Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (526)

Search Parameters:
Keywords = poly (ethylene oxide)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 6111 KiB  
Article
Impact of Water Conductivity on the Structure and Swelling Dynamics of E-Beam Cross-Linked Hydrogels
by Elena Mănăilă, Ion Călina, Anca Scărișoreanu, Maria Demeter, Gabriela Crăciun and Marius Dumitru
Gels 2025, 11(8), 611; https://doi.org/10.3390/gels11080611 - 4 Aug 2025
Viewed by 154
Abstract
Prolonged drought and soil degradation severely affect soil fertility and limit crop productivity. Superabsorbent hydrogels offer an effective solution for improving water retention in soil and supporting plant growth. In this work, we examined the performance of superabsorbent hydrogels based on sodium alginate, [...] Read more.
Prolonged drought and soil degradation severely affect soil fertility and limit crop productivity. Superabsorbent hydrogels offer an effective solution for improving water retention in soil and supporting plant growth. In this work, we examined the performance of superabsorbent hydrogels based on sodium alginate, acrylic acid (AA), and poly (ethylene oxide) (PEO) cross-linked with 12.5 kGy using e-beam irradiation. The hydrogels were assessed in various aqueous environments by examining network characteristics, swelling capacity, and swelling kinetics to evaluate the impact of water’s electrical conductivity (which ranges from 0.05 to 321 μS/cm). Morphological and chemical structure changes were evaluated using SEM and FTIR techniques. The results demonstrated that water conductivity significantly affected the physicochemical properties of the hydrogels. Swelling behavior showed notable sensitivity to electrical conductivity variations, with swelling degrees reaching 28,400% at 5 μS/cm and 14,000% at 321 μS/cm, following first-order and second-order kinetics. FTIR analysis confirmed that structural modifications correlated with water conductivity, particularly affecting the O–H, C–H, and COOH groups sensitive to the ionic environment. SEM characterization revealed a porous morphology with an interconnected microporous network that facilitates efficient water diffusion. These hydrogels show exceptional swelling capacity and are promising candidates for sustainable agriculture applications. Full article
Show Figures

Figure 1

17 pages, 7162 KiB  
Article
Microbeam X-Ray Investigation of the Structural Transition from Circularly Banded to Ringless Dendritic Assemblies in Poly(Butylene Adipate) Through Dilution with Poly(Ethylene Oxide)
by Selvaraj Nagarajan, Chia-I Chang, I-Chuan Lin, Yu-Syuan Chen, Chean-Cheng Su, Li-Ting Lee and Eamor M. Woo
Polymers 2025, 17(15), 2040; https://doi.org/10.3390/polym17152040 - 26 Jul 2025
Viewed by 304
Abstract
In this study, growth mechanisms are proposed to understand how banded dendritic crystal aggregates in poly(1,4-butylene adipate) (PBA) transform into straight dendrites upon dilution with a large quantity of poly(ethylene oxide) (PEO) (25–90 wt.%). In growth packing, crystal plates are deformed in numerous [...] Read more.
In this study, growth mechanisms are proposed to understand how banded dendritic crystal aggregates in poly(1,4-butylene adipate) (PBA) transform into straight dendrites upon dilution with a large quantity of poly(ethylene oxide) (PEO) (25–90 wt.%). In growth packing, crystal plates are deformed in numerous ways, such as bending, scrolling, and twisting in self-assembly, into final aggregated morphologies of periodic bands or straight dendrites. Diluting PBA with a significant amount of PEO uncovers intricate periodic banded assemblies, facilitating better structural analysis. Both circularly banded and straight dendritic PBA aggregates have similar basic lamellar patterns. In straight dendritic PBA spherulites, crystal plates can twist from edge-on to flat-on, similar to those in ring-banded spherulites. Therefore, twists—whether continuous or discontinuous—are not limited to the conventional models proposed for classical periodic-banded spherulites. Thus, it would not be universally accurate to claim that the periodic circular bands observed in polymers or small-molecule compounds are caused by continuous lamellar helix twists. Straight dendrites, which do not exhibit optical bands, may also involve alternate crystal twists or scrolls during growth. Iridescence tests are used to compare the differences in crystal assemblies of straight dendrites vs. circularly banded PBA crystals. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Graphical abstract

