Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = poly(vinylidenefluoride) (PVDF)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 9645 KiB  
Article
Fabrication of Bio-Composite of Piezoelectric/Myrrh Nanofiber Scaffolds for Wound Healing via Portable Gyrospun
by Enfal Eser Alenezi, Amalina Amir, Hussain Ali Alenezi and Timucin Ugurlu
Pharmaceutics 2025, 17(6), 717; https://doi.org/10.3390/pharmaceutics17060717 - 29 May 2025
Viewed by 628
Abstract
Background/Objectives: Polymeric monoaxial nanofibers are gaining prominence due to their numerous applications, particularly in functional scenarios such as wound management. The study successfully developed and built a special-purpose vessel and device for fabricating polymeric nanofibers. Fabrication of composite scaffolds from piezoelectric poly(vinylidenefluoride-trifluoroethylene) [...] Read more.
Background/Objectives: Polymeric monoaxial nanofibers are gaining prominence due to their numerous applications, particularly in functional scenarios such as wound management. The study successfully developed and built a special-purpose vessel and device for fabricating polymeric nanofibers. Fabrication of composite scaffolds from piezoelectric poly(vinylidenefluoride-trifluoroethylene) copolymer (PVDF-TrFE) nanofibers encapsulated with myrrh extract was investigated. Methods: The gyrospun nanofibers were characterized using SEM, EDX, FTIR, XRD, and TGA to assess the properties of the composite materials. The study also investigated the release profile of myrrh extract from the nanofibers, demonstrating its potential for sustained drug delivery. The composite’s antimicrobial properties were evaluated using the disc diffusion method against various pathogenic microbes, showcasing their effectiveness. Results: It was found that an 18% (w/v) PVDF-TrFE concentration produces the best fiber mats compared to 20% and 25%, resulting in an average fiber diameter of 411 nm. Myrrh extract was added in varying amounts (10%, 15%, and 20%), with the best average fiber diameter identified at 10%, measuring 436 nm. The results indicated that the composite nanofibers were uniform, bead-free, and aligned without myrrh. The study observed a cumulative release of 79.66% myrrh over 72 h. The release profile showed an initial burst release of 46.85% within the first six hours, followed by a sustained release phase. Encapsulation efficiency was 89.8%, with a drug loading efficiency of 30%. Antibacterial activity peaked at 20% myrrh extract. S. mutans was the most sensitive pathogen to myrrh extract. Conclusions: Due to the piezoelectric effect of PVDF-TrFE and the significant antibacterial activity of myrrh, the prepared biohybrid nanofibers will open new avenues toward tissue engineering and wound healing applications. Full article
(This article belongs to the Special Issue Biopolymer Materials for Wound Healing, 3rd Edition)
Show Figures

Graphical abstract

11 pages, 3359 KiB  
Article
Preparation and Characterization of a LiFePO4- Lithium Salt Composite Cathode for All-Solid-State Li-Metal Batteries
by Debabrata Mohanty, Pin-Hsuan Huang and I-Ming Hung
Batteries 2023, 9(4), 236; https://doi.org/10.3390/batteries9040236 - 20 Apr 2023
Cited by 5 | Viewed by 4015
Abstract
This study develops a composite cathode material suitable for solid-state Li-ion batteries (SSLIB). The composite cathode consists of LiFePO4 as the active material, Super P and KS-4 carbon materials as the conductive agents, and LiTFSI as the lithium salt. An LiFePO4 [...] Read more.
This study develops a composite cathode material suitable for solid-state Li-ion batteries (SSLIB). The composite cathode consists of LiFePO4 as the active material, Super P and KS-4 carbon materials as the conductive agents, and LiTFSI as the lithium salt. An LiFePO4/LATP-PVDF-HFP/Li all-solid-state LIB was assembled using Li1.3Al0.3Ti1.7(PO4)3 (LATP)/ poly(vinylidenefluoride-co-hexafluoropropylene (PVDF-HFP) as the solid-state electrolyte and lithium metal as the anode. The structure of the synthesized LATP was analyzed using X-ray diffraction, and the microstructure of the composite cathode and solid electrolyte layer was observed using a field emission scanning electron microscope. The electrochemical properties of the all-solid-state LIB were analyzed using electrochemical impedance spectroscopy (EIS) and a charge–discharge test. The effect of the composition ratio of the fabricated cathode on SSLIB performance is discussed. The results reveal that the SSLIB fabricated using the cathode containing LiFePO4, Super P, KS-4, PVDF, and LiTFSI at a weight ratio of 70:10:10:7:3 (wt.%) and a LATP/PVDF-HFP solid electrolyte layer containing PVDF-HFP, LiTFSI, and LATP at a weight ratio of 22:33:45 (wt.%) exhibited the optimal performance. Particularly, the SSLIB fabricated using the cathode containing 3% LiTFSI exhibited a discharge capacity of 168.9 mAhg−1 at 0.1 C, which is close to the theoretical capacity (170 mAhg−1), and had very good stability. The findings of this study suggests that the incorporation of an appropriate amount of LiTFSI can significantly enhance the electrochemical performance of SSLIB batteries. Full article
(This article belongs to the Special Issue Emerging Technologies and Electrode Materials for Metal Batteries)
Show Figures

