Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (914)

Search Parameters:
Keywords = plasticizer mixture

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 2600 KB  
Article
Influence of the Amount of Mineral Additive on the Rheological Properties and the Carbon Footprint of 3D-Printed Concrete Mixtures
by Modestas Kligys, Giedrius Girskas and Daiva Baltuškienė
Buildings 2026, 16(3), 490; https://doi.org/10.3390/buildings16030490 (registering DOI) - 25 Jan 2026
Abstract
Rheology plays an important role in the 3D concrete printing technology, because it directly governs the flowability and shape retention of the material, impacting both the printing process and the final quality of the obtained structure. Local raw materials such as Portland cement, [...] Read more.
Rheology plays an important role in the 3D concrete printing technology, because it directly governs the flowability and shape retention of the material, impacting both the printing process and the final quality of the obtained structure. Local raw materials such as Portland cement, washed sand, and tap water were used for the preparation of 3D-printed concrete mixtures. The solid-state polycarboxylate ether with an anti-foaming agent was used as superplasticizer. The Portland cement was partially replaced (by volume) with a natural zeolite additive in amounts ranging from 0% to 9% in 3D-printed concrete mixtures. A rotational rheometer with coaxial cylinders was used in this research for the determination of rheological characteristics of prepared 3D-printed concrete mixtures. The Herschel–Buckley model was used to approximate experimental flow curves and assess rheological parameters such as yield stress, plastic viscosity, and shear-thinning/thickening index. The additional experiments and calculations, such as water bleeding test and evaluation of the carbon footprint of 3D-printed concrete mixtures, were performed in this work. The replacement of Portland cement with natural zeolite additive positively influenced rheological and stability-related properties of 3D-printed concrete mixtures. Natural zeolite additive consistently reduced water bleeding, enhanced yield stress under increasing shear rates, and lowered plastic viscosity, thereby improving flowability and mixture transportation during the 3D printing process. As the shear-thinning/thickening index remained stable (indicating non-thixotropic behavior in most cases), higher amounts of natural zeolite additive introduced slight thixotropy (especially under decreased shear rates). These changes contributed to better shape retention, layer stability, and the ability to print taller and narrower structures without collapse, making natural zeolite additive suitable for use in the optimized processes of 3D concrete printing. A significant decrease in total carbon footprint (from 3% to 19%) was observed in 3D-printed concrete mixtures with an increase in the mentioned amounts of natural zeolite additive, compared to the mixture without this additive. Full article
(This article belongs to the Special Issue Advances and Applications of Recycled Concrete in Green Building)
Show Figures

Figure 1

22 pages, 3711 KB  
Article
Optimized Nitrogen Application Under Mulching Enhances Maize Yield and Water Productivity by Regulating Crop Growth and Water Use Dynamics
by Haoran Sun, Xufeng Wang, Shengdan Duan, Mengni Cui, Guangyao Xing, Shanchao Yue, Miaoping Xu and Yufang Shen
Agronomy 2026, 16(3), 290; https://doi.org/10.3390/agronomy16030290 (registering DOI) - 23 Jan 2026
Abstract
Surface mulching and nitrogen (N) application are widely used to enhance crop yield and water productivity (WP). However, their combined effects remain unclear. Here, a three-year field experiment was conducted to comprehensively assess the effects of surface mulching (no mulching, B; straw mulching, [...] Read more.
Surface mulching and nitrogen (N) application are widely used to enhance crop yield and water productivity (WP). However, their combined effects remain unclear. Here, a three-year field experiment was conducted to comprehensively assess the effects of surface mulching (no mulching, B; straw mulching, S; and plastic film mulching, F) and N fertilization (no N application, N0; split application of urea, N1; 1:2 mixture of controlled-release urea and urea, N2) on maize growth, yield, and WP on the Loess Plateau. Application of nitrogen (N) significantly increased evapotranspiration (ET), grain yield, and WP by 4.58%, 176% (from 5215.43 kg ha−1 in N0 to 14,548.21 kg ha−1 in N2), and 166% (from 11.36 kg ha−1 mm−1 in N0 to 30.63 kg ha−1 mm−1 in N2), respectively. Compared with B and S, F increased ET during the pre-silking stage by 16.75% and 23.99%, respectively, and shortened the vegetative period of maize by 3–9 days but extended the duration from the milky stage (R3) to physiological maturity (R6) in the reproductive period by 5–13 days. F significantly increased yield and WP by 9.18% and 8.26% compared with S. Under F combined with N application, deep soil water (100–200 cm) consumption during R1–R3 increased by 15.75 mm and 13.15 mm compared with B and S, respectively. The combination of F and N2 achieved the highest yield (15,648.28 kg ha−1) and WP (32.44 kg ha−1 mm−1) without causing detectable depletion of soil water within the 0–200 cm profile during the study period, providing an effective strategy for enhancing crop yield and improving water–fertilizer use efficiency in semi-arid regions. Full article
Show Figures