17 pages, 6752 KiB  
Article
Controlled Synthesis and Crystallization-Driven Self-Assembly of Poly(ε-caprolactone)-b-polysarcosine Block Copolymers
by Zi-Xian Li, Chen Yang, Lei Guo, Jun Ling and Jun-Ting Xu
Molecules 2025, 30(15), 3108; https://doi.org/10.3390/molecules30153108 - 24 Jul 2025
Viewed by 326
Abstract
Poly(ε-caprolactone)-b-polysarcosine (PCL-b-PSar) block copolymers (BCPs) emerge as a promising alternative to conventional poly(ε-caprolactone)-b-poly(ethylene oxide) BCPs for biomedical applications, leveraging superior biocompatibility and biodegradability. In this study, we synthesized two series of PCL-b-PSar BCPs [...] Read more.
Poly(ε-caprolactone)-b-polysarcosine (PCL-b-PSar) block copolymers (BCPs) emerge as a promising alternative to conventional poly(ε-caprolactone)-b-poly(ethylene oxide) BCPs for biomedical applications, leveraging superior biocompatibility and biodegradability. In this study, we synthesized two series of PCL-b-PSar BCPs with controlled polymerization degrees (DP of PCL: 45/67; DP of PSar: 28–99) and low polydispersity indexes (Đ ≤ 1.1) and systematically investigated their crystallization-driven self-assembly (CDSA) in alcohol solvents (ethanol, n-butanol, and n-hexanol). It was found that the limited solubility of PSar in alcohols resulted in competition between micellization and crystallization during self-assembly of PCL-b-PSar, and thus coexistence of lamellae and spherical micelles. To overcome this morphological heterogeneity, we developed a modified self-seeding method by employing a two-step crystallization strategy (i.e., Tc1 = 33 °C and Tc2 = 8 °C), achieving conversion of micelles into crystals and yielding uniform self-assembled structures. PCL-b-PSar BCPs with short PSar blocks tended to form well-defined two-dimensional lamellar crystals, while those with long PSar blocks induced formation of hierarchical structures in the PCL45 series and polymer aggregation on crystal surfaces in the PCL67 series. Solvent quality notably influenced the self-assembly pathways of PCL45-b-PSar28. Lamellar crystals were formed in ethanol and n-butanol, but micrometer-scale dendritic aggregates were generated in n-hexanol, primarily due to a significant Hansen solubility parameter mismatch. This study elucidated the CDSA mechanism of PCL-b-PSar in alcohols, enabling precise structural control for biomedical applications. Full article
Show Figures

Graphical abstract

23 pages, 5750 KiB  
Article
Effect of Irradiated Nanocellulose on Enhancing the Functionality of Polylactic Acid-Based Composite Films for Packaging Applications
by Ilaria Improta, Mariamelia Stanzione, Elena Orlo, Fabiana Tescione, Marino Lavorgna, Xavier Coqueret and Giovanna G. Buonocore
Polymers 2025, 17(14), 1939; https://doi.org/10.3390/polym17141939 - 15 Jul 2025
Viewed by 293
Abstract
This study investigates the combined use of electron beam irradiation (EBI) and nanotechnology to develop improved food packaging films. EBI, commonly applied for sterilization, can alter polymer microstructure, while irradiated cellulose nanocrystals (CNCs) offer enhanced functionality when incorporated into biopolymer matrices. Here, CNCs [...] Read more.
This study investigates the combined use of electron beam irradiation (EBI) and nanotechnology to develop improved food packaging films. EBI, commonly applied for sterilization, can alter polymer microstructure, while irradiated cellulose nanocrystals (CNCs) offer enhanced functionality when incorporated into biopolymer matrices. Here, CNCs were irradiated with doses up to 50 kGy, leading to the formation of carboxyl and aldehyde groups, confirmed by FTIR analysis, as a consequence of the initial formation of free radicals and peroxides that may subsist in that original form or be converted into various carbonyl groups. Flexible films were obtained by incorporating pristine and EB-irradiated CNCs in an internal mixer, using minute amounts of poly(ethylene oxide) (PEO) to facilitate the dispersion of the filler within the polymer matrix. The resulting PLA/PEO/CNC films were evaluated for their mechanical, thermal, barrier, and antioxidant properties. The results showed that structural modifications of CNCs led to significant enhancements in the performance of the composite films, including a 30% improvement in water barrier properties and a 50% increase in antioxidant activity. These findings underscore the potential of irradiated CNCs as effective additives in biopolymer-based active packaging, offering a sustainable approach to reduce dependence on synthetic preservatives and potentially extend the shelf life of food products. Full article
(This article belongs to the Special Issue Sustainable Polymers for Value Added and Functional Packaging)
Show Figures

