Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = polysaccharide deacetylase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1834 KiB  
Article
Characterization of the Neurospora crassa Galactosaminogalactan Biosynthetic Pathway
by Apurva Chatrath, Protyusha Dey, Kevin Greeley, Gabriela Maciel, Lei Huang, Christian Heiss, Ian Black, Parastoo Azadi and Stephen J. Free
Microorganisms 2024, 12(8), 1509; https://doi.org/10.3390/microorganisms12081509 - 23 Jul 2024
Cited by 1 | Viewed by 1406
Abstract
The Neurospora crassa genome has a gene cluster for the synthesis of galactosaminogalactan (GAG). The gene cluster includes the following: (1) UDP-glucose-4-epimerase to convert UDP-glucose and UDP-N-acetylglucosamine to UDP-galactose and UDP-N-acetylgalactosamine (NCU05133), (2) GAG synthase for the synthesis of [...] Read more.
The Neurospora crassa genome has a gene cluster for the synthesis of galactosaminogalactan (GAG). The gene cluster includes the following: (1) UDP-glucose-4-epimerase to convert UDP-glucose and UDP-N-acetylglucosamine to UDP-galactose and UDP-N-acetylgalactosamine (NCU05133), (2) GAG synthase for the synthesis of an acetylated GAG (NCU05132), (3) GAG deacetylase (/NCW-1/NCU05137), (4) GH135-1, a GAG hydrolase with specificity for N-acetylgalactosamine-containing GAG (NCU05135), and (5) GH114-1, a galactosaminidase with specificity for galactosamine-containing GAG (NCU05136). The deacetylase was previously shown to be a major cell wall glycoprotein and given the name of NCW-1 (non-GPI anchored cell wall protein-1). Characterization of the polysaccharides found in the growth medium from the wild type and the GAG synthase mutant demonstrates that there is a major reduction in the levels of polysaccharides containing galactosamine and N-acetylgalactosamine in the mutant growth medium, providing evidence that the synthase is responsible for the production of a GAG. The analysis also indicates that there are other galactose-containing polysaccharides produced by the fungus. Phenotypic characterization of wild-type and mutant isolates showed that deacetylated GAG from the wild type can function as an adhesin to a glass surface and provides the fungal mat with tensile strength, demonstrating that the deacetylated GAG functions as an intercellular adhesive. The acetylated GAG produced by the deacetylase mutant was found to function as an adhesive for chitin, alumina, celite (diatomaceous earth), activated charcoal, and wheat leaf particulates. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Figure 1

23 pages, 1592 KiB  
Review
The Role of Short Chain Fatty Acids in Inflammation and Body Health
by Yuhang Du, Changhao He, Yongcheng An, Yan Huang, Huilin Zhang, Wanxin Fu, Menglu Wang, Ziyi Shan, Jiamei Xie, Yang Yang and Baosheng Zhao
Int. J. Mol. Sci. 2024, 25(13), 7379; https://doi.org/10.3390/ijms25137379 - 5 Jul 2024
Cited by 82 | Viewed by 11861
Abstract
Short chain fatty acids (SCFAs), mainly including acetate, propionate and butyrate, are produced by intestinal bacteria during the fermentation of partially digested and indigestible polysaccharides. SCFAs play an important role in regulating intestinal energy metabolism and maintaining the homeostasis of the intestinal environment [...] Read more.
Short chain fatty acids (SCFAs), mainly including acetate, propionate and butyrate, are produced by intestinal bacteria during the fermentation of partially digested and indigestible polysaccharides. SCFAs play an important role in regulating intestinal energy metabolism and maintaining the homeostasis of the intestinal environment and also play an important regulatory role in organs and tissues outside the gut. In recent years, many studies have shown that SCFAs can regulate inflammation and affect host health, and two main signaling mechanisms have also been identified: the activation of G-protein coupled receptors (GPCRs) and inhibition of histone deacetylase (HDAC). In addition, a growing body of evidence highlights the importance of every SCFA in influencing health maintenance and disease development. In this review, we summarized the recent advances concerning the biological properties of SCFAs and their signaling pathways in inflammation and body health. Hopefully, it can provide a systematic theoretical basis for the nutritional prevention and treatment of human diseases. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

