Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (247)

Search Parameters:
Keywords = plant protoplast

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 9113 KB  
Article
In Vitro Regeneration of Southern Italian Grapevine Cultivars from Embryogenic Calluses and Protoplasts
by Valeria Ereddia, Chiara Catalano, Fabrizio Salonia, Lara Poles, Edoardo Bertini, Sara Zenoni, Antonio Sparacio, Daniele Oliva, Elisabetta Nicolosi and Alessandra Gentile
Plants 2025, 14(21), 3262; https://doi.org/10.3390/plants14213262 - 25 Oct 2025
Viewed by 871
Abstract
Efficiency in vitro regeneration is a crucial prerequisite for the application of New Nenomics Techniques (NGTs) in grapevine (Vitis vinifera L.) for improving resistance to biotic and abiotic stresses. This is especially true given that their management must be addressed sustainably, considering [...] Read more.
Efficiency in vitro regeneration is a crucial prerequisite for the application of New Nenomics Techniques (NGTs) in grapevine (Vitis vinifera L.) for improving resistance to biotic and abiotic stresses. This is especially true given that their management must be addressed sustainably, considering the impact of climate change. Unfortunately, in vitro plant regeneration and the establishment of embryogenic calluses are two genotype-dependent processes. Up to now, extensive research has been conducted on major international cultivars, whereas studies on the application of in vitro protocols for autochthonous cultivars remain limited. In this study, protocols for the acquisition of embryogenic calluses were applied on the most relevant Sicilian grapevine cultivars: the red-skinned ‘Frappato’, ‘Nerello mascalese’, and ‘Nero d’Avola’, and the white-skinned ‘Grillo’, ‘Carricante’, and ‘Catarratto’. Stamens and pistils were cultured in two different induction media (PIV and MSII) and at three stages (mother cells in the late premeiotic phase, tetrads, and mature pollen) to induce embryogenic calluses. Five thousand explants per cultivar were cultured, forming calluses in four selected cultivars. Plantlets were successfully generated from calluses of ‘Carricante’, ‘Frappato’, and ‘Nero d’Avola’. Moreover, protoplasts were isolated from ‘Frappato’ and ‘Nero d’Avola’. Our results establish a critical foundation for developing successful regeneration protocols for the future application of NGTs in Sicilian grapevine cultivars. Full article
(This article belongs to the Special Issue Advances and Applications in Plant Tissue Culture—2nd Edition)
Show Figures

Figure 1

13 pages, 6112 KB  
Article
Genomic-Encoded Mitovirus RdRp Is Required for Embryo Development and Maintaining Mitochondrial Dynamics in Arabidopsis
by Yadi Gong, Rongqin Chen, Chen Yang, Yingcui Lu, Zhenjie Fu, Ye Feng, Xiaomeng Li, Ling Li and Xiaoyun Li
Int. J. Mol. Sci. 2025, 26(18), 9035; https://doi.org/10.3390/ijms26189035 - 17 Sep 2025
Cited by 1 | Viewed by 644
Abstract
Mitoviral-derived sequences are frequently detected in plant genomes, encoding an RNA-dependent RNA polymerase (RdRp). These sequences share many similarities with mitoviruses that are known to commonly infect plant mitochondria. However, the functional characterization of nuclear-encoded mitoviral-RdRp remains unclear. This study elucidates the critical [...] Read more.
Mitoviral-derived sequences are frequently detected in plant genomes, encoding an RNA-dependent RNA polymerase (RdRp). These sequences share many similarities with mitoviruses that are known to commonly infect plant mitochondria. However, the functional characterization of nuclear-encoded mitoviral-RdRp remains unclear. This study elucidates the critical role of mRdRp (AT2G07749) in maintaining mitochondrial homeostasis and embryo viability, highlighting the dual role of viral-derived genes in plant development and stress response. Phylogenetic analysis reveals that mRdRp shares 96.8% identity with the mitoviral RdRp encoded by mitochondrial-genomes, suggesting that this nuclear mRdRp gene originated from horizontal transfer events following ancestral plant-mitovirus infections. To dissect mRdRp function, we generated a mRdRp knockout mutant via CRISPR-Cas9 or knockdown mutant by RNA interference (RNAi). These mRdRp mutants exhibited severe developmental defects, including dwarfism, embryo lethality, and sterility. Phenotypic assays further showed that mRdRp mutants displayed heightened susceptibility to ABA and rotenone, indicating impaired adaptive capacity to both hormonal and metabolic stress. Loss of mRdRp led to fragmented mitochondrial networks and a significant reduction in mitochondrial abundance in both leaf protoplasts and root meristematic cells. Additionally, mitochondrial-derived small RNA (sRNA) aberrantly accumulated in mRdRp mutants, which potentially disrupts endogenous RNA-silencing pathways that rely on sRNA-mediated gene regulation. Collectively, these results provide mechanistic insights into the function integration of a virus-derived gene into plant cellular networks, advancing our understanding of host–virus coevolution and the role of horizontally transferred viral genes in shaping plant physiology. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