Figure 1

15 pages, 3491 KiB  
Article
Development and Characterization of Composite Films of Potato Starch and Carboxymethylcellulose/Poly(ethylene oxide) Nanofibers
by Yenny Paola Cruz Moreno, Andres Felipe Rubiano-Navarrete, Erika Rocio Cely Rincón, Adriana Elizabeth Lara Sandoval, Alfredo Maciel Cerda, Edwin Yesid Gomez-Pachon and Ricardo Vera-Graziano
Eng 2025, 6(7), 160; https://doi.org/10.3390/eng6070160 - 15 Jul 2025
Viewed by 566
Abstract
This study aimed to develop and characterize biodegradable films based on potato starch reinforced with carboxymethylcellulose (CMC) and polyethylene oxide (PEO) nanofibers, with the goal of improving their mechanical and thermal properties for potential use in sustainable packaging. The films were prepared through [...] Read more.
This study aimed to develop and characterize biodegradable films based on potato starch reinforced with carboxymethylcellulose (CMC) and polyethylene oxide (PEO) nanofibers, with the goal of improving their mechanical and thermal properties for potential use in sustainable packaging. The films were prepared through the thermal gelatinization of starch extracted from tubers, combined with nanofibers obtained by electrospinning CMC synthesized from potato starch. Key electrospinning variables, including solution concentration, voltage, distance, and flow rate, were analyzed. The films were morphologically characterized using scanning electron microscopy (SEM) and chemically analyzed by Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Diffraction (XRD), and their thermal properties were assessed by Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). The results indicated an increase in tensile strength to 14.1 MPa in the reinforced films, compared to 13.6 MPa for pure starch and 7.1 MPa for the fiber-free CMC blend. The nanofibers had an average diameter of 63.3 nm and a porosity of 32.78%. A reduction in crystallinity and more stable thermal behavior were also observed in the composite materials. These findings highlight the potential of using agricultural waste as a functional reinforcement in biopolymers, providing a viable and environmentally friendly alternative to synthetic polymers. Full article
(This article belongs to the Section Materials Engineering)
Show Figures

Figure 1

14 pages, 7615 KiB  
Article
Electrospun Silk Fibroin/Cyclodextrin Nanofibers for Multifunctional Air Filtration
by Papimol Mongyun and Sompit Wanwong
Fibers 2025, 13(7), 94; https://doi.org/10.3390/fib13070094 - 8 Jul 2025
Viewed by 671
Abstract
Particulate matter (PM) and volatile organic compounds (VOCs) are major air pollutants that can cause significant risks to public health. To mitigate exposure, fibrous filters have been widely utilized for air purification. In this study, we developed electrospun silk fibroin/poly (ethylene oxide)/cyclodextrin (SF/PEO/CD) [...] Read more.
Particulate matter (PM) and volatile organic compounds (VOCs) are major air pollutants that can cause significant risks to public health. To mitigate exposure, fibrous filters have been widely utilized for air purification. In this study, we developed electrospun silk fibroin/poly (ethylene oxide)/cyclodextrin (SF/PEO/CD) nanofibers as multifunctional air filters capable of efficiently reducing PM2.5 and degrading VOCs. The resulting SF/PEO/10CD demonstrated the best multifunctional filtration performance, achieving PM2.5 capture efficiencies of 91.3% with a minimal pressure drop of 4 Pa and VOC removal efficiency of 50%. These characteristics highlight the potential of the SF/PEO/10CD nanofiber with effective, multifunctional properties and environmental benefits for sustainable air filtration application. Full article
Show Figures