18 pages, 8553 KiB  
Article
Variations of the NodB Architecture Are Attuned to Functional Specificities into and beyond the Carbohydrate Esterase Family 4
by Alexis S. Molfetas, Nikiforos Boutris, Anastasia Tomatsidou, Michael Kokkinidis and Vasiliki E. Fadouloglou
Biomolecules 2024, 14(3), 325; https://doi.org/10.3390/biom14030325 - 8 Mar 2024
Cited by 1 | Viewed by 1711
Abstract
Enzymes of the carbohydrate esterase family 4 (CE4) deacetylate a broad range of substrates, including linear, branched and mesh-like polysaccharides. Although they are enzymes of variable amino acid sequence length, they all comprise the conserved catalytic domain NodB. NodB carries the metal binding [...] Read more.
Enzymes of the carbohydrate esterase family 4 (CE4) deacetylate a broad range of substrates, including linear, branched and mesh-like polysaccharides. Although they are enzymes of variable amino acid sequence length, they all comprise the conserved catalytic domain NodB. NodB carries the metal binding and active site residues and is characterized by a set of conserved sequence motifs, which are linked to the deacetylation activity. Besides a non-structured, flexible peptide of variable length that precedes NodB, several members of the CE4 family contain additional domains whose function or contribution to substrate specificity are not efficiently characterized. Evidence suggests that CE4 family members comprising solely the NodB domain have developed features linked to a variety of substrate specificities. To understand the NodB-based substrate diversity within the CE4 family, we perform a comparative analysis of all NodB domains structurally characterized so far. We show that amino acid sequence variations, topology diversities and excursions away from the framework structure give rise to different NodB domain classes associated with different substrate specificities and particular functions within and beyond the CE4 family. Our work reveals a link between specific NodB domain characteristics and substrate recognition. Thus, the details of the fold are clarified, and the structural basis of its variations is deciphered and associated with function. The conclusions of this work are also used to make predictions and propose specific functions for biochemically/enzymatically uncharacterized NodB-containing proteins, which have generally been considered as putative CE4 deacetylases. We show that some of them probably belong to different enzymatic families. Full article
(This article belongs to the Collection Feature Papers in Molecular Biophysics Section)
Show Figures

Figure 1

16 pages, 4161 KiB  
Article
Novel Chitin Deacetylase from Thalassiosira weissflogii Highlights the Potential for Chitin Derivative Production
by Mengzhen Cheng, Zhanru Shao, Xin Wang, Chang Lu, Shuang Li and Delin Duan
Metabolites 2023, 13(3), 429; https://doi.org/10.3390/metabo13030429 - 15 Mar 2023
Cited by 6 | Viewed by 2867
Abstract
β-Chitin is an important carbon fixation product of diatoms, and is the most abundant nitrogen-containing polysaccharide in the ocean. It has potential for widespread application, but the characterization of chitin-related enzymes from β-chitin producers has rarely been reported. In this study, a chitin [...] Read more.
β-Chitin is an important carbon fixation product of diatoms, and is the most abundant nitrogen-containing polysaccharide in the ocean. It has potential for widespread application, but the characterization of chitin-related enzymes from β-chitin producers has rarely been reported. In this study, a chitin deacetylase (TwCDA) was retrieved from the Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP) database and was heterologously expressed in vitro for functional analysis. The results showed that both the full-length sequence (TwCDA) and the N-terminal truncated sequence (TwCDA-S) had chitin deacetylase and chitinolytic activities after expression in Escherichia coli. High-performance liquid chromatography (HPLC) and gas chromatography–mass spectrometry (GC-MS) indicated that TwCDA and TwCDA-S could catalyze the deacetylation of oligosaccharide (GlcNAc)5. TwCDA had higher deacetylase activity, and also catalyzed the deacetylation of the β-chitin polymer. A dinitrosalicylic acid (DNS) assay showed that TwCDA-S had high chitinolytic activity for (GlcNAc)5, and the optimal reaction temperature was 35 °C. Liquid chromatography combined with time-of-flight mass spectrometry (LC-coTOF-MS) detected the formation of a N-acetylglucosamine monomer (C8H15NO6) in the reaction mixture. Altogether, we isolated a chitin deacetylase from a marine diatom, which can catalyze the deacetylation and degradation of chitin and chitin oligosaccharides. The relevant results lay a foundation for the internal regulation mechanism of chitin metabolism in diatoms and provide a candidate enzyme for the green industrial preparation of chitosan and chitin oligosaccharides. Full article
Show Figures