19 pages, 13063 KB  
Article
The Function of Chitinases CmCH1 and CmCH10 in the Interaction of Coniothyrium minitans and Sclerotinia sclerotiorum
by Haixuan Wang, Huizhang Zhao, Zihang Zhu, Yang Lin, Jiatao Xie, Jiasen Cheng, Daohong Jiang and Yanping Fu
Int. J. Mol. Sci. 2025, 26(17), 8706; https://doi.org/10.3390/ijms26178706 - 6 Sep 2025
Viewed by 3937
Abstract
Sclerotinia sclerotiorum, a devastating phytopathogenic fungus with global distribution, exhibits a broad host range encompassing over 700 plant species. Sclerotinia stem rot caused by this pathogen poses a significant threat to sustainable oilseed rape production. Coniothyrium minitans, a mycoparasite of S. [...] Read more.
Sclerotinia sclerotiorum, a devastating phytopathogenic fungus with global distribution, exhibits a broad host range encompassing over 700 plant species. Sclerotinia stem rot caused by this pathogen poses a significant threat to sustainable oilseed rape production. Coniothyrium minitans, a mycoparasite of S. sclerotiorum, is a promising biological control agent against this devastating disease. C. minitans-based formulations have been commercially developed for field application. A transcriptomic analysis revealed significant upregulation of the chitinase-encoding gene CmCH1 in C. minitans during interaction with S. sclerotiorum. Knockout of either CmCH1 or another chitinase-encoding gene CmCH10 in C. minitans did not markedly affect the mycelial growth, development, and parasitism of S. sclerotiorum. However, knockout CmCH1 and CmCH10 simultaneously resulted in reduced growth rate, impaired protoplast release, enhanced cell wall integrity, and diminished mycoparasitic capability. These results indicate that CmCH1 and CmCH10 collectively influence remodeling of the cell wall in C. minitans and its mycoparasitic activity. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