Figure 1

15 pages, 1685 KiB  
Article
Accelerating Effects of Poloxamer and Its Structural Analogs on the Crystallization of Nitrendipine Polymorphs
by Jie Zhang, Qiusheng Yang, Meixia Xu, Xinqiang Tan, Xucong Peng, Ziqing Yang, Kang Li, Jia Yang, Jie Chen, Xuan Xun, Saijun Xiao, Lingjie Zhou, Minzhuo Liu and Zhihong Zeng
Pharmaceuticals 2025, 18(7), 1000; https://doi.org/10.3390/ph18071000 - 3 Jul 2025
Viewed by 566
Abstract
Background: Surfactants can be added into polymer–amorphous drug systems to further enhance solubility. However, this may cause amorphous drugs to become physically unstable, and the inherent mechanism at play here is not fully understood. Methods: We explored the effects of poloxamer, a poly [...] Read more.
Background: Surfactants can be added into polymer–amorphous drug systems to further enhance solubility. However, this may cause amorphous drugs to become physically unstable, and the inherent mechanism at play here is not fully understood. Methods: We explored the effects of poloxamer, a poly (ethylene oxide)-poly (propylene oxide)-poly (ethylene oxide) (PEO-PPO-PEO) triblock copolymer surfactant, and its segments on the nucleation and growth kinetics of amorphous nitrendipine (NTP) from the melt through polarized light microscopy. The effects of poloxamer and structural analogs on the melting point and glass transition temperature were also investigated using differential scanning calorimetry. Results: The poloxamer and its structural analogs enhanced nucleation and growth kinetics in supercooled liquid. Poloxamer and its structural analogs exhibited similar effects on the nucleation and growth kinetics of amorphous NTP, suggesting minimal dependence on structural variation. The overall crystallization rate of the NTP increased when increasing the poloxamer content and ultimately reached a maximum value; after that, the crystallization rates of NTP decreased when increasing the poloxamer content. Conclusions: Poloxamer and its structural analogs achieve similar effects on crystallization due to their comparable plasticizing effects. The nucleation and growth rates show different trends as a function of the poloxamer content. This effect is a result of both kinetic and thermodynamic factors. This study is relevant to understanding the impacts of the surfactant on the physical instability of amorphous drugs. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Graphical abstract

15 pages, 2618 KiB  
Article
A Homogeneous Hexagonal-Structured Polymer Electrolyte Framework for High-Performance Polymer-Based Lithium Batteries Applicable at Room Temperature
by Seungjin Lee, Changseong Kim, Suyeon Kim, Gyungmin Hwang, Deokhee Yun, Ilhyeon Cho, Changseop Kim and Joonhyeon Jeon
Polymers 2025, 17(13), 1775; https://doi.org/10.3390/polym17131775 - 26 Jun 2025
Viewed by 457
Abstract
In polymer-based lithium batteries, polymer electrolytes (PEs) exhibit limited ionic conductivity at room temperature (25 °C). To address this issue, this paper describes a hexagonal-structure-based single-ion conducting gel polymer electrolyte (h-SICGPE) framework with a robust and efficient cross-linked polymer network, applicable [...] Read more.
In polymer-based lithium batteries, polymer electrolytes (PEs) exhibit limited ionic conductivity at room temperature (25 °C). To address this issue, this paper describes a hexagonal-structure-based single-ion conducting gel polymer electrolyte (h-SICGPE) framework with a robust and efficient cross-linked polymer network, applicable to polymer-based batteries even at 25 °C. The proposed cross-linked polymer network backbone of the h-SICGPE, as a semisolid-state thin film type, has the homogeneous honeycomb structure incorporating anion receptor(s) inside each of its hexagonal closed cells and is obtained by cross-linking between trimethylolpropane tris(3-mercaptopropionate) and poly(ethylene glycol) diacrylate in a newly synthesized anion–receptor solution. The excellent structural capability of the h-SICGPE incorporating Li+/TFSI can enhance ionic conductivity and electrochemical stability by suppressing crystallinity and expanding free volume. Further, the anion receptor in its free volume helps to effectively increase the lithium-ion transference number by immobilizing counter-anions. Experimental results demonstrate dramatically superior performance at 25 °C, such as ionic conductivity (2.46 mS cm−1), oxidative stability (4.9 V vs. Li/Li+), coulombic efficiency (97.65%), and capacity retention (88.3%). These results confirm the developed h-SICGPE as a promising polymer electrolyte for high-performance polymer-based lithium batteries operable at 25 °C. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