Figure 1

14 pages, 1979 KiB  
Article
Self-Sensing Soft Skin Based on Piezoelectric Nanofibers
by Giacomo Selleri, Francesco Mongioì, Emanuele Maccaferri, Riccardo D’Anniballe, Laura Mazzocchetti, Raffaella Carloni, Davide Fabiani, Andrea Zucchelli and Tommaso Maria Brugo
Polymers 2023, 15(2), 280; https://doi.org/10.3390/polym15020280 - 5 Jan 2023
Cited by 17 | Viewed by 3244
Abstract
The development of electronic skins and wearable devices is rapidly growing due to their broad application fields, such as for biomedical, health monitoring, or robotic purposes. In particular, tactile sensors based on piezoelectric polymers, which feature self-powering capability, have been widely used thanks [...] Read more.
The development of electronic skins and wearable devices is rapidly growing due to their broad application fields, such as for biomedical, health monitoring, or robotic purposes. In particular, tactile sensors based on piezoelectric polymers, which feature self-powering capability, have been widely used thanks to their flexibility and light weight. Among these, poly(vinylidenefluoride-trifluoroethylene) (PVDF-TrFE) presents enhanced piezoelectric properties, especially if manufactured in a nanofiber shape. In this work, the enhanced piezoelectric performances of PVDF-TrFE nanofibers were exploited to manufacture a flexible sensor which can be used for wearable applications or e-skin. The piezoelectric signal was collected by carbon black (CB)-based electrodes, which were added to the active layer in a sandwich-like structure. The sensor was electromechanically characterized in a frequency range between 0.25 Hz and 20 Hz—which is consistent with human activities (i.e., gait cycle or accidental bumps)—showing a sensitivity of up to 4 mV/N. The parameters of the signal acquisition circuit were tuned to enable the sensor to work at the required frequency. The proposed electrical model of the nanofibrous piezoelectric sensor was validated by the experimental results. The sensitivity of the sensor remained above 77.5% of its original value after 106 cycles of fatigue testing with a 1 kN compressive force. Full article
(This article belongs to the Special Issue Electrospinning Techniques and Advanced Textile Materials)
Show Figures

Graphical abstract

9 pages, 1330 KiB  
Article
Pyroelectric Properties of BaxSr(1−x)TiO3/PVDF-TrFE Coating on Silicon
by Mariya Aleksandrova, Arya Sohan, Pratap Kollu and Georgi Dobrikov
Membranes 2021, 11(8), 577; https://doi.org/10.3390/membranes11080577 - 30 Jul 2021
Cited by 1 | Viewed by 2613
Abstract
Bilayer coatings of barium strontium titanate (BaxSr(1−x)TiO3)/poly [(vinylidenefluoride-co-trifluoroethylene] (PVDF-TrFE) were integrated on silicon Si (100) for pyroelectric devices. Pyroelectric properties of the composite were determined for different electrode materials (silver and aluminum) and different electrodes configurations creating [...] Read more.
Bilayer coatings of barium strontium titanate (BaxSr(1−x)TiO3)/poly [(vinylidenefluoride-co-trifluoroethylene] (PVDF-TrFE) were integrated on silicon Si (100) for pyroelectric devices. Pyroelectric properties of the composite were determined for different electrode materials (silver and aluminum) and different electrodes configurations creating an electric field in parallel and in-plane direction in the ferroelectric coating. For this purpose, parallel-plate and planar interdigital capacitors were fabricated. Anisotropy in the pyroelectric response was noted for the different directions of the measured electrical potential. The dynamic method was used to evaluate the pyroelectric properties in the temperature range of 22 to 48 °C. Pyroelectric response with a higher value was observed at the one plate’s configuration of interdigital electrodes. The voltage response was the strongest when silver contacts were used. At temperatures near room temperature, the voltage increased by 182 µV at resolution of 7 µV/°C for the in-plain device configuration, vs. 290 µV at a resolution of 11 µV/°C for the out-of-plain configuration. A relationship between the surface morphology of the ferroelectric oxide and oxide/polymer coating and the pyroelectric voltage was also found, proving the smoothening effect of the introduction of polymer PVDF-TrFE over the BaSrTiO3 grains. Full article
(This article belongs to the Special Issue Application of Ferroelectric-Polymer Composites)
Show Figures