17 pages, 3982 KB  
Article
An Improved Approach to Protoplast Regeneration and Transfection in Banana (Musa acuminata AAA cv. Williams)
by Pradeep Chand Deo, Jean-Yves Paul, Anthony James, Rob Harding and James Dale
Appl. Biosci. 2025, 4(3), 42; https://doi.org/10.3390/applbiosci4030042 - 1 Sep 2025
Viewed by 4360
Abstract
Protoplasts offer a promising alternative to embryogenic cell suspensions (ECS) for gene editing in banana, potentially overcoming several limitations associated with ECS-based transformation systems. This study aimed to optimize protoplast isolation and regeneration in Cavendish banana (cv. Williams) and to assess their suitability [...] Read more.
Protoplasts offer a promising alternative to embryogenic cell suspensions (ECS) for gene editing in banana, potentially overcoming several limitations associated with ECS-based transformation systems. This study aimed to optimize protoplast isolation and regeneration in Cavendish banana (cv. Williams) and to assess their suitability for transient gene expression. Enzymatic digestion of ECS using cellulase and macerozyme consistently yielded approximately 3 × 106 protoplasts per milliliter of settled cell volume. Protoplast yield was further enhanced, by approximately threefold, through the addition of an antioxidant mixture (ascorbic acid, citric acid and L-cysteine) combined with 0.01% bovine serum albumin. Polyethylene glycol-mediated transfection with a green fluorescent protein reporter gene yielded transient expression in approximately 0.75% of protoplasts five days post-transfection. While phenotypically normal plants were regenerated from untransfected protoplasts after 12 weeks in agarose bead culture with conditioned liquid medium, no regeneration was observed from transfected cells. These findings establish a reproducible protocol for protoplast isolation and plant regeneration in Cavendish banana and provide insight into the barriers limiting successful regeneration following transfection. Full article
Show Figures

Figure 1

18 pages, 5973 KB  
Article
Genome-Wide Identification and Characterisation of the 4-Coumarate–CoA Ligase (4CL) Gene Family in Gastrodia elata and Their Transcriptional Response to Fungal Infection
by Shan Sha, Kailang Mu, Qiumei Luo, Shi Yao, Tianyu Tang, Wei Sun, Zhigang Ju and Yuxin Pang
Int. J. Mol. Sci. 2025, 26(15), 7610; https://doi.org/10.3390/ijms26157610 - 6 Aug 2025
Viewed by 704
Abstract
Gastrodia elata Blume is an important medicinal orchid, yet its large-scale cultivation is increasingly threatened by fungal diseases. The 4-coumarate–CoA ligase (4CL) gene family directs a key step in phenylpropanoid metabolism and plant defence, but its composition and function in G. elata have [...] Read more.
Gastrodia elata Blume is an important medicinal orchid, yet its large-scale cultivation is increasingly threatened by fungal diseases. The 4-coumarate–CoA ligase (4CL) gene family directs a key step in phenylpropanoid metabolism and plant defence, but its composition and function in G. elata have not been investigated. We mined the G. elata genome for 4CL homologues, mapped their chromosomal locations, and analysed their gene structures, conserved motifs, phylogenetic relationships, promoter cis-elements and codon usage bias. Publicly available transcriptomes were used to examine tissue-specific expression and responses to fungal infection. Subcellular localisation of selected proteins was verified by transient expression in Arabidopsis protoplasts. Fourteen Ge4CL genes were identified and grouped into three clades. Two members, Ge4CL2 and Ge4CL5, were strongly upregulated in tubers challenged with fungal pathogens. Ge4CL2 localised to the nucleus, whereas Ge4CL5 localised to both the nucleus and the cytoplasm. Codon usage analysis suggested that Escherichia coli and Oryza sativa are suitable heterologous hosts for Ge4CL expression. This study provides the first genome-wide catalogue of 4CL genes in G. elata and suggests that Ge4CL2 and Ge4CL5 may participate in antifungal defence, although functional confirmation is still required. The dataset furnishes a foundation for functional characterisation and the molecular breeding of disease-resistant G. elata cultivars. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