22 pages, 4058 KiB  
Article
Thermal, Mechanical, Morphological, and Piezoresistive Properties of Poly(ethylene-co-methacrylic acid) (EMAA) with Carbon Nanotubes and Expanded Graphite
by Francesca Aliberti, Luigi Vertuccio, Raffaele Longo, Andrea Sorrentino, Roberto Pantani, Liberata Guadagno and Marialuigia Raimondo
Nanomaterials 2025, 15(13), 994; https://doi.org/10.3390/nano15130994 - 26 Jun 2025
Viewed by 373
Abstract
This paper presents a comparative study examining the effects of carbon nanotubes (CNTs) and expanded graphite (EG) on the thermal, mechanical, morphological, electrical, and piezoresistive properties of poly(ethylene-co-methacrylic acid) (EMAA) nanocomposites. To this end, different amounts of carbonaceous fillers (EG and CNTs separately) [...] Read more.
This paper presents a comparative study examining the effects of carbon nanotubes (CNTs) and expanded graphite (EG) on the thermal, mechanical, morphological, electrical, and piezoresistive properties of poly(ethylene-co-methacrylic acid) (EMAA) nanocomposites. To this end, different amounts of carbonaceous fillers (EG and CNTs separately) were added to the EMAA thermoplastic matrix, and the relative electrical percolation thresholds (EPTs) were determined. The effect of filler concentration on thermo-oxidative degradation and the EMAA crystallinity was investigated via thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), respectively. Dynamic mechanical analysis (DMA) demonstrated that both fillers enhance the Young’s and storage moduli, as well as the glass transition temperature, with a greater improvement for the bidimensional nanofiller, most likely due to the cumulative effect of more extensive EG-matrix interactions. In tensile tests, a very relevant difference was detected in the Gauge Factor (G.F.) and the elongation at break of the two typologies of nanocomposites. The G.F. of EMAA 10% CNT and EMAA 15% EG were found to be 0.5 ± 0.08 and 165 ± 14, respectively, while elongation at break was about 68% for EMAA 10% CNT and 8% for EMAA 15% EG. Emission Scanning Electron Microscopy (FESEM) and Tunneling Atomic Force Microscopy (TUNA) have contributed to explaining the differences between EG- and CNT-based nanocomposites from a morphological point of view, underlying the pivotal role of the filler aspect ratio and its structural features in determining different mechanical and piezoresistive performance. The comprehensive analysis of EMAA-EG and EMAA-CNT nanocomposites provides a guide for selecting the best self-sensing system for the specific application. More specifically, EMAA-CNT nanocomposites with high elongation at break and lower sensitivity to small strains are suitable for movement sensors in the soft robotic field, where high deformation has to be detected. On the other hand, the high sensitivity at a low strain of EMAA-EG systems makes them suitable for integrated sensors in more rigid composite structures, such as aeronautical and automotive components or wind turbines. Full article
(This article belongs to the Special Issue Functional and Structural Properties of Polymeric Nanocomposites)
Show Figures

