterization evidenced significant modifications of the structural organization of the LPMASQ backbone and, in particular, a rearrangement of the silsesquioxane chains at the interface upon introduction of the functionalized silica NPs. This leads to remarkable thermal resistance and enhanced hydrophobic features in the final nanocomposite. The results suggest that the adopted strategy, in comparison with mostly difficult and expensive surface modification and structuring protocols, may provide tailored functional properties without modifying the surface roughness or the functionalities of silsesquioxanes, but simply tuning their interactions at the hybrid interface with silica fillers. Full article
(This article belongs to the Special Issue Design of Functional Coatings by Chemical Methods)
Show Figures

Figure 1

12 pages, 2107 KB  
Article
High-Performance and Simply-Synthesized Ladder-Like Structured Methacrylate Siloxane Hybrid Material for Flexible Hard Coating
by Yun Hyeok Kim, Gwang-Mun Choi, Jin Gyu Bae, Yong Ho Kim and Byeong-Soo Bae
Polymers 2018, 10(4), 449; https://doi.org/10.3390/polym10040449 - 17 Apr 2018
Cited by 42 | Viewed by 11886
Abstract
A high performance ladder-like structured methacrylate siloxane hybrid material (LMSH) was fabricated via simple hydrolytic sol–gel reaction, followed by free-radical polymerization. A structurally ordered siloxane backbone, the ladder-like structure, which is an essential factor for high performance, could be achieved by a short [...] Read more.
A high performance ladder-like structured methacrylate siloxane hybrid material (LMSH) was fabricated via simple hydrolytic sol–gel reaction, followed by free-radical polymerization. A structurally ordered siloxane backbone, the ladder-like structure, which is an essential factor for high performance, could be achieved by a short period of sol–gel reaction in only 4 h. This results in superior optical (Transmittance > 90% at 550 nm), thermal (T5 wt % decomposition > 400 ), mechanical properties(elastic recovery = 0.86, hardness = 0.6 GPa) compared to the random- and even commercialized cage-structured silsesquioxane, which also has ordered structure. It was investigated that the fabricated ladder-like structured MSH showed the highest overall density of organic/inorganic co-networks that are originated from highly ordered siloxane network, along with high conversion rate of polymerizable methacrylate groups. Our findings suggest a potential of the ladder-like structured MSH as a powerful alternative for the methacrylate polysilsesquioxane, which can be applied to thermally stable and flexible optical coatings, even with an easier and simpler preparation process. Full article
(This article belongs to the Collection Silicon-Containing Polymeric Materials)
Show Figures

Graphical abstract

Back to TopTop