15 pages, 9314 KB  
Article
Genome-Wide Characterization of the SnRK Gene Family in Taxus and Homologous Validation of TaSnRK1.2 as a Central Regulator in Stress-Responsive Transcriptional Networks
by Pengjun Lu, Jianqiu Ji, Fangjuan Fan, Tao Liu, Zhenting Shi, Wentao Li and Chongbo Sun
Plants 2025, 14(15), 2410; https://doi.org/10.3390/plants14152410 - 4 Aug 2025
Viewed by 713
Abstract
SnRK kinases, central regulators of plant stress response, remain uncharacterized in Taxus—an ancient gymnosperm valued for paclitaxel production. This study aimed to identify the Taxus SnRK family and elucidate its functional roles. Specifically, we identified SnRK genes through genomic analysis and assessed [...] Read more.
SnRK kinases, central regulators of plant stress response, remain uncharacterized in Taxus—an ancient gymnosperm valued for paclitaxel production. This study aimed to identify the Taxus SnRK family and elucidate its functional roles. Specifically, we identified SnRK genes through genomic analysis and assessed tissue-specific expression via transcriptomics, while regulatory networks were deciphered using WGCNA. To overcome experimental constraints, a PEG-mediated protoplast transient expression system was developed using calli, followed by dual-luciferase assays. Consequently, 19 SnRK genes (2 SnRK1, 4 SnRK2, 13 SnRK3) were identified, with tissue-specific expression revealing TaSnRK1.2 upregulation under methyl jasmonate (MeJA) and in stress-resilient tissues (bark/root). Subsequently, WGCNA uncovered a bark/root-specific module containing TaSnRK1.2 with predicted TF interactions (TaGRAS/TaERF). Critically, homologous dual-luciferase assays demonstrated TaSnRK1.2 activates TaGRAS and TaERF promoters (4.34-fold and 3.11-fold induction, respectively). This study establishes the Taxus SnRK family and identifies TaSnRK1.2 as a hub integrating stress signals (e.g., MeJA) to modulate downstream TF networks, while the novel protoplast system enables future functional studies in this medicinal plant. Full article
(This article belongs to the Special Issue Cell Physiology and Stress Adaptation of Crops)
Show Figures

Figure 1

24 pages, 4499 KB  
Article
What Is Similar, What Is Different? Characterization of Mitoferrin-like Proteins from Arabidopsis thaliana and Cucumis sativus
by Karolina Małas, Ludmiła Polechońska and Katarzyna Kabała
Int. J. Mol. Sci. 2025, 26(15), 7103; https://doi.org/10.3390/ijms26157103 - 23 Jul 2025
Viewed by 528
Abstract
Chloroplasts, as the organelles primarily responsible for photosynthesis, require a substantial supply of iron ions. Conversely, due to Fe toxicity, the homeostasis of these ions is subject to tight regulation. Permease in chloroplast 1 (PIC1) has been identified as the primary iron importer [...] Read more.
Chloroplasts, as the organelles primarily responsible for photosynthesis, require a substantial supply of iron ions. Conversely, due to Fe toxicity, the homeostasis of these ions is subject to tight regulation. Permease in chloroplast 1 (PIC1) has been identified as the primary iron importer into chloroplasts. However, previous studies suggested the existence of a distinct pathway for Fe transfer to chloroplasts, likely involving mitoferrin-like 1 (MFL1) protein. In this work, Arabidopsis MFL1 (AtMFL1) and its cucumber homolog (CsMFL1) were characterized using, among others, Arabidopsis protoplasts as well as both yeast and Arabidopsis mutants. Localization of both proteins in chloroplasts has been shown to be mediated via an N-terminal transit peptide. At the gene level, MFL1 expression profiles differed between the model plant and the crop plant under varying Fe availability. The expression of other genes involved in chloroplast Fe homeostasis, including iron acquisition, trafficking, and storage, was affected to some extent in both AtMFL1 knockout and overexpressing plants. Moreover, root growth and photosynthetic parameters changed unfavorably in the mutant lines. The obtained results imply that AtMFL1 and CsMFL1, as putative chloroplast iron transporters, play a role in both iron management and the proper functioning of the plant. Full article
(This article belongs to the Special Issue New Insights in Plant Cell Biology)
Show Figures

Figure 1

9 pages, 1013 KB  
Article
Miniature enOsCas12f1 Enables Targeted Genome Editing in Rice
by Junjie Wang, Qiangbing Xuan, Biaobiao Cheng, Beibei Lv and Weihong Liang
Plants 2025, 14(14), 2100; https://doi.org/10.3390/plants14142100 - 8 Jul 2025
Cited by 1 | Viewed by 1074
Abstract
The type V CRISPR/Cas12f system, with its broad PAM recognition range, small size, and ease of delivery, has significantly contributed to the gene editing toolbox. In this study, enOsCas12f1 activity was detected during transient expression in rice protoplasts. The results showed that enOsCas12f1 [...] Read more.
The type V CRISPR/Cas12f system, with its broad PAM recognition range, small size, and ease of delivery, has significantly contributed to the gene editing toolbox. In this study, enOsCas12f1 activity was detected during transient expression in rice protoplasts. The results showed that enOsCas12f1 exhibited DNA cleavage activity when it recognized TTN PAMs. Subsequently, we examined the gene editing efficiency of enOsCas12f1 in stably transformed rice plants, and the results showed that enOsCas12f1 could identify the TTT and TTC PAM sequences of the OsPDS gene, resulting in gene mutations and an albino phenotype. The editing efficiencies of TTT and TTC PAMs were 6.21% and 44.21%, respectively. Furthermore, all mutations were base deletions, ranging in size from 7 to 29 base pairs. Then, we used enOsCas12f1 to edit the promoter and 5′ UTR of the OsDREB1C gene, demonstrating that enOsCas12f1 could stably produce base deletion, mutant rice plants. Additionally, we fused the transcriptional activation domain TV with the dead enOsCas12f1 to enhance the expression of the target gene OsIPA1. Our study demonstrates that enOsCas12f1 can be utilized for rice gene modification, thereby expanding the toolbox for rice gene editing. Full article
(This article belongs to the Special Issue Advances and Applications of Genome Editing in Plants)
Show Figures

Figure 1

17 pages, 5753 KB  
Protocol
Protoplast-Based Regeneration Enables CRISPR/Cas9 Application in Two Temperate Japonica Rice Cultivars
by Marion Barrera, Blanca Olmedo, Matías Narváez, Felipe Moenne-Locoz, Anett Rubio, Catalina Pérez, Karla Cordero-Lara and Humberto Prieto
Plants 2025, 14(13), 2059; https://doi.org/10.3390/plants14132059 - 5 Jul 2025
Cited by 1 | Viewed by 2499
Abstract
Rice (Oryza sativa L.), a staple food for over half of the global population, plays a pivotal role in food security. Among its two primary groups, japonica and indica, temperate japonica varieties are particularly valued for their high-quality grain and culinary [...] Read more.
Rice (Oryza sativa L.), a staple food for over half of the global population, plays a pivotal role in food security. Among its two primary groups, japonica and indica, temperate japonica varieties are particularly valued for their high-quality grain and culinary uses. Although some of these varieties are adapted to cooler climates, they often suffer from reduced productivity or increased disease susceptibility when cultivated in warmer productive environments. These limitations underscore the need for breeding programs to incorporate biotechnological tools that can enhance the adaptability and resilience of the plants. However, New Genomic Techniques (NGTs), including CRISPR-Cas9, require robust in vitro systems, which are still underdeveloped for temperate japonica genotypes. In this study, we developed a reproducible and adaptable protocol for protoplast isolation and regeneration from the temperate japonica cultivars ‘Ónix’ and ‘Platino’ using somatic embryos as the starting tissue. Protoplasts were isolated via enzymatic digestion (1.5% Cellulase Onozuka R-10 and 0.75% Macerozyme R-10) in 0.6 M AA medium over 18–20 h at 28 °C. Regeneration was achieved through encapsulation in alginate beads and coculture with feeder extracts in 2N6 medium, leading to embryogenic callus formation within 35 days. Seedlings were regenerated in N6R and N6F media and acclimatized under greenhouse conditions within three months. The isolated protoplast quality displayed viability rates of 70–99% within 48 h and supported transient PEG-mediated transfection with GFP. Additionally, the transient expression of a gene editing CRISPR-Cas9 construct targeting the DROUGHT AND SALT TOLERANCE (OsDST) gene confirmed genome editing capability. This protocol offers a scalable and genotype-adaptable system for protoplast-based regeneration and gene editing in temperate japonica rice, supporting the application of NGTs in the breeding of cold-adapted cultivars. Full article
Show Figures