Graphical abstract

15 pages, 2332 KiB  
Article
Preparation and Properties of Calcium Peroxide/Poly(ethylene glycol)@Silica Nanoparticles with Controlled Oxygen-Generating Behaviors
by Xiaoling Xie, Xin Sun, Wanming Lin, Xiaofeng Yang and Ruicong Wang
Materials 2025, 18(11), 2568; https://doi.org/10.3390/ma18112568 - 30 May 2025
Viewed by 589
Abstract
The hypoxic microenvironment is the main challenge for the repair of damaged tissue, and oxygen supply is an effective means of alleviating hypoxia. In this study, a series of core–shell-structured calcium peroxide/poly(ethylene glycol)@silica (CPO@SiO2) nanoparticles are prepared to generate oxygen steadily. [...] Read more.
The hypoxic microenvironment is the main challenge for the repair of damaged tissue, and oxygen supply is an effective means of alleviating hypoxia. In this study, a series of core–shell-structured calcium peroxide/poly(ethylene glycol)@silica (CPO@SiO2) nanoparticles are prepared to generate oxygen steadily. The size of the CPO@SiO2 nanoparticles ranges from 205 to 302 nm, with a narrow polydispersity index (PDI). In this system, the nano CPO core acts as the oxygen source to improve hypoxia, while the SiO2 shell layer serves as the physical barrier to control the oxygen-generating rate and improve biocompatibility. The results suggest that the thickness of the SiO2 shell layer can be modulated by adjusting the amount of tetraethyl orthosilicate (TEOS). The prepared CPO@SiO2 nanoparticles show a controlled oxygen-generating rate. Moreover, compared with CPO, the CPO@SiO2 nanoparticles have good biocompatibility. To assess the modulating effects for the hypoxic microenvironment, L929 cells are co-cultured with CPO@ SiO2 nanoparticles under hypoxia. The results suggest that the CPO@ SiO2 nanoparticles can support the cell survival under hypoxia. Moreover, they can effectively decrease oxidative stress damage and reduce the levels of expression of hypoxia-induced superoxide dismutase (SOD) and malondialdehyde (MDA). Therefore, the prepared CPO@ SiO2 nanoparticles with controlled oxygen-generating properties could be a promising candidate for repairing damaged tissue. Full article
Show Figures

Figure 1

17 pages, 3777 KiB  
Article
Effect of Block Polyether as an Interfacial Dispersant on the Properties of Nanosilica/Natural Rubber Composites
by Ying Liu, Jiahui Mei, Depeng Gong, Yanjun Chen and Chaocan Zhang
Polymers 2025, 17(8), 1091; https://doi.org/10.3390/polym17081091 - 17 Apr 2025
Viewed by 460
Abstract
To enhance the dispersion of silica within a natural rubber (NR) matrix and improve the modification efficiency of the silane coupling agent, a novel interfacial dispersant composed of block polyether with a PEO-PPO-PEO structure is employed in this study. This block polyether, consisting [...] Read more.
To enhance the dispersion of silica within a natural rubber (NR) matrix and improve the modification efficiency of the silane coupling agent, a novel interfacial dispersant composed of block polyether with a PEO-PPO-PEO structure is employed in this study. This block polyether, consisting of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO), serves to reduce the surface energy of silica and improve its compatibility with the rubber matrix. Three types of block polyethers with different hydrophilic–lipophilic balance (HLB) values of 8, 13, and 22 are selected to regulate the surface tension of silica. Subsequently, bis[γ-(triethoxysilyl)propyl] tetrasulfide (TESPT) is used to further modify the silica surface, aiming to prepare high-performance rubber composites. The results indicate that the HLB value of the block polyether has a significant influence on the system. Compared with block polyethers having HLB values of 8 and 22, the block polyether with an HLB value of 13 demonstrated superior silica dispersion, leading to enhanced filler–rubber interfacial interactions. Consequently, both the mechanical properties and processability of the NR composites were substantially improved. When the dosage of this block polyether was 1 phr, the composite exhibited a tensile strength of 28.9 MPa and an elongation at break of 523%. Full article
(This article belongs to the Special Issue Advances in Functional Polymers and Composites: 2nd Edition)
Show Figures