Figure 1

22 pages, 4834 KB  
Article
Dialdehyde Alginate as a Crosslinker for Chitosan/Starch Films: Toward Biocompatible and Antioxidant Wound Dressing Materials
by Sylwia Grabska-Zielińska, Marek Pietrzak, Lidia Zasada, Krzysztof Łukowicz, Agnieszka Basta-Kaim, Marta Michalska-Sionkowska, Marcin Wekwejt and Beata Kaczmarek-Szczepańska
Int. J. Mol. Sci. 2026, 27(3), 1174; https://doi.org/10.3390/ijms27031174 - 23 Jan 2026
Abstract
Biopolymer-based films have attracted increasing attention as sustainable and bioactive materials for wound management. Among them, chitosan (CTS) and starch (ST) blend represent promising candidate due to their natural origin, biodegradability, and intrinsic biological activity; however, their mechanical weakness and limited stability necessitate [...] Read more.
Biopolymer-based films have attracted increasing attention as sustainable and bioactive materials for wound management. Among them, chitosan (CTS) and starch (ST) blend represent promising candidate due to their natural origin, biodegradability, and intrinsic biological activity; however, their mechanical weakness and limited stability necessitate additional modification. This study reports the development and characterization of CTS-ST thin films crosslinked with dialdehyde alginate (ADA), synthesized via controlled oxidation. Two ADA variants differing in aldehyde group content were prepared to investigate the effect of crosslinking on the structural, physicochemical, and biological performance of the materials. The films were fabricated by blending 2% w/v CTS and ST in varying mass ratios (75/25, 50/50, and 25/75), followed by the addition of ADA (5% w/w) and glycerol (5% w/w) as a plasticizer. The mixtures were then cast onto plates and dried under ambient conditions. Comprehensive characterization included Fourier-transform infrared spectroscopy, moisture content analysis, contact angle measurements, antioxidant activity assay, hemolysis testing, and cytotoxicity evaluation using human keratinocyte cells. The results demonstrated that both the ADA variant and CTS/ST ratio significantly influenced crosslinking efficiency, hydrophilicity, and antioxidant behavior. All samples exhibited non-hemolytic behavior and no significant cytotoxic effects, indicating their favorable biocompatibility. The combination of biostability, antioxidant ability, and absence of cytotoxic effects highlights the potential of ADA-crosslinking CTS/ST films for further development as wound dressing materials and other biomedical applications. Full article
(This article belongs to the Special Issue Bioactive Polymer-Based Materials Dedicated to Wound Healing)
Show Figures