Graphical abstract

17 pages, 4352 KiB  
Article
Enhanced Piezoelectric Properties of Poly(Vinylidenefluoride-Co-Trifluoroethylene)/Carbon-Based Nanomaterial Composite Films for Pressure Sensing Applications
by Jia-Wun Li, Chen-Yang Huang, Kuan-Yu Chen, Jian-Xun Chen, Xiao-Yong Hsu, Yan-Feng Chen, Chung-Feng Jeffrey Kuo, Chih-Chia Cheng, Maw-Cherng Suen and Chih-Wei Chiu
Polymers 2020, 12(12), 2999; https://doi.org/10.3390/polym12122999 - 16 Dec 2020
Cited by 29 | Viewed by 4024
Abstract
In this study, heat and polarization treatments were applied to poly(vinylidenefluoride-co-trifluoroethylene (PVDF-TrFE) films to improve their crystallinity and piezoelectric effect. Carbon-based nanomaterials (CBNs) of multiple dimensions (i.e., modified zero-dimensional (0D) carbon black (OCB), one-dimensional (1D) modified carbon nanotubes (CNT–COOH) and two-dimensional (2D) graphene [...] Read more.
In this study, heat and polarization treatments were applied to poly(vinylidenefluoride-co-trifluoroethylene (PVDF-TrFE) films to improve their crystallinity and piezoelectric effect. Carbon-based nanomaterials (CBNs) of multiple dimensions (i.e., modified zero-dimensional (0D) carbon black (OCB), one-dimensional (1D) modified carbon nanotubes (CNT–COOH) and two-dimensional (2D) graphene oxide (GO)) were added to the copolymer to study the effects of different CBN dimensions on the crystallinity and piezoelectric effect of PVDF-TrFE films. Additionally, amphiphilic polymeric dispersants were added to improve the dispersibility of CBNs; the dispersant was synthesized by the amidation, and imidization reactions of styrene-maleic anhydride copolymer (SMAz) and polyoxyalkylene amine (M1000). Polymer solutions with different ratios of CBN to dispersant (z = 10:1, 5:1, 1:1, 1:5, 1:10) were prepared. The enhanced dispersibility enabled the fluorine atoms in the PVDF-TrFE molecular chain to more efficiently form hydrogen bonds with the –COOH group in the CBN, thereby increasing the content of the β crystal phase (the origin of the piezoelectric effect) of the film. Therefore, the resulting film exhibited a higher output voltage on the application side and better sensitivity on the sensing element. The addition of CNT–COOH and polymeric dispersants increased the β-phase content in PVDF-TrFE from 73.6% to 86.4%, which in turn raised the piezoelectric coefficient from 19.8 ± 1.0 to 26.4 ± 1.3 pC/N. The composite film-based pressure sensor also exhibited a high degree of sensitivity, which is expected to have commercial potential in the future. Full article
Show Figures

Graphical abstract

16 pages, 6360 KiB  
Article
Characterization and Antibiofouling Performance Investigation of Hydrophobic Silver Nanocomposite Membranes: A Comparative Study
by Maryam Amouamouha and Gagik Badalians Gholikandi
Membranes 2017, 7(4), 64; https://doi.org/10.3390/membranes7040064 - 12 Nov 2017
Cited by 26 | Viewed by 6352
Abstract
Biofouling is one of the drawbacks restricting the industrial applications of membranes. In this study, different thicknesses of silver nanoparticles with proper adhesion were deposited on poly(vinylidenefluoride) (PVDF) and polyethersulfone (PES) surfaces by physical vapor deposition (PVD). The crystalline and structural properties of [...] Read more.
Biofouling is one of the drawbacks restricting the industrial applications of membranes. In this study, different thicknesses of silver nanoparticles with proper adhesion were deposited on poly(vinylidenefluoride) (PVDF) and polyethersulfone (PES) surfaces by physical vapor deposition (PVD). The crystalline and structural properties of modified and pure membranes were investigated by carrying out X-ray diffraction (XRD) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). Scanning electron microscope (SEM) and atomic force microscopy (AFM) analyses were employed to examine the surface morphology and the bacteria anti-adhesion property of the membranes. The morphology measurements confirmed that even though after silver grafting the surface became more hydrophobic, the homogeneity increased and the flux reduction decreased after coating. Moreover a comparison between PVDF and PES revealed that CFU (colony forming units) reduced 64.5% on PVDF surface and 31.1% on PES surface after modification. In conclusion, PVD improved the performance of the membrane antibiofouling, and it is more promising to be used for PVDF rather than PES. Full article
(This article belongs to the Special Issue Nanocomposite Membranes)
Show Figures

Figure 1

7 pages, 2098 KiB  
Article
Effects of Coupling Agents on the Structure and Electrical Properties of PZT-Poly (Vinylidene Fluoride) Composites
by Rui Li, Liu Zhang, Zhiliang Shi and Jianzhong Pei
Appl. Sci. 2016, 6(10), 282; https://doi.org/10.3390/app6100282 - 3 Oct 2016
Cited by 14 | Viewed by 5870
Abstract
Piezoelectricceramictransducer(PZT)-Poly(vinylidenefluoride)compositeswereprepared by the hot-pressing method. Before addition, PZT particles were firstly modified with two different coupling agents. The micromorphology, microstructure, dielectric properties, and piezoelectric propertiesofthecompositeswerecharacterizedandinvestigated. ResultsindicatedthatPZTparticles were homogeneously dispersed in the poly (vinylidene fluoride) (PVDF) matrix by the addition of coupling agents. The [...] Read more.
Piezoelectricceramictransducer(PZT)-Poly(vinylidenefluoride)compositeswereprepared by the hot-pressing method. Before addition, PZT particles were firstly modified with two different coupling agents. The micromorphology, microstructure, dielectric properties, and piezoelectric propertiesofthecompositeswerecharacterizedandinvestigated. ResultsindicatedthatPZTparticles were homogeneously dispersed in the poly (vinylidene fluoride) (PVDF) matrix by the addition of coupling agents. The electric properties of PZT-PVDF composites with NDZ-101 were the best. Especially when the volume ratio of the titanate coupling agent NDZ-101 was 1%, the piezoelectric strain constant d33 of PZT-PVDF composites reached maximum value 19.23 pC/N; its relative dielectric constant εr was 67.45; at the same time its dielectric loss tan δ was 0.0766. Full article
Show Figures

Figure 1

11 pages, 4670 KiB  
Article
Dielectric Properties and Energy Storage Densities of Poly(vinylidenefluoride) Nanocomposite with Surface Hydroxylated Cube Shaped Ba0.6Sr0.4TiO3 Nanoparticles
by Shaohui Liu, Shaomei Xiu, Bo Shen, Jiwei Zhai and Ling Bing Kong
Polymers 2016, 8(2), 45; https://doi.org/10.3390/polym8020045 - 16 Feb 2016
Cited by 59 | Viewed by 8139
Abstract
Ceramic-polymer nanocomposites, consisting of surface hydroxylated cube-shaped Ba0.6Sr0.4TiO3 nanoparticles (BST–NPs) as fillers and poly(vinylidenefluoride) (PVDF) as matrix, have been fabricated by using a solution casting method. The nanocomposites exhibited increased dielectric constant and improved breakdown strength. Dielectric constants [...] Read more.
Ceramic-polymer nanocomposites, consisting of surface hydroxylated cube-shaped Ba0.6Sr0.4TiO3 nanoparticles (BST–NPs) as fillers and poly(vinylidenefluoride) (PVDF) as matrix, have been fabricated by using a solution casting method. The nanocomposites exhibited increased dielectric constant and improved breakdown strength. Dielectric constants of the nanocomposite with surface hydroxylated BST–NPs (BST–NPs–OH) were higher as compared with those of their untreated BST–NPs composites. The sample with 40 vol % BST–NPs–OH had a dielectric constant of 36 (1 kHz). Different theoretical models have been employed to predict the dielectric constants of the nanocomposites, in order to compare with the experimental data. The BST–NPs–OH/PVDF composites also exhibited higher breakdown strength than their BST–NP/PVDF counterparts. A maximal energy density of 3.9 J/cm3 was achieved in the composite with 5 vol % BST–NPs–OH. This hydroxylation strategy could be used as a reference to develop ceramic-polymer composite materials with enhanced dielectric properties and energy storage densities. Full article
(This article belongs to the Special Issue Nano- and Microcomposites for Electrical Engineering Applications)
Show Figures

Graphical abstract

Back to TopTop