Graphical abstract

14 pages, 1773 KiB  
Article
Identification of Compounds Preventing A. fumigatus Biofilm Formation by Inhibition of the Galactosaminogalactan Deacetylase Agd3
by Carla I. I. Seegers, Danielle J. Lee, Patricia Zarnovican, Susanne H. Kirsch, Rolf Müller, Thomas Haselhorst and Françoise H. Routier
Int. J. Mol. Sci. 2023, 24(3), 1851; https://doi.org/10.3390/ijms24031851 - 17 Jan 2023
Cited by 2 | Viewed by 4012
Abstract
The opportunistic fungus Aspergillus fumigatus causes a set of diseases ranging from allergy to lethal invasive mycosis. Within the human airways, A. fumigatus is embedded in a biofilm that forms not only a barrier against the host immune defense system, but also creates [...] Read more.
The opportunistic fungus Aspergillus fumigatus causes a set of diseases ranging from allergy to lethal invasive mycosis. Within the human airways, A. fumigatus is embedded in a biofilm that forms not only a barrier against the host immune defense system, but also creates a physical barrier protecting the fungi from chemicals such as antifungal drugs. Novel therapeutic strategies aim at combining drugs that inhibit biofilm synthesis or disrupt existing biofilm with classical antimicrobials. One of the major constituents of A. fumigatus biofilm is the polysaccharide galactosaminogalactan (GAG) composed of α1,4-linked N-acetylgalactosamine, galactosamine, and galactose residues. GAG is synthesized on the cytosolic face of the plasma membrane and is extruded in the extracellular space, where it is partially deacetylated. The deacetylase Agd3 that mediates this last step is essential for the biofilm formation and full virulence of the fungus. In this work, a previously described enzyme-linked lectin assay, based on the adhesion of deacetylated GAG to negatively charged plates and quantification with biotinylated soybean agglutinin was adapted to screen microbial natural compounds, as well as compounds identified in in silico screening of drug libraries. Actinomycin X2, actinomycin D, rifaximin, and imatinib were shown to inhibit Agd3 activity in vitro. At a concentration of 100 µM, actinomycin D and imatinib showed a clear reduction in the biofilm biomass without affecting the fungal growth. Finally, imatinib reduced the virulence of A. fumigatus in a Galleria mellonella infection model in an Agd3-dependent manner. Full article
(This article belongs to the Special Issue Antivirulence Strategies to Overcome Antimicrobial Resistance)
Show Figures

Figure 1

18 pages, 3660 KiB  
Article
Pectobacterium versatile Bacteriophage Possum: A Complex Polysaccharide-Deacetylating Tail Fiber as a Tool for Host Recognition in Pectobacterial Schitoviridae
by Anna A. Lukianova, Peter V. Evseev, Mikhail M. Shneider, Elena A. Dvoryakova, Anna D. Tokmakova, Anna M. Shpirt, Marsel R. Kabilov, Ekaterina A. Obraztsova, Alexander S. Shashkov, Alexander N. Ignatov, Yuriy A. Knirel, Fevzi S.-U. Dzhalilov and Konstantin A. Miroshnikov
Int. J. Mol. Sci. 2022, 23(19), 11043; https://doi.org/10.3390/ijms231911043 - 20 Sep 2022
Cited by 7 | Viewed by 2971
Abstract
Novel, closely related phages Possum and Horatius infect Pectobacterium versatile, a phytopathogen causing soft rot in potatoes and other essential plants. Their properties and genomic composition define them as N4-like bacteriophages of the genus Cbunavirus, a part of a recently formed [...] Read more.
Novel, closely related phages Possum and Horatius infect Pectobacterium versatile, a phytopathogen causing soft rot in potatoes and other essential plants. Their properties and genomic composition define them as N4-like bacteriophages of the genus Cbunavirus, a part of a recently formed family Schitoviridae. It is proposed that the adsorption apparatus of these phages consists of tail fibers connected to the virion through an adapter protein. Tail fibers possess an enzymatic domain. Phage Possum uses it to deacetylate O-polysaccharide on the surface of the host strain to provide viral attachment. Such an infection mechanism is supposed to be common for all Cbunavirus phages and this feature should be considered when designing cocktails for phage control of soft rot. Full article
(This article belongs to the Special Issue Bacteriophage—Molecular Studies 4.0)
Show Figures