Figure 1

16 pages, 2311 KB  
Article
High Cell Density Fermentation of Yarrowia lipolytica on n-Hexadecane for the Valorization of Pyrolyzed Plastic Waste
by Antonia Keil, Joost Woestenborghs, Oleksii Lyzak, Elodie Vlaeminck, Evelien Uitterhaegen, Karel De Winter, Kevin J. Verstrepen and Wim Soetaert
Int. J. Mol. Sci. 2026, 27(2), 1107; https://doi.org/10.3390/ijms27021107 - 22 Jan 2026
Viewed by 15
Abstract
The recycling of fossil-based plastic waste remains a key challenge in reducing environmental pollution and greenhouse gas emissions. An innovative approach is the biotechnological conversion of the n-alkane mixture obtained from thermal pyrolysis of plastic waste. This study focuses on the use of [...] Read more.
The recycling of fossil-based plastic waste remains a key challenge in reducing environmental pollution and greenhouse gas emissions. An innovative approach is the biotechnological conversion of the n-alkane mixture obtained from thermal pyrolysis of plastic waste. This study focuses on the use of the oleaginous yeast Yarrowia lipolytica for the valorization of polyethylene (PE)-derived pyrolysis oil. From a screening of 50 Y. lipolytica strains, the most promising candidate was selected, and its single-cell phenotype was stabilized by MHY1 deletion. In shake flask experiments, this strain grew similarly on 5–20 vol% of n-hexadecane, revealing no inhibitory effects. Subsequently, a high cell density fermentation was established in a 4 L bioreactor using a pulsed fed-batch approach, resulting in biomass concentrations of up to 145.6 g·L−1, which contained 22.0% triacylglycerols. In addition, cultivation at pH 2.5, compared to pH 4.0, reduced citrate formation from 95.6 to 0.8 g·L−1, while biomass and TAG titers remained similar. Overall, these results highlight the potential of integrating plastic waste-derived pyrolysis oil into future bioprocesses using Y. lipolytica as an effective platform for high cell density production. Full article
(This article belongs to the Special Issue Molecular Insights into Microbial Adaptations to Marine Plastics)
Show Figures

Figure 1

28 pages, 12420 KB  
Article
Multi-Dimensional Assessment of Low-Carbon Engineering Cement-Based Composites Based on Rheological, Mechanical and Sustainability Factors
by Zhilu Jiang, Zhaowei Zhu, Deming Fang, Chuanqing Fu, Siyao Li and Yuxiang Jing
Materials 2026, 19(2), 424; https://doi.org/10.3390/ma19020424 (registering DOI) - 21 Jan 2026
Viewed by 72
Abstract
To address the high-carbon emissions associated with the large use of Portland cement (PC) in traditional engineered cementitious composites (ECCs) and the resource constraints on supplementary cementitious materials (SCMs), this study proposes a strategy combining limestone calcined clay cement (LC3) as [...] Read more.
To address the high-carbon emissions associated with the large use of Portland cement (PC) in traditional engineered cementitious composites (ECCs) and the resource constraints on supplementary cementitious materials (SCMs), this study proposes a strategy combining limestone calcined clay cement (LC3) as a PC replacement with the incorporation of hybrid synthetic fibers to develop low-carbon, environmentally friendly ECCs. The fundamental properties of the LC3-ECC were tested, and a sustainability analysis was conducted. The experimental results show that an increase in water-to-binder ratio (W/B) or superplasticizer (SP) dosage significantly enhanced fluidity while reducing the yield stress and plastic viscosity. An LC3-ECC with a W/B of 0.25, 0.45% SP and 2% polyethylene fibers exhibited the best tensile performance, achieving an ultimate tensile strain of 8.40%. In contrast, an increase in polypropylene fiber led to a degradation in crack-resistant properties. In terms of sustainability, replacing the PC with LC3 significantly reduced carbon emissions by 19.1–20.8%, while the cost of the limestone calcined clay cement–polypropylene fiber (LC3-PP) was approximately 50% of that of the limestone calcined clay cement–polyvinyl alcohol fiber (LC3-PVA). Furthermore, an integrated evaluation framework encompassing rheological, mechanical and environmental factors was established using performance radar charts. The dataset on the performance results and the developed assessment framework provide a foundation for optimizing the mixture proportioning of LC3-ECC in practical engineering applications. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Graphical abstract

20 pages, 2308 KB  
Article
Refractory Geopolymer Bricks from Clays and Seashells: Effect of Sodium Lignosulfonate and Polycarboxylate Plasticizers on Workability and Compressive Strength
by Andrea Yesenia Ramírez-Yáñez, Nadia Renata Osornio-Rubio, Hugo Jiménez-Islas, Fernando Iván Molina-Herrera, Jorge Alejandro Torres-Ochoa and Gloria María Martínez-González
Eng 2026, 7(1), 39; https://doi.org/10.3390/eng7010039 - 11 Jan 2026
Viewed by 237
Abstract
Refractory geopolymers derived from aluminosilicate sources and alkaline activation are a promising alternative to traditional fired bricks, particularly when low-cost, waste-derived raw materials are used. This study improves the workability of a refractory brick formulated with clays (Kaolin and Tepozan–Bauwer), seashell waste, sodium [...] Read more.
Refractory geopolymers derived from aluminosilicate sources and alkaline activation are a promising alternative to traditional fired bricks, particularly when low-cost, waste-derived raw materials are used. This study improves the workability of a refractory brick formulated with clays (Kaolin and Tepozan–Bauwer), seashell waste, sodium silicate, potassium hydroxide, and water by incorporating sodium lignosulfonate (LS) and polycarboxylate (PC) plasticizers. Clays from Comonfort, Guanajuato, Mexico, and seashells were ground and sieved to pass a 100 Tyler mesh. A base mixture was prepared and evaluated using the Mini Slump Test, varying plasticizer content from 0 to 2% relative to the solid fraction. Based on workability, 0.5% LS and 1% PC (by solids) increased the slump, and a blended plasticizer formulation (1.5% by solids, 80%PC+20%LS) produced the highest workability. These additives act through different mechanisms, with LS primarily promoting electrostatic repulsion and PC steric repulsion. Bricks with and without plasticizers exhibited thermal resistance up to 1200 °C. After four calcination cycles, compressive strength values were 354.74 kgf/cm2 for the brick without plasticizer, 597.25 kgf/cm2 for 1% PC, 433.63 kgf/cm2 for 0.5% LS, and 519.05 kgf/cm2 for 1.5% of the 80%PC+20%LS blend. Strength was consistent with changes in porosity and apparent density, and 1% PC provided a favorable combination of high workability and high compressive strength after cycling. Because the cost of clays and seashells is negligible, formulation selection was based on plasticizer cost per brick. Although 1% PC and the 1.5% of 80%PC+20%LS blend showed statistically comparable strength after cycling, 1% PC was selected as the preferred option due to its lower additive cost ($0.0449 per brick) compared with the blend ($0.0633 per brick). Stereoscopic microscopy indicated pore closure after calcination with no visible cracking, and SEM–EDS identified O, Si, and Al as the significant elements, with traces of S and K. Overall, the study provides an integrated assessment of workability, multi-cycle calcination, microstructure, and performance for refractory bricks produced from readily available clays and seashell waste. Full article
(This article belongs to the Section Materials Engineering)
Show Figures

Figure 1

21 pages, 1438 KB  
Article
Finite Element Modelling of Variable Bitumen Content in Asphalt Mixtures
by Mohammad Fahad
Appl. Sci. 2026, 16(2), 629; https://doi.org/10.3390/app16020629 - 7 Jan 2026
Viewed by 220
Abstract
Bitumen content is a critical factor influencing the long-term performance and durability of asphalt pavements. This study evaluates how different binder percentages affect the mechanical behaviour of asphalt mixtures. Mixtures containing 4.7%, 5.1% and 5.5% binder were tested through an extensive experimental program [...] Read more.
Bitumen content is a critical factor influencing the long-term performance and durability of asphalt pavements. This study evaluates how different binder percentages affect the mechanical behaviour of asphalt mixtures. Mixtures containing 4.7%, 5.1% and 5.5% binder were tested through an extensive experimental program that included Marshall stability and flow, semi-circular bending, PAV aging, wheel rutting, dynamic modulus, creep compliance and fatigue resistance, supported by finite element simulations. To model the nonlinear viscoplastic and damage behaviour, a Perzyna-type viscoplastic formulation and Lemaitre’s isotropic damage model were applied. Model parameters were further refined using Bayesian estimation, based on 10,000 samples generated with a Markov Chain Monte Carlo procedure employing the Metropolis–Hastings algorithm. The findings indicate that mixtures with 4.7% binder content develop fatigue damage earlier, while increasing the binder above 5.1% leads to greater rutting susceptibility and higher creep compliance, as seen in the 5.5% mixture. Among the three, the 5.1% binder content delivered the best overall performance, reducing plastic strain-related damage by 40% compared with the 4.7% mixture and by 27% compared with the 5.5% mixture. Full article
Show Figures

Figure 1

18 pages, 11210 KB  
Article
Biodegradation of Hydrophobic Coatings Based on Natural Wax and Its Mixtures
by Beata Kończak, Elżbieta Uszok, Małgorzata Białowąs, Marta Wiesner-Sękala, Paweł Zawartka, Marcel Klus and Lubomir Klus
Sustainability 2026, 18(1), 509; https://doi.org/10.3390/su18010509 - 4 Jan 2026
Viewed by 374
Abstract
Coatings are often applied in the materials industry to impart hydrophobic properties to the produced materials. Commonly used coatings contain plastics as well as perfluorinated compounds, which pose challenges for environmental sustainability due to their persistence and end-of-life impacts. Coatings based on natural [...] Read more.
Coatings are often applied in the materials industry to impart hydrophobic properties to the produced materials. Commonly used coatings contain plastics as well as perfluorinated compounds, which pose challenges for environmental sustainability due to their persistence and end-of-life impacts. Coatings based on natural wax, such as rapeseed, soy, palm or beeswax, constitute a key bio-based and more sustainable alternative. These waxes exhibit high hydrophobicity while also being biodegradable, offering opportunities to replace fossil-derived coatings within circular-economy material systems. Wax coating constitutes a protective layer that undergoes biodegradation after a certain amount of time. This paper presents the results of studies concerning the development of a wax coating characterized by a coarse microstructure that increases water resistance, and an appropriate susceptibility to biodegradation. It was revealed that all the analysed coatings were susceptible to biodegradation, although their rates varied markedly depending on wax type and form. The biodegradation of palm wax in bulk form and as a thick layer was 17% and 80%, respectively, after 180 days. Palm wax exhibited a pronounced ability to bind inorganic and organic matter deposits, which reduced the degradation rate. When applied as a thin coating, palm wax did not form such a barrier. Palm wax significantly influences coating durability because its surface undergoes morphic changes induced by bio-surfactants secreted by microorganisms. These changes the adhesion of organic and inorganic matter particles, and the layer thus established limits the diffusion of oxygen, enzymes and microorganisms to the wax coating. The tests demonstrated that the addition of palm wax to wax mixtures allows the degradation rate to be controlled, and that its inhibitory effect is strongly dependent on the geometry of the material. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

18 pages, 2850 KB  
Article
Valorization of Native Potato and Carrot Discards in the Elaboration of Edible Films: Study of Physical and Chemical Properties
by David Choque-Quispe, Sandra Diaz Orosco, Carlos A. Ligarda-Samanez, Fidelia Tapia Tadeo, Sofía Pastor-Mina, Miriam Calla-Florez, Antonieta Mojo-Quisani, Lucero Quispe Chambilla, Rosa Huaraca Aparco, Hilka Mariela Carrión Sánchez, Jorge W. Elias-Silupu and Luis H. Tolentino-Geldres
Resources 2026, 15(1), 6; https://doi.org/10.3390/resources15010006 - 29 Dec 2025
Viewed by 447
Abstract
Growing concern about the environmental impact of traditional packaging has driven the development of biodegradable edible films made from natural and functional biopolymers. Various by-products generated during harvesting can be subjected to valorization. Potato, a tuber with high starch content, and carrot, rich [...] Read more.
Growing concern about the environmental impact of traditional packaging has driven the development of biodegradable edible films made from natural and functional biopolymers. Various by-products generated during harvesting can be subjected to valorization. Potato, a tuber with high starch content, and carrot, rich in β-carotene, represent important sources of polymeric matrix and bioactive compounds, respectively. Similarly, the use of biodegradable plasticizers such as pectin and polysaccharides derived from nopal mucilage is a viable alternative. This study assessed the physical and chemical properties of edible films composed of potato starch (PS), cactus mucilage (NM), carrot extract (CJ), citrus pectin (P), and glycerin (G). The films were produced by means of casting, with three mixtures prepared that had different proportions of CJ, P, and PS. The experiments were adjusted to a simple mixture design, and the data were analyzed in triplicate, using Pareto and Tukey diagrams at 5% significance. Results showed that adding CJ (between 5 to 6%), P (between 42 to 44%) and PS (between 43 to 45%) significantly affects all of the evaluated physical and chemical properties, resulting in films with luminosity values greater than 88.65, opacity ranging from 0.20 to 0.54 abs/mm, β-carotene content up to 26.11 μg/100 g, acidity between 0.22 and 0.31% and high solubility with a significant difference between treatments (p-value < 0.05) and low water activity (around of 0.47) (p-value > 0.05). These characteristics provide tensile strength up to 5.7 MPa and a suitable permeability of 1.6 × 10−2 g·mm/h·m2·Pa (p-value < 0.05), which ensures low diffusivity through the film. Similarly, increasing the CJ addition enables the functional groups of the other components to interact. Using carrot extract and potato starch is a promising approach for producing edible films with good functional qualities but with high permeability. Full article
Show Figures

Figure 1

19 pages, 3590 KB  
Article
Influence of Aggressive Liquid Media on the Properties of Swelling Rubbers Filled with Carboxymethylated Cellulose
by Abdirakym Nakyp, Elena Cherezova, Yulia Karaseva, Aida Dauylbek and Rakhymzhan Turmanov
Macromol 2026, 6(1), 1; https://doi.org/10.3390/macromol6010001 - 25 Dec 2025
Viewed by 185
Abstract
The stability of physical and mechanical properties of highly filled swelling rubbers in polar and nonpolar liquids (oil, mineralized water) was studied. Nitrile butadiene rubber of BNKS-28 AMN grade served as the elastomer matrix, with sodium salt of carboxymethylcellulose (NaCMC) as the swelling [...] Read more.
The stability of physical and mechanical properties of highly filled swelling rubbers in polar and nonpolar liquids (oil, mineralized water) was studied. Nitrile butadiene rubber of BNKS-28 AMN grade served as the elastomer matrix, with sodium salt of carboxymethylcellulose (NaCMC) as the swelling filler. Oxal T-92, a mixture of dioxane alcohols (10–50 phr, step 10 phr), was used as a plasticizer due to its good thermodynamic miscibility with rubber (confirmed by Scatchard–Hildebrand calculations). Adding Oxal T-92 to NaCMC-filled compounds markedly reduced Mooney viscosity, improving processing through increased macromolecule mobility, without significantly affecting vulcanization kinetics—indicating chemical inertness toward crosslinking centers. Increasing Oxal T-92 from 10 to 50 phr reduced tensile strength from 4.1 MPa to 2.9 MPa. Swelling in aqueous solutions of varying mineralization was evaluated via volume and mass change. The optimal plasticizer content for high swelling with acceptable strength is 20–30 phr. After 3 days in oil and formation water, NaCMC-filled rubbers retained stable physical and mechanical properties. Full article
Show Figures

Graphical abstract

16 pages, 4601 KB  
Article
Wettability Tailoring of Polymers Using Ferrate for Flotation Separation of Plastic Mixtures Towards Recycling
by Xueting Sun, Yu Jiang, Qiruo Wu, Xu Chen and Yuanqi Wang
Separations 2026, 13(1), 5; https://doi.org/10.3390/separations13010005 - 23 Dec 2025
Viewed by 263
Abstract
Ferrate as an environmentally friendly oxidant has been widely used in the environmental remediation and versatile functionalization of carbon-based materials. In this study, we investigated its ability to induce surface wettability of polymers and its emerging applications in separating mixed plastics through flotation [...] Read more.
Ferrate as an environmentally friendly oxidant has been widely used in the environmental remediation and versatile functionalization of carbon-based materials. In this study, we investigated its ability to induce surface wettability of polymers and its emerging applications in separating mixed plastics through flotation for recycling. It was found that ferrate (VI) formed oxygen-containing groups on the surface of polycarbonates (PCs) by selectively oxidizing the sp3-hybridized carbon atoms into hydroxyl and carboxyl moieties, in addition to introducing nanoscale iron oxides. This facilitated the selective hydrophilization of PC with a water contact angle of 60.7° but did not clearly affect the surface wettability of polyvinyl chloride (PVC). This difference in surface wettability highlighted the distinct floatability properties of PC and PVC, which can be utilized to separate mixtures of these plastics with the aid of flotation. A central composite design (CCD) utilizing response surface methodology (RSM) was applied to model ferrate oxidation and to optimize flotation. Under the optimized conditions, mixtures of PC and PVC were efficiently separated with recovery and purity values of more than 99.8 ± 0.3%. Our findings provide a rational understanding of polymer wettability tailoring and expand its emerging applications in waste plastic recycling to address environmental problems. Full article
Show Figures