Figure 1

18 pages, 3720 KiB  
Article
Study of Polyethylene Oxide-b-Poly(ε-caprolactone-ran-δ-valerolactone) Amphiphilic Architectures and Their Effects on Self-Assembly as a Drug Carrier
by Chaoqun Wang, Tong Wu, Yidi Li, Jie Liu, Yanshai Wang, Kefeng Wang, Yang Li and Xuefei Leng
Polymers 2025, 17(8), 1030; https://doi.org/10.3390/polym17081030 - 10 Apr 2025
Viewed by 423
Abstract
Amphiphilic block copolymers with complex topologies (e.g., star and brush topologies) have attracted significant attention in drug delivery owing to their superior performance over linear micelles. However, their precise synthesis and structure–property relationships require further investigation. In this study, hydroxylated polybutadiene with adjustable [...] Read more.
Amphiphilic block copolymers with complex topologies (e.g., star and brush topologies) have attracted significant attention in drug delivery owing to their superior performance over linear micelles. However, their precise synthesis and structure–property relationships require further investigation. In this study, hydroxylated polybutadiene with adjustable topology and hydroxyl group density was employed as a macroinitiator to synthesize well-defined amphiphilic poly (ethylene oxide)-b-poly(ε-caprolactone-ran-δ-valerolactone) (PEO-b-P(CL-ran-VL)) copolymers via ring-opening polymerization (ROP). A series of linear, star, linear–comb, and star–comb copolymers were prepared as curcumin-loaded micellar carriers for the study. The self-assembly behavior, drug encapsulation efficiency, and in vitro release profiles of these copolymers in aqueous environments were systematically investigated. The results demonstrated that increasing the branch length of star–comb copolymers effectively reduced micelle size from 143 to 96 nm and enhanced drug encapsulation efficiency from 27.3% to 39.8%. Notably, the star–comb architecture exhibited 1.2-fold higher curcumin encapsulation efficiency than the linear counterparts. Furthermore, the optimized star–comb nanoparticles displayed sustained release kinetics (73.38% release over 15 days), outperforming conventional linear micelles. This study establishes a quantitative structure–property relationship between copolymer topology and drug delivery performance, providing a molecular design platform for programmable nanocarriers tailored to diverse therapeutic requirements of various diseases. Full article
Show Figures

Graphical abstract

16 pages, 4171 KiB  
Article
The Impact of Recovered Lignin on Solid-State PEO-Based Electrolyte Produced via Electrospinning: Manufacturing and Characterisation
by Laura Coviello, Giorgia Montalbano, Alessandro Piovano, Nagore Izaguirre, Chiara Vitale-Brovarone, Claudio Gerbaldi and Sonia Fiorilli
Polymers 2025, 17(7), 982; https://doi.org/10.3390/polym17070982 - 4 Apr 2025
Cited by 1 | Viewed by 1081
Abstract
Lithium batteries have gained significant attention due to their high energy density, specific capacity, operating voltage, slow self-discharge rate, good cycle stability, and rapid charging capabilities. However, the use of liquid electrolytes presents several safety hazards. Solid-state polymer electrolytes (SPEs) offer a promising [...] Read more.
Lithium batteries have gained significant attention due to their high energy density, specific capacity, operating voltage, slow self-discharge rate, good cycle stability, and rapid charging capabilities. However, the use of liquid electrolytes presents several safety hazards. Solid-state polymer electrolytes (SPEs) offer a promising alternative to mitigate these issues. This study focuses on the preparation of an ionically conductive electrospun membrane and its potential application as an SPE. To support a circular approach and reduce the environmental impact, the target polymeric formulation combines poly(ethylene oxide) (PEO) and lignin, sourced from paper industry waste. The formulation is optimised to ensure the dissolution of lithium salts and enhance the membrane integrity. The addition of lignin is crucial to contrast the dendrites’ growth and prevent the consequent battery breakdown. The electrospinning process is adjusted to obtain stable, homogeneous nanofibrous membranes, which are characterised using electron scanning microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and thermal gravimetric analysis (TGA). The membranes’ potential as an SPE is assessed by measuring their ionic conductivity (>10−5 S cm−1 above 50 °C) and anodic stability (≈4.6 V vs. Li/Li+), and by testing their compatibility with lithium metal by reversible cycling in a symmetric Li|Li cell at 55 °C. Full article
Show Figures