Graphical abstract

17 pages, 4220 KB  
Article
Disease-Resistance Functional Analysis and Screening of Interacting Proteins of ZmCpn60-3, a Chaperonin 60 Protein from Maize
by Bo Su, Lixue Mao, Huiping Wu, Xinru Yu, Chongyu Bian, Shanshan Xie, Temoor Ahmed, Hubiao Jiang and Ting Ding
Plants 2025, 14(13), 1993; https://doi.org/10.3390/plants14131993 - 30 Jun 2025
Viewed by 782
Abstract
Chaperonin 60 proteins plays an important role in plant growth and development as well as the response to abiotic stress. As part of the protein homeostasis system, molecular chaperones have attracted increasing attention in recent years due to their involvement in the folding [...] Read more.
Chaperonin 60 proteins plays an important role in plant growth and development as well as the response to abiotic stress. As part of the protein homeostasis system, molecular chaperones have attracted increasing attention in recent years due to their involvement in the folding and assembly of key proteins in photosynthesis. However, little is known about the function of maize chaperonin 60 protein. In the study, a gene encoding the chaperonin 60 proteins was cloned from the maize inbred line B73, and named ZmCpn60-3. The gene was 1, 818 bp in length and encoded a protein consisting of 605 amino acids. Phylogenetic analysis showed that ZmCpn60-3 had high similarity with OsCPN60-1, belonging to the β subunits of the chloroplast chaperonin 60 protein family, and it was predicted to be localized in chloroplasts. The ZmCpn60-3 was highly expressed in the stems and tassels of maize, and could be induced by exogenous plant hormones, mycotoxins, and pathogens; Overexpression of ZmCpn60-3 in Arabidopsis improved the resistance to Pst DC3000 by inducing the hypersensitive response and the expression of SA signaling-related genes, and the H2O2 and the SA contents of ZmCpn60-3-overexpressing Arabidopsis infected with Pst DC3000 accumulated significantly when compared to the wild-type controls. Experimental data demonstrate that flg22 treatment significantly upregulated transcriptional levels of the PR1 defense gene in ZmCpn60-3-transfected maize protoplasts. Notably, the enhanced resistance phenotype against Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) in ZmCpn60-3-overexpressing transgenic lines was specifically abolished by pretreatment with ABT, a salicylic acid (SA) biosynthetic inhibitor. Our integrated findings reveal that this chaperonin protein orchestrates plant immune responses through a dual mechanism: triggering a reactive oxygen species (ROS) burst while simultaneously activating SA-mediated signaling cascades, thereby synergistically enhancing host disease resistance. Additionally, yeast two-hybrid assay preliminary data indicated that ZmCpn60-3 might bind to ZmbHLH118 and ZmBURP7, indicating ZmCpn60-3 might be involved in plant abiotic responses. The results provided a reference for comprehensively understanding the resistance mechanism of ZmCpn60-3 in plant responses to abiotic or biotic stress. Full article
(This article belongs to the Special Issue Functional Genomics and Molecular Breeding of Crops—2nd Edition)
Show Figures

Figure 1

11 pages, 1440 KB  
Communication
GAG Protein of Arabidopsis thaliana LTR Retrotransposon Forms Retrosome-like Cytoplasmic Granules and Activates Stress Response Genes
by Alexander Polkhovskiy, Roman Komakhin and Ilya Kirov
Plants 2025, 14(13), 1894; https://doi.org/10.3390/plants14131894 - 20 Jun 2025
Viewed by 1175
Abstract
LTR retrotransposons are widespread genomic elements that significantly impact genome structure and function. In Arabidopsis thaliana, the EVD LTR retrotransposon encodes a GAG protein essential for retrotransposon particle assembly. Here, we present a comprehensive analysis of the structural features, intracellular localization, and [...] Read more.
LTR retrotransposons are widespread genomic elements that significantly impact genome structure and function. In Arabidopsis thaliana, the EVD LTR retrotransposon encodes a GAG protein essential for retrotransposon particle assembly. Here, we present a comprehensive analysis of the structural features, intracellular localization, and transcriptomic effects of the EVD GAG (evdGAG) protein. Using AlphaFold3, we identified canonical capsid (CA-NTD and CA-CTD) and nucleocapsid (NC) domains, with predicted disordered regions likely facilitating oligomerization. Transient expression of GFP-tagged evdGAG in protoplasts of A. thaliana and distant plant species (Nicotiana benthamiana and Helianthus annuus) revealed the formation of multiple large cytoplasmic aggregates resembling retrosomes, often localized near the nucleus. Stable overexpression of evdGAG in wild-type and ddm1 mutant backgrounds induced significant transcriptomic changes, including up-regulation of stress response and defense-related genes and downregulation of photosynthesis and chloroplast-associated pathways. Importantly, genes linked to stress granule formation were also up-regulated, suggesting a role for evdGAG in modulating cellular stress responses. Our findings provide novel insights into the cellular and molecular properties of plant retrotransposon GAG proteins and their influence on host gene expression. Full article
Show Figures

Figure 1

19 pages, 11989 KB  
Article
PEG-Mediated Protoplast Transformation of Penicillium sclerotiorum (scaumcx01): Metabolomic Shifts and Root Colonization Dynamics
by Israt Jahan, Qilin Yang, Zijun Guan, Yihan Wang, Ping Li and Yan Jian
J. Fungi 2025, 11(5), 386; https://doi.org/10.3390/jof11050386 - 17 May 2025
Viewed by 2380
Abstract
Protoplast-based transformation is a vital tool for genetic studies in fungi, yet no protoplast method existed for P. sclerotiorum-scaumcx01 before this study. Here, we optimized protoplast isolation, regeneration, and transformation efficiency. The highest protoplast yield (6.72 × 106 cells/mL) was obtained [...] Read more.
Protoplast-based transformation is a vital tool for genetic studies in fungi, yet no protoplast method existed for P. sclerotiorum-scaumcx01 before this study. Here, we optimized protoplast isolation, regeneration, and transformation efficiency. The highest protoplast yield (6.72 × 106 cells/mL) was obtained from liquid mycelium after 12 h of enzymatic digestion at 28 °C using Lysing Enzymes, Yatalase, cellulase, and pectinase. Among osmotic stabilizers, 1 M MgSO4 yielded the most viable protoplasts. Regeneration occurred via direct mycelial outgrowth and new protoplast formation, with a 1.02% regeneration rate. PEG-mediated transformation with a hygromycin resistance gene and GFP tagging resulted in stable GFP expression in fungal spores and mycelium over five generations. LC/MS-based metabolomic analysis revealed significant changes in glycerophospholipid metabolism, indicating lipid-related dynamics influenced by GFP tagging. Microscopy confirmed successful colonization of tomato roots by GFP-tagged scaumcx01, with GFP fluorescence observed in cortical tissues. Enzymatic (cellulase) seed pretreatment enhanced fungal colonization by modifying root surface properties, promoting plant–fungal interaction. This study establishes an efficient protoplast transformation system, reveals the metabolic impacts of genetic modifications, and demonstrates the potential of enzymatic seed treatment for enhancing plant–fungal interactions. Full article
(This article belongs to the Section Fungal Cell Biology, Metabolism and Physiology)
Show Figures

Figure 1

13 pages, 1521 KB  
Article
Identification of Nigrospora oryzae Causing Leaf Spot Disease in Tomato and Screening of Its Potential Antagonistic Bacteria
by Jun Zhang, Fei Yang, Aihong Zhang, Qinggang Guo, Xiangrui Sun, