Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = plipastatin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2644 KiB  
Article
Mining Biosynthetic Gene Clusters of Bacillus subtilis MGE 2012 Using Whole Genome Sequencing
by Jiyoun Kim, Hafiza Hira Bashir, Joon Hwang and Gi-Seong Moon
Processes 2025, 13(5), 1503; https://doi.org/10.3390/pr13051503 - 14 May 2025
Viewed by 737
Abstract
This study aims to elucidate the genomic characteristics of Bacillus subtilis MGE 2012, a strain isolated from Korean traditional fermented food, meju, which contributes to its high enzyme activity and potential applications. The whole genome sequence of B. subtilis MGE 2012 was assembled [...] Read more.
This study aims to elucidate the genomic characteristics of Bacillus subtilis MGE 2012, a strain isolated from Korean traditional fermented food, meju, which contributes to its high enzyme activity and potential applications. The whole genome sequence of B. subtilis MGE 2012 was assembled using MEGAHIT, annotated using RAST and BLASTKOALA v3.1. Phylogenetic analysis placed MGE 2012 within the Bacillus clade, showing high similarity to B. subtilis NCIB 3610 and B. subtilis ATCC 6051. AntiSMASH analysis identified 14 biosynthetic gene clusters (BGCs) capable of producing various secondary metabolites, including subtilosin, bacillibactin, fengycin, bacilysin, plipastatin, and surfactin. This study provides an overview of the whole genome and secondary metabolite profile of B. subtilis MGE 2012, emphasizing its potential applications in biotechnology. While the primary focus of this study was to explore the genomic characteristics and secondary metabolite profile, future research could delve deeper into genome mining for enzyme activities and their applications. Full article
(This article belongs to the Special Issue Computational Biology Approaches to Genome and Protein Analyzes)
Show Figures

Figure 1

25 pages, 5413 KiB  
Article
Whole-Genome Profiling of Endophytic Strain B.L.Ns.14 from Nigella sativa Reveals Potential for Agricultural Bioenhancement
by Dimitra Douka, Tasos-Nektarios Spantidos, Polina C. Tsalgatidou, Panagiotis Katinakis and Anastasia Venieraki
Microorganisms 2024, 12(12), 2604; https://doi.org/10.3390/microorganisms12122604 - 16 Dec 2024
Cited by 1 | Viewed by 1542
Abstract
Endophytic microbes in medicinal plants often possess beneficial traits for plant health. This study focuses on the bacterial endophyte strain B.L.Ns.14, isolated from Nigella sativa leaves, which demonstrated multiple plant growth-promoting properties. In vitro tests showed that B.L.Ns.14 supports plant growth, colonization, and [...] Read more.
Endophytic microbes in medicinal plants often possess beneficial traits for plant health. This study focuses on the bacterial endophyte strain B.L.Ns.14, isolated from Nigella sativa leaves, which demonstrated multiple plant growth-promoting properties. In vitro tests showed that B.L.Ns.14 supports plant growth, colonization, and tolerance to abiotic stress. The strain also exhibited antifungal activity against phytopathogens such as Rhizoctonia solani, Colletotrichum acutatum, Verticillium dahliae, and Fusarium oxysporum f. sp. radicis-lycopersici. Whole-genome analysis, supported by ANI and dDDH values, identified B.L.Ns.14 as Bacillus halotolerans. Genome mining revealed 128 active carbohydrate enzymes (Cazymes) related to endophytism and biocontrol functions, along with genes involved in phosphate solubilization, siderophore and IAA production, biofilm formation, and motility. Furthermore, genes for osmolyte metabolism, Na+/H+ antiporters, and stress response proteins were also identified. The genome harbors 12 secondary metabolite biosynthetic gene clusters, including those for surfactin, plipastatin mojavensin, rhizocticin A, and bacilysin, known for their antagonistic effects against fungi. Additionally, B.L.Ns.14 promoted Arabidopsis thaliana growth under both normal and saline conditions, and enhanced Solanum lycopersicum growth via seed biopriming and root irrigation. These findings suggest that Bacillus halotolerans B.L.Ns.14 holds potential as a biocontrol and plant productivity agent, warranting further field testing. Full article
Show Figures

Figure 1

18 pages, 6089 KiB  
Article
An Integrated Pipeline and Overexpression of a Novel Efflux Transporter, YoeA, Significantly Increases Plipastatin Production in Bacillus subtilis
by Mengxi Wang, Jie Zheng, Sen Sun, Zichao Wu, Yuting Shao, Jiahui Xiang, Chenyue Yin, Rita Cindy Aye Ayire Sedjoah and Zhihong Xin
Foods 2024, 13(11), 1785; https://doi.org/10.3390/foods13111785 - 6 Jun 2024
Cited by 3 | Viewed by 1869
Abstract
Plipastatin, an antimicrobial peptide produced by Bacillus subtilis, exhibits remarkable antimicrobial activity against a diverse range of pathogenic bacteria and fungi. However, the practical application of plipastatin has been significantly hampered by its low yield in wild Bacillus species. Here, the native [...] Read more.
Plipastatin, an antimicrobial peptide produced by Bacillus subtilis, exhibits remarkable antimicrobial activity against a diverse range of pathogenic bacteria and fungi. However, the practical application of plipastatin has been significantly hampered by its low yield in wild Bacillus species. Here, the native promoters of both the plipastatin operon and the sfp gene in the mono-producing strain M-24 were replaced by the constitutive promoter P43, resulting in plipastatin titers being increased by 27% (607 mg/mL) and 50% (717 mg/mL), respectively. Overexpression of long chain fatty acid coenzyme A ligase (LCFA) increased the yield of plipastatin by 105% (980 mg/mL). A new efflux transporter, YoeA, was identified as a MATE (multidrug and toxic compound extrusion) family member, overexpression of yoeA enhanced plipastatin production to 1233 mg/mL, an increase of 157%, and knockout of yoeA decreased plipastatin production by 70%; in contrast, overexpression or knockout of yoeA in mono-producing surfactin and iturin engineered strains only slightly affected their production, demonstrating that YoeA acts as the major exporter for plipastatin. Co-overexpression of lcfA and yoeA improved plipastatin production to 1890 mg/mL, which was further elevated to 2060 mg/mL after abrB gene deletion. Lastly, the use of optimized culture medium achieved 2514 mg/mL plipastatin production, which was 5.26-fold higher than that of the initial strain. These results suggest that multiple strain engineering is an effective strategy for increasing lipopeptide production, and identification of the novel transport efflux protein YoeA provides new insights into the regulation and industrial application of plipastatin. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Graphical abstract

24 pages, 3819 KiB  
Article
Examining the Transcriptomic and Biochemical Signatures of Bacillus subtilis Strains: Impacts on Plant Growth and Abiotic Stress Tolerance
by Peter E. Chang, Yun-Hsiang Wu, Ciao-Yun Tai, I-Hung Lin, Wen-Der Wang, Tong-Seung Tseng and Huey-wen Chuang
Int. J. Mol. Sci. 2023, 24(18), 13720; https://doi.org/10.3390/ijms241813720 - 6 Sep 2023
Cited by 7 | Viewed by 2480
Abstract
Rhizobacteria from various ecological niches display variations in physiological characteristics. This study investigates the transcriptome profiling of two Bacillus subtilis strains, BsCP1 and BsPG1, each isolated from distinct environments. Gene expression linked to the synthesis of seven types of antibiotic compounds was detected [...] Read more.
Rhizobacteria from various ecological niches display variations in physiological characteristics. This study investigates the transcriptome profiling of two Bacillus subtilis strains, BsCP1 and BsPG1, each isolated from distinct environments. Gene expression linked to the synthesis of seven types of antibiotic compounds was detected in both BsCP1 and BsPG1 cultures. Among these, the genes associated with plipastatin synthesis were predominantly expressed in both bacterial strains. However, genes responsible for the synthesis of polyketide, subtilosin, and surfactin showed distinct transcriptional patterns. Additionally, genes involved in producing exopolysaccharides (EPS) showed higher expression levels in BsPG1 than in BsCP1. Consistently with this, a greater quantity of EPS was found in the BsPG1 culture compared to BsCP1. Both bacterial strains exhibited similar effects on Arabidopsis seedlings, promoting root branching and increasing seedling fresh weight. However, BsPG1 was a more potent enhancer of drought, heat, and copper stress tolerance than BsCP1. Treatment with BsPG1 had a greater impact on improving survival rates, increasing starch accumulation, and stabilizing chlorophyll content during the post-stress stage. qPCR analysis was used to measure transcriptional changes in Arabidopsis seedlings in response to BsCP1 and BsPG1 treatment. The results show that both bacterial strains had a similar impact on the expression of genes involved in the salicylic acid (SA) and jasmonic acid (JA) signaling pathways. Likewise, genes associated with stress response, root development, and disease resistance showed comparable responses to both bacterial strains. However, treatment with BsCP1 and BsPG1 induced distinct activation of genes associated with the ABA signaling pathway. The results of this study demonstrate that bacterial strains from different ecological environments have varying abilities to produce beneficial metabolites for plant growth. Apart from the SA and JA signaling pathways, ABA signaling triggered by PGPR bacterial strains could play a crucial role in building an effective resistance to various abiotic stresses in the plants they colonize. Full article
(This article belongs to the Special Issue Cell Signaling in Model Plants 3.0)
Show Figures

Figure 1

12 pages, 1268 KiB  
Article
Detection of Antagonistic Compounds Synthesized by Bacillus velezensis against Xanthomonas citri subsp. citri by Metabolome and RNA Sequencing
by Muhammad Fazle Rabbee and Kwang-Hyun Baek
Microorganisms 2023, 11(6), 1523; https://doi.org/10.3390/microorganisms11061523 - 8 Jun 2023
Cited by 6 | Viewed by 2675
Abstract
Biological control of plant diseases has gained attraction for controlling various bacterial diseases at a field trial stage. An isolated endophytic bacterium, Bacillus velezensis 25 (Bv-25), from Citrus species had strong antagonistic activity against Xanthomonas citri subsp. citri (Xcc), which causes citrus canker [...] Read more.
Biological control of plant diseases has gained attraction for controlling various bacterial diseases at a field trial stage. An isolated endophytic bacterium, Bacillus velezensis 25 (Bv-25), from Citrus species had strong antagonistic activity against Xanthomonas citri subsp. citri (Xcc), which causes citrus canker disease. When Bv-25 was incubated in Landy broth or yeast nutrient broth (YNB), the ethyl acetate extract of Landy broth exhibited higher levels of antagonistic activity against Xcc compared to that of YNB. Therefore, the antimicrobial compounds in the two ethyl acetate extracts were detected by high performance liquid chromatography–mass spectrometry. This comparison revealed an increase in production of several antimicrobial compounds, including difficidin, surfactin, fengycin, and Iturin-A or bacillomycin-D by incubation in Landy broth. RNA sequencing for the Bv-25 grown in Landy broth were performed, and the differential expressions were detected for the genes encoding the enzymes for the synthesis of antimicrobial compounds, such as bacilysin, plipastatin or fengycin, surfactin, and mycosubtilin. Combination of metabolomics analysis and RNA sequencing strongly suggests that several antagonistic compounds, especially bacilysin produced by B. velezensis, exhibit an antagonistic effect against Xcc. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

19 pages, 4040 KiB  
Article
Characterization of a Novel Bacillus glycinifermentans Strain MGMM1 Based on Full Genome Analysis and Phenotypic Properties for Biotechnological Applications
by Daniel Mawuena Afordoanyi, Roderic Gilles Claret Diabankana, Ernest Nailevich Komissarov, Evgenii Sergeyevich Kuchaev and Shamil Zavdatovich Validov
Microorganisms 2023, 11(6), 1410; https://doi.org/10.3390/microorganisms11061410 - 26 May 2023
Cited by 4 | Viewed by 3148
Abstract
Bacillus species have gained much attention based on their phenotypic characteristics and their genetic architecture as biological control agents and plant growth-promotor with bioremediation potential. In this study, we analyzed the whole genome of a novel strain, Bacillus glycinifermentans MGMM1, isolated from the [...] Read more.
Bacillus species have gained much attention based on their phenotypic characteristics and their genetic architecture as biological control agents and plant growth-promotor with bioremediation potential. In this study, we analyzed the whole genome of a novel strain, Bacillus glycinifermentans MGMM1, isolated from the rhizosphere of a weed plant (Senna occidentalis) and assayed its phenotypic characteristics, as well as antifungal and biocontrol ability. The whole genome analysis of MGMM1 identified 4259 putative coding sequences, with an encoding density of 95.75% attributed to biological functions, including genes involved in stimulating plant growth, such as acetolactate synthase, alsS, and genes involved in the resistance to heavy metal antimony (arsB and arsC). AntiSMASH revealed the presence of biosynthetic gene clusters plipastatin, fengycin, laterocidine, geobacillin II, lichenysin, butirosin A and schizokinen. Tests in vitro confirmed that MGMM1 exhibited antifungal activity against Fusarium oxysporum f.sp. radicis-lycopersici (Forl) ZUM2407, Alternaria alternata, F. graminearum and F. spp. and produce protease, lipase amylase and cellulase. Bacillus glycinifermentans MGMM1 demonstrated proteolytic (4.82 ± 1.04 U/mL), amylolytic (0.84 ± 0.05 U/mL) and cellulosic (0.35 ± 0.02 U/mL) enzymatic activities, as well as indole-3-acetic acid production (48.96 ± 1.43 μg/mL). Moreover, the probiotic strain MGMM1 demonstrated a high biocontrol potential of inhibiting (up to 51.45 ± 8.08%) the development of tomato disease caused by Forl ZUM2407. These results suggest that B. glycinifermentans MGMM1 has significant potential as a biocontrol, plant growth-promoting agent in agriculture. Full article
(This article belongs to the Special Issue Restoring the Integrated Behaviour of the Soil-Plant-Microbe System)
Show Figures

Figure 1

10 pages, 2487 KiB  
Communication
Antagonism of Bacillus velezensis Isolate from Anaerobically Digested Dairy Slurry against Fusarium Wilt of Spinach
by Tomomi Sugiyama, Keiko T. Natsuaki, Naoto Tanaka, Yuh Shiwa and Mami Irie
Agronomy 2022, 12(5), 1058; https://doi.org/10.3390/agronomy12051058 - 28 Apr 2022
Cited by 1 | Viewed by 2388
Abstract
This study was designed to assess the suppressive effects of various anaerobically digested slurries (ADSs), and the microorganisms inhabiting them, against Fusarium wilt in spinach. We used five different ADSs from a range of source materials (dairy cow manure, sewage sludge, food garbage, [...] Read more.
This study was designed to assess the suppressive effects of various anaerobically digested slurries (ADSs), and the microorganisms inhabiting them, against Fusarium wilt in spinach. We used five different ADSs from a range of source materials (dairy cow manure, sewage sludge, food garbage, pig manure, night soil sludge), combined in different proportions. All five raw ADSs suppressed the growth of Fusarium oxysporum f. sp. spinaciae (Fos) on agar plates using a co-culture test. In contrast, filtrate ADSs did not suppress the growth of Fos. In total, 32 bacterial strains were isolated from five ADSs, and eight isolates showed antagonistic activities against Fos. Based on 16S rDNA sequences, the strain AD-3 isolated from ADS from dairy cow manure belonged to Bacillus velezensis. Genome analysis revealed that AD-3 had two kinds of genes related to the production of the non-ribosomal lipopeptides, fengycin/plipastatin (pps genes), and surfactin (srf genes). In pot assays, inoculation of AD-3 (1.0 × 106 CFU·g−1 dry soil) into Fos-infected soil (1.0 × 105 bud-cells·g−1 dry soil) significantly reduced the severity of Fusarium wilt disease at 28 d after seedling. The percentage reductions in disease severity in two replicates were 64.3% and 44.3%, respectively. Thus, bacterial strain AD-3 could be applied to reduce Fusarium wilt in spinach. Full article
(This article belongs to the Special Issue Microbial Control of Crop Diseases: Limitations and Optimizations)
Show Figures

Figure 1

18 pages, 3180 KiB  
Article
Screening of Antimicrobial Activities and Lipopeptide Production of Endophytic Bacteria Isolated from Vetiver Roots
by Yuka Munakata, Egon Heuson, Théo Daboudet, Barbara Deracinois, Matthieu Duban, Alain Hehn, François Coutte and Sophie Slezack-Deschaumes
Microorganisms 2022, 10(2), 209; https://doi.org/10.3390/microorganisms10020209 - 19 Jan 2022
Cited by 21 | Viewed by 4816
Abstract
The exploration of certain microbial resources such as beneficial endophytic microorganisms is considered a promising strategy for the discovery of new antimicrobial compounds for the pharmaceutical industries and agriculture. Thirty-one endophytic bacterial strains affiliated with Bacillus, Janthinobacterium, Yokenella, Enterobacter, Pseudomonas [...] Read more.
The exploration of certain microbial resources such as beneficial endophytic microorganisms is considered a promising strategy for the discovery of new antimicrobial compounds for the pharmaceutical industries and agriculture. Thirty-one endophytic bacterial strains affiliated with Bacillus, Janthinobacterium, Yokenella, Enterobacter, Pseudomonas, Serratia, and Microbacterium were previously isolated from vetiver (Chrysopogon zizanioides (L.) Roberty) roots. These endophytes showed antifungal activity against Fusarium graminearum and could be a source of antimicrobial metabolites. In this study, in particular, using high-throughput screening, we analyzed their antagonistic activities and those of their cell-free culture supernatants against three species of Fusarium plant pathogens, a bacterial strain of Escherichia coli, and a yeast strain of Saccharomyces cerevisiae, as well as their capacity to produce lipopeptides. The results showed that the culture supernatants of four strains close to B. subtilis species exhibited antimicrobial activities against Fusarium species and E. coli. Using mass spectrometry analyses, we identified two groups of lipopeptides (surfactins and plipastatins) in their culture supernatants. Whole-genome sequencing confirmed that these bacteria possess NRPS gene clusters for surfactin and plipastatin. In vitro tests confirmed the inhibitory effect of plipastatin alone or in combination with surfactin against the three Fusarium species. Full article
(This article belongs to the Special Issue Antimicrobial Lipopeptide Biosurfactant)
Show Figures

Figure 1

14 pages, 1509 KiB  
Article
Bacillus velezensis T149-19 and Bacillus safensis T052-76 as Potential Biocontrol Agents against Foot Rot Disease in Sweet Potato
by Jackeline Rossetti Mateus, Isabella Dal’Rio, Diogo Jurelevicius, Fabio Faria da Mota, Joana Montezano Marques, Rommel Thiago Juca Ramos, Artur Luiz da Costa da Silva, Paulo Roberto Gagliardi and Lucy Seldin
Agriculture 2021, 11(11), 1046; https://doi.org/10.3390/agriculture11111046 - 25 Oct 2021
Cited by 15 | Viewed by 4085
Abstract
Sweet potato (Ipomoea batatas) tuberous roots are used for human consumption, animal feed, and many industrial products. However, the crop is susceptible to various pests and diseases, including foot rot disease caused by the phytopathogenic fungus Plenodomus destruens. Biological control [...] Read more.
Sweet potato (Ipomoea batatas) tuberous roots are used for human consumption, animal feed, and many industrial products. However, the crop is susceptible to various pests and diseases, including foot rot disease caused by the phytopathogenic fungus Plenodomus destruens. Biological control of plant pathogens by Bacillus species is widely disseminated in agrosystems, but specific biological control agents against the foot rot disease-causing fungus are not yet available. Our previous studies showed that two Bacillus strains isolated from sweet potato roots—B. safensis T052-76 and B. velezensis T149-19—were able to inhibit P. destruens in vitro, but data from in vivo experiments using simultaneously the fungus and the bacteria were missing. In this study, both strains were shown to protect the plant from the disease and to mitigate the symptoms of foot rot disease in pot experiments. Total fungal community quantification using real-time PCR showed a significant decrease in the number of copies of the ITS gene when the bacteria were inoculated, compared to the control (with the fungus only). To determine the genes encoding antimicrobial substances likely to inhibit the fungus, their genomes were sequenced and annotated. Genes coding for mycosubtilin, bacillaene, macrolactin, bacillibactin, bacilysin, plantazolicin, plipastatin, dificidine, fengycin and surfactin were found in B. velezensis T149-19, while those coding for bacylisin, lichenysin, bacillibactin, fengycin and surfactin were found in B. safensis T052-76. Altogether, the data presented here contribute to advancing the knowledge for the use of these Bacillus strains as biocontrol products in sweet potato. Full article
Show Figures

Figure 1

Back to TopTop