Figure 1

27 pages, 2621 KiB  
Article
Comparative Genome Analyses of Plant Rust Pathogen Genomes Reveal a Confluence of Pathogenicity Factors to Quell Host Plant Defense Responses
by Raja Sekhar Nandety, Upinder S. Gill, Nick Krom, Xinbin Dai, Yibo Dong, Patrick X. Zhao and Kirankumar S. Mysore
Plants 2022, 11(15), 1962; https://doi.org/10.3390/plants11151962 - 28 Jul 2022
Cited by 5 | Viewed by 3320
Abstract
Switchgrass rust caused by Puccinia novopanici (P. novopanici) has the ability to significantly affect the biomass yield of switchgrass, an important biofuel crop in the United States. A comparative genome analysis of P. novopanici with rust pathogen genomes infecting monocot [...] Read more.
Switchgrass rust caused by Puccinia novopanici (P. novopanici) has the ability to significantly affect the biomass yield of switchgrass, an important biofuel crop in the United States. A comparative genome analysis of P. novopanici with rust pathogen genomes infecting monocot cereal crops wheat, barley, oats, maize and sorghum revealed the presence of larger structural variations contributing to their genome sizes. A comparative alignment of the rust pathogen genomes resulted in the identification of collinear and syntenic relationships between P. novopanici and P. sorghi; P. graminis tritici 21–0 (Pgt 21) and P. graminis tritici Ug99 (Pgt Ug99) and between Pgt 21 and P. triticina (Pt). Repeat element analysis indicated a strong presence of retro elements among different Puccinia genomes, contributing to the genome size variation between ~1 and 3%. A comparative look at the enriched protein families of Puccinia spp. revealed a predominant role of restriction of telomere capping proteins (RTC), disulfide isomerases, polysaccharide deacetylases, glycoside hydrolases, superoxide dismutases and multi-copper oxidases (MCOs). All the proteomes of Puccinia spp. share in common a repertoire of 75 secretory and 24 effector proteins, including glycoside hydrolases cellobiohydrolases, peptidyl-propyl isomerases, polysaccharide deacetylases and protein disulfide-isomerases, that remain central to their pathogenicity. Comparison of the predicted effector proteins from Puccinia spp. genomes to the validated proteins from the Pathogen–Host Interactions database (PHI-base) resulted in the identification of validated effector proteins PgtSR1 (PGTG_09586) from P. graminis and Mlp124478 from Melampsora laricis across all the rust pathogen genomes. Full article
(This article belongs to the Special Issue Plant-Microbe Interactions 2022)
Show Figures

Figure 1

24 pages, 3249 KiB  
Review
Biodegradation and Prospect of Polysaccharide from Crustaceans
by Shuting Qiu, Shipeng Zhou, Yue Tan, Jiayao Feng, Yan Bai, Jincan He, Hua Cao, Qishi Che, Jiao Guo and Zhengquan Su
Mar. Drugs 2022, 20(5), 310; https://doi.org/10.3390/md20050310 - 2 May 2022
Cited by 29 | Viewed by 5120
Abstract
Marine crustacean waste has not been fully utilized and is a rich source of chitin. Enzymatic degradation has attracted the wide attention of researchers due to its unique biocatalytic ability to protect the environment. Chitosan (CTS) and its derivative chitosan oligosaccharides (COSs) with [...] Read more.
Marine crustacean waste has not been fully utilized and is a rich source of chitin. Enzymatic degradation has attracted the wide attention of researchers due to its unique biocatalytic ability to protect the environment. Chitosan (CTS) and its derivative chitosan oligosaccharides (COSs) with various biological activities can be obtained by the enzymatic degradation of chitin. Many studies have shown that chitosan and its derivatives, chitosan oligosaccharides (COSs), have beneficial properties, including lipid-lowering, anti-inflammatory and antitumor activities, and have important application value in the medical treatment field, the food industry and agriculture. In this review, we describe the classification, biochemical characteristics and catalytic mechanisms of the major degrading enzymes: chitinases, chitin deacetylases (CDAs) and chitosanases. We also introduced the technology for enzymatic design and modification and proposed the current problems and development trends of enzymatic degradation of chitin polysaccharides. The discussion on the characteristics and catalytic mechanism of chitosan-degrading enzymes will help to develop new types of hydrolases by various biotechnology methods and promote their application in chitosan. Full article
(This article belongs to the Special Issue Marine Oligosaccharides and Polysaccharides 2.0)
Show Figures