Figure 1

15 pages, 4473 KiB  
Article
Composite Films Based on Poly(3-hexylthiophene):Perylene Diimide Derivative:Copper Sulfide Nanoparticles Deposited by Matrix Assisted Pulsed Laser Evaporation on Flexible Substrates for Photovoltaic Applications
by Marcela Socol, Nicoleta Preda, Andreea Costas, Gabriela Petre, Andrei Stochioiu, Gianina Popescu-Pelin, Sorina Iftimie, Ana Maria Catargiu, Gabriel Socol and Anca Stanculescu
J. Compos. Sci. 2025, 9(4), 172; https://doi.org/10.3390/jcs9040172 - 1 Apr 2025
Viewed by 589
Abstract
Today, flexible and lightweight electronics are regarded as a viable alternative to conventional rigid and heavy devices in various application fields. In the optoelectronic area, organic semiconductors offer advantages such as high absorption coefficients, low processing temperatures, mechanical flexibility and compatibility with plastic [...] Read more.
Today, flexible and lightweight electronics are regarded as a viable alternative to conventional rigid and heavy devices in various application fields. In the optoelectronic area, organic semiconductors offer advantages such as high absorption coefficients, low processing temperatures, mechanical flexibility and compatibility with plastic substrates, while inorganic nanostructures provide good electronic properties and high thermal stability. Thus, composite films with enhanced properties can be achieved by inserting inorganic nanostructures within organic layers. In this research work, CuS nanoparticles were prepared by wet chemical precipitation and then added to an organic mixture containing poly(3-hexylthiophene) (P3HT) and N,N-bis-(1-dodecyl)perylene-3,4,9,10 tetracarboxylic diimide (AMC14), a chemically synthesized semiconductor, for fabricating hybrid composite films by matrix assisted pulsed laser evaporation (MAPLE) on indium tin oxide/poly(ethylene terephthalate) (ITO/PET) flexible substrates. A comparative assessment of the morphological, compositional, optical and electrical properties of the composite (P3HT:AMC14:CuS) and organic (P3HT:AMC14) layers was performed to evaluate their applicability in the photovoltaic cells. The transmission and emission spectra of the composite films are dominated by the optical features of AMC14, a perylene diimide derivative compound used as acceptor. In the case of devices based on MAPLE deposited composite layer fabricated on ITO/PET substrates, the electrical measurements carried under illumination revealed an improvement in the open circuit voltage parameter emphasizing their potential applications in the flexible device area. Full article
(This article belongs to the Section Polymer Composites)
Show Figures

Figure 1

14 pages, 4803 KiB  
Article
Ion and Water Transports in Double Gyroid Nanochannels Formed by Block Copolymer Anion Exchange Membranes
by Karim Aissou, Maximilien Coronas, Jason Richard, Erwan Ponsin, Sambhav Vishwakarma, Eddy Petit, Bertrand Rebiere, Camille Bakkali-Hassani, Stéphanie Roualdes and Damien Quemener
Batteries 2025, 11(4), 126; https://doi.org/10.3390/batteries11040126 - 26 Mar 2025
Viewed by 606
Abstract
Mechanically improved polymeric membranes with high ionic conductivity (IC) and good permeability are highly desired for next-generation anion exchange membranes (AEMs) in order to reduce Ohmic losses and enhance water management in alkaline membrane fuel cells. To move towards the fabrication of such [...] Read more.
Mechanically improved polymeric membranes with high ionic conductivity (IC) and good permeability are highly desired for next-generation anion exchange membranes (AEMs) in order to reduce Ohmic losses and enhance water management in alkaline membrane fuel cells. To move towards the fabrication of such high-performance membranes, the creation of hydrophilic ion-conducting double gyroid (DG) nanochannels within block copolymer (BCP) AEMs is a promising approach. However, this attractive solution remains difficult to implement due to the complexity of constructing a well-developed ion-conducting DG morphology across the entire membrane thickness. To deal with this issue, water permeable polystyrene-block-poly(2-vinylpyridine)-block-poly(ethylene oxide) membranes with ion-conducting DG nanochannels were produced by combining a solvent vapor annealing (SVA) treatment with a methylation process. Here, the SVA treatment enabled the manufacture of DG-forming BCP AEMs while the methylation process allowed for the conversion of pyridine sites to N-methylpyridinium (NMP+) cations via a Menshutkin reaction. Following this SVA-methylation method, the IC value of water-permeable (~384 L h−1 m−2 bar−1) DG-structured BCP AEMs in their OHcounter anion form was measured to be of ~2.8 mS.cm−1 at 20 °C while a lower IC value was probed, under the same experimental conditions, from as-cast NMP+-containing analogs with a non-permeable disordered phase (~1.2 mS.cm−1). Full article
Show Figures

Figure 1

Back to TopTop