Figure 1

39 pages, 3829 KB  
Article
Adequacy of Standard Models for Long-Term Behavior of Lightweight Concrete with Sintered Aggregate Under Cyclic Loading
by Paweł M. Lewiński, Zbigniew Fedorczyk, Przemysław Więch and Łukasz Zacharski
Materials 2026, 19(1), 59; https://doi.org/10.3390/ma19010059 - 23 Dec 2025
Viewed by 261
Abstract
This paper presents an experimental determination of the long-term mechanical properties of lightweight concrete with sintered aggregate under cyclic loading and the corresponding analytical standard models. The research was designed around two concrete mixtures. Multiple tests were conducted at the Building Structures, Geotechnics [...] Read more.
This paper presents an experimental determination of the long-term mechanical properties of lightweight concrete with sintered aggregate under cyclic loading and the corresponding analytical standard models. The research was designed around two concrete mixtures. Multiple tests were conducted at the Building Structures, Geotechnics and Concrete Laboratory of the Building Research Institute (ITB), using various equipment including creep-testing machines and tensometric measurements of sample deformations. As a result of these tests, in addition to strength properties, the following time-dependent parameters were determined: the secant modulus of elasticity, shrinkage strains, and creep-recovery strains under cyclic loading. For the parameterization and modeling of constitutive equations, an analysis of creep strains under cyclic loads was carried out, taking into account the integral hereditary law according to the Boltzmann superposition principle and the long-term models formulated according to the following standards and pre-standards: Eurocode 2 (2004), Model Code 2010, Model Code 2020, and Eurocode 2 (2023). The results from the individual models were compared with the test results using the rules for evaluating correction factors for models determined according to Eurocode 2 (2023). It was concluded that the development of creep strain is correctly modeled by the aforementioned standard methods, albeit with the aforementioned correction factors. One of the research objectives was to determine whether the ratchetting phenomenon could be observed during creep of the tested concrete under cyclic loading; however, due to the very low level of plastic deformation, this phenomenon was not detected. The research confirmed the suitability of lightweight concrete with sintered aggregate for use in cyclically loaded concrete structures. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

18 pages, 1101 KB  
Article
Computational Advances in Taste Perception: From Ion Channels and Taste Receptors to Neural Coding
by Vladimir A. Lazovsky, Sergey V. Stasenko, Roman K. Khismatullin and Victor B. Kazantsev
Brain Sci. 2026, 16(1), 10; https://doi.org/10.3390/brainsci16010010 - 22 Dec 2025
Viewed by 398
Abstract
We present a multiscale model of taste that is both biophysically faithful and computationally efficient, enabling end-to-end simulation from receptor transduction to network-level coding. The novelty lies in coupling Hodgkin–Huxley taste receptor cells with Goldman–Hodgkin–Katz ion currents and modality-specific receptors (T1R/T2R, ENaC), to [...] Read more.
We present a multiscale model of taste that is both biophysically faithful and computationally efficient, enabling end-to-end simulation from receptor transduction to network-level coding. The novelty lies in coupling Hodgkin–Huxley taste receptor cells with Goldman–Hodgkin–Katz ion currents and modality-specific receptors (T1R/T2R, ENaC), to an Izhikevich spiking network equipped with realistic glutamatergic synapses and spike-timing-dependent plasticity. Training combines spike synchrony and a genetic approach in order to reach both globally optimized network structure and biomorphic synaptic plasticity. This hybrid design yields distinct, sparse spiking “fingerprints” for taste qualities and mixtures, and provides a practical foundation for neuromorphic gustatory sensors that require real-time, energy-efficient operation. Full article
Show Figures

Figure A1

21 pages, 3931 KB  
Article
Sustainable Use of Industrial Wastes for Soil Stabilization
by André Studart, Maria Eugenia Boscov, Victor Cavaleiro and Antonio Albuquerque
Eng 2026, 7(1), 4; https://doi.org/10.3390/eng7010004 - 20 Dec 2025
Viewed by 288
Abstract
Worldwide, large volumes of industrial residues, such as water treatment sludge (WTS), biomass ash (BA), iron slag (IS), and quarry fines (QF), are generated with limited reuse. This study evaluates their potential as additives for two soils, using two types of soils as [...] Read more.
Worldwide, large volumes of industrial residues, such as water treatment sludge (WTS), biomass ash (BA), iron slag (IS), and quarry fines (QF), are generated with limited reuse. This study evaluates their potential as additives for two soils, using two types of soils as matrices. A comprehensive laboratory program (particle size distribution, Proctor compaction, Atterberg limits, falling-head permeability, oedometer consolidation, consolidated undrained triaxial tests, and scanning electron microscopy) was performed on soil–residue mixtures across practical dosages. Optimal mixes balanced strength and transport properties: 15% WTS lowered hydraulic conductivity (k) into the 10−9 m/s range while reducing plasticity; 20% BA rendered the soil non-plastic but increased k into the 10−8–10−7 m/s range; 50% IS increased friction angle while maintaining k ~10−8 m/s; and QF produced modest changes while preserving k ~10−9 m/s. These findings support the sustainable reuse of these industrial wastes for soft soil stabilization, also contributing to the circular economy in the industrial and construction sectors, and are aligned with the United Nations’ sustainable development goals 6, 9, 11, 12, and 15. Full article
Show Figures

Graphical abstract

24 pages, 4420 KB  
Article
Overlying Strata Settlement in Subsea Mine Stopes: A Study on the Effects of Backfill Compression
by Hao Wu, Hassan Nasir Mangi, Yunpeng Kou, Gengjie Zhu and Ying Chen
Appl. Sci. 2026, 16(1), 45; https://doi.org/10.3390/app16010045 - 19 Dec 2025
Viewed by 220
Abstract
This study investigates the settlement characteristics of overlying strata in backfilled stopes at the Sanshandao Gold Mine, focusing on the compaction behavior of backfill materials. Integrating laboratory tests, numerical modeling, and field monitoring, we analyzed the particle size distribution and fractal dimensions of [...] Read more.
This study investigates the settlement characteristics of overlying strata in backfilled stopes at the Sanshandao Gold Mine, focusing on the compaction behavior of backfill materials. Integrating laboratory tests, numerical modeling, and field monitoring, we analyzed the particle size distribution and fractal dimensions of tailings (2.1525) and C material (2.1994), with tailings showing better gradation. Systematic compaction tests examined the effects of mix ratio, water content, and curing time. Results indicate that compression follows a viscous sliding model with exponential curves, progressing through three stages—pore compaction, structural deformation, and elastic/plastic deformation—with energy dissipation ratios of 1:5:18. Water content was the most influential factor, with optimal compaction occurring at 5~8%. Coupled Midas-Flac3D simulations estimated a theoretical compaction rate of 0~2% in filled stopes, excluding seepage and equipment effects. Field monitoring at the −480 m level revealed non-uniform settlement, with maximum subsidence of 63.75 mm above stopes and initial settlement rates of 12~20 mm/month. At the −520 m mining level, the backfill compaction rate reached 0.31%, with minor future increases expected. These findings offer valuable guidance for backfill mixture design and strata control in mining engineering. Full article
(This article belongs to the Special Issue Advances in Rock Excavation and Underground Construction Technology)
Show Figures

Figure 1

Back to TopTop