Figure 1

15 pages, 3414 KiB  
Article
Novel Acinetobacter baumannii Bacteriophage Aristophanes Encoding Structural Polysaccharide Deacetylase
by Olga Yu. Timoshina, Mikhail M. Shneider, Peter V. Evseev, Anastasia S. Shchurova, Andrey A. Shelenkov, Yulia V. Mikhaylova, Olga S. Sokolova, Anastasia A. Kasimova, Nikolay P. Arbatsky, Andrey S. Dmitrenok, Yuriy A. Knirel, Konstantin A. Miroshnikov and Anastasia V. Popova
Viruses 2021, 13(9), 1688; https://doi.org/10.3390/v13091688 - 26 Aug 2021
Cited by 20 | Viewed by 4076
Abstract
Acinetobacter baumannii appears to be one of the most crucial nosocomial pathogens. A possible component of antimicrobial therapy for infections caused by extremely drug-resistant A. baumannii strains may be specific lytic bacteriophages or phage-derived enzymes. In the present study, we observe the biological [...] Read more.
Acinetobacter baumannii appears to be one of the most crucial nosocomial pathogens. A possible component of antimicrobial therapy for infections caused by extremely drug-resistant A. baumannii strains may be specific lytic bacteriophages or phage-derived enzymes. In the present study, we observe the biological features, genomic organization, and phage–host interaction strategy of novel virulent bacteriophage Aristophanes isolated on A. baumannii strain having K26 capsular polysaccharide structure. According to phylogenetic analysis phage Aristophanes can be classified as a representative of a new distinct genus of the subfamily Beijerinckvirinae of the family Autographiviridae. This is the first reported A. baumannii phage carrying tailspike deacetylase, which caused O-acetylation of one of the K26 sugar residues. Full article
(This article belongs to the Special Issue Advances in Bacteriophage Biology)
Show Figures

Figure 1

27 pages, 3035 KiB  
Review
Enzymatic Modification of Native Chitin and Conversion to Specialty Chemical Products
by Nathanael D. Arnold, Wolfram M. Brück, Daniel Garbe and Thomas B. Brück
Mar. Drugs 2020, 18(2), 93; https://doi.org/10.3390/md18020093 - 30 Jan 2020
Cited by 66 | Viewed by 11891
Abstract
Chitin is one of the most abundant biomolecules on earth, occurring in crustacean shells and cell walls of fungi. While the polysaccharide is threatening to pollute coastal ecosystems in the form of accumulating shell-waste, it has the potential to be converted into highly [...] Read more.
Chitin is one of the most abundant biomolecules on earth, occurring in crustacean shells and cell walls of fungi. While the polysaccharide is threatening to pollute coastal ecosystems in the form of accumulating shell-waste, it has the potential to be converted into highly profitable derivatives with applications in medicine, biotechnology, and wastewater treatment, among others. Traditionally this is still mostly done by the employment of aggressive chemicals, yielding low quality while producing toxic by-products. In the last decades, the enzymatic conversion of chitin has been on the rise, albeit still not on the same level of cost-effectiveness compared to the traditional methods due to its multi-step character. Another severe drawback of the biotechnological approach is the highly ordered structure of chitin, which renders it nigh impossible for most glycosidic hydrolases to act upon. So far, only the Auxiliary Activity 10 family (AA10), including lytic polysaccharide monooxygenases (LPMOs), is known to hydrolyse native recalcitrant chitin, which spares the expensive first step of chemical or mechanical pre-treatment to enlarge the substrate surface. The main advantages of enzymatic conversion of chitin over conventional chemical methods are the biocompability and, more strikingly, the higher product specificity, product quality, and yield of the process. Products with a higher Mw due to no unspecific depolymerisation besides an exactly defined degree and pattern of acetylation can be yielded. This provides a new toolset of thousands of new chitin and chitosan derivatives, as the physio-chemical properties can be modified according to the desired application. This review aims to provide an overview of the biotechnological tools currently at hand, as well as challenges and crucial steps to achieve the long-term goal of enzymatic conversion of native chitin into specialty chemical products. Full article
(This article belongs to the Special Issue Marine Chitin 2019)
Show Figures

Figure 1

22 pages, 3201 KiB  
Review
Conversion of Chitin to Defined Chitosan Oligomers: Current Status and Future Prospects
by Christian Schmitz, Lilian González Auza, David Koberidze, Stefan Rasche, Rainer Fischer and Luisa Bortesi
Mar. Drugs 2019, 17(8), 452; https://doi.org/10.3390/md17080452 - 1 Aug 2019
Cited by 147 | Viewed by 12336
Abstract
Chitin is an abundant polysaccharide primarily produced as an industrial waste stream during the processing of crustaceans. Despite the limited applications of chitin, there is interest from the medical, agrochemical, food and cosmetic industries because it can be converted into chitosan and partially [...] Read more.
Chitin is an abundant polysaccharide primarily produced as an industrial waste stream during the processing of crustaceans. Despite the limited applications of chitin, there is interest from the medical, agrochemical, food and cosmetic industries because it can be converted into chitosan and partially acetylated chitosan oligomers (COS). These molecules have various useful properties, including antimicrobial and anti-inflammatory activities. The chemical production of COS is environmentally hazardous and it is difficult to control the degree of polymerization and acetylation. These issues can be addressed by using specific enzymes, particularly chitinases, chitosanases and chitin deacetylases, which yield better-defined chitosan and COS mixtures. In this review, we summarize recent chemical and enzymatic approaches for the production of chitosan and COS. We also discuss a design-of-experiments approach for process optimization that could help to enhance enzymatic processes in terms of product yield and product characteristics. This may allow the production of novel COS structures with unique functional properties to further expand the applications of these diverse bioactive molecules. Full article
(This article belongs to the Collection Bioactive Compounds from Marine Invertebrates)
Show Figures

Figure 1

23 pages, 9807 KiB  
Article
Structural and Evolutionary Insights within the Polysaccharide Deacetylase Gene Family of Bacillus anthracis and Bacillus cereus
by Athena Andreou, Petros Giastas, Elias Christoforides and Elias E. Eliopoulos
Genes 2018, 9(8), 386; https://doi.org/10.3390/genes9080386 - 31 Jul 2018
Cited by 15 | Viewed by 7399
Abstract
Functional and folding constraints impose interdependence between interacting sites along the protein chain that are envisaged through protein sequence evolution. Studying the influence of structure in phylogenetic models requires detailed and reliable structural models. Polysaccharide deacetylases (PDAs), members of the carbohydrate esterase family [...] Read more.
Functional and folding constraints impose interdependence between interacting sites along the protein chain that are envisaged through protein sequence evolution. Studying the influence of structure in phylogenetic models requires detailed and reliable structural models. Polysaccharide deacetylases (PDAs), members of the carbohydrate esterase family 4, perform mainly metal-dependent deacetylation of O- or N-acetylated polysaccharides such as peptidoglycan, chitin and acetylxylan through a conserved catalytic core termed the NodB homology domain. Genomes of Bacillus anthracis and its relative Bacillus cereus contain multiple genes of putative or known PDAs. A comparison of the functional domains of the recently determined PDAs from B. anthracis and B. cereus and multiple amino acid and nucleotide sequence alignments and phylogenetic analysis performed on these closely related species showed that there were distinct differences in binding site formation, despite the high conservation on the protein sequence, the folding level and the active site assembly. This may indicate that, subject to biochemical verification, the binding site-forming sequence fragments are under functionally driven evolutionary pressure to accommodate and recognize distinct polysaccharide residues according to cell location, use, or environment. Finally, we discuss the suggestion of the paralogous nature of at least two genes of B. anthracis, ba0330 and ba0331, via specific differences in gene sequence, protein structure, selection pressure and available localization patterns. This study may contribute to understanding the mechanisms under which sequences evolve in their structures and how evolutionary processes enable structural variations. Full article
(This article belongs to the Special Issue Evolution and Structure of Proteins and Proteomes)
Show Figures

Graphical abstract

30 pages, 18158 KiB  
Review
Substrate Recognition and Specificity of Chitin Deacetylases and Related Family 4 Carbohydrate Esterases
by Hugo Aragunde, Xevi Biarnés and Antoni Planas
Int. J. Mol. Sci. 2018, 19(2), 412; https://doi.org/10.3390/ijms19020412 - 30 Jan 2018
Cited by 63 | Viewed by 8213
Abstract
Carbohydrate esterases family 4 (CE4 enzymes) includes chitin and peptidoglycan deacetylases, acetylxylan esterases, and poly-N-acetylglucosamine deacetylases that act on structural polysaccharides, altering their physicochemical properties, and participating in diverse biological functions. Chitin and peptidoglycan deacetylases are not only involved in cell [...] Read more.
Carbohydrate esterases family 4 (CE4 enzymes) includes chitin and peptidoglycan deacetylases, acetylxylan esterases, and poly-N-acetylglucosamine deacetylases that act on structural polysaccharides, altering their physicochemical properties, and participating in diverse biological functions. Chitin and peptidoglycan deacetylases are not only involved in cell wall morphogenesis and remodeling in fungi and bacteria, but they are also used by pathogenic microorganisms to evade host defense mechanisms. Likewise, biofilm formation in bacteria requires partial deacetylation of extracellular polysaccharides mediated by poly-N-acetylglucosamine deacetylases. Such biological functions make these enzymes attractive targets for drug design against pathogenic fungi and bacteria. On the other side, acetylxylan esterases deacetylate plant cell wall complex xylans to make them accessible to hydrolases, making them attractive biocatalysts for biomass utilization. CE4 family members are metal-dependent hydrolases. They are highly specific for their particular substrates, and show diverse modes of action, exhibiting either processive, multiple attack, or patterned deacetylation mechanisms. However, the determinants of substrate specificity remain poorly understood. Here, we review the current knowledge on the structure, activity, and specificity of CE4 enzymes, focusing on chitin deacetylases and related enzymes active on N-acetylglucosamine-containing oligo and polysaccharides. Full article
(This article belongs to the Special Issue Molecular Recognition of Carbohydrates)
Show Figures

Graphical abstract

16 pages, 1668 KiB  
Short Communication
Identification and Molecular Characterization of a Chitin Deacetylase from Bombyx mori Peritrophic Membrane
by Xiao-Wu Zhong, Xiao-Huan Wang, Xiang Tan, Qing-You Xia, Zhong-Huai Xiang and Ping Zhao
Int. J. Mol. Sci. 2014, 15(2), 1946-1961; https://doi.org/10.3390/ijms15021946 - 27 Jan 2014
Cited by 42 | Viewed by 8054
Abstract
The insect midgut epithelium is generally lined with a unique chitin and protein structure, the peritrophic membrane (PM), which facilitates food digestion and protects the gut epithelium. PM proteins are important determinants for PM structure and formation. In this study, the silkworm Bombyx [...] Read more.
The insect midgut epithelium is generally lined with a unique chitin and protein structure, the peritrophic membrane (PM), which facilitates food digestion and protects the gut epithelium. PM proteins are important determinants for PM structure and formation. In this study, the silkworm Bombyx mori midgut PM protein BmCDA7 was identified by proteomic tools. The full-length BmCDA7 cDNA is 1357 bp; the deduced protein is composed of 379 amino acid residues and includes a 16 amino acid residue signal peptide, a putative polysaccharide deacetylase-like domain and 15 cysteine residues present in three clusters. The heterologously expressed proteins of the BmCDA7 gene in yeast displayed chitin deacetylase activity. Expression of B. mori BmCDA7 was detected in the midgut at both the transcriptional and translational levels. The BmCDA7 gene was expressed by the newly hatched silkworm larvae until day seven of the fifth instar and was expressed at a high level in the newly exuviated larvae of different instars. The functions and regulatory mechanism of BmCDA7, however, need further investigation. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Back to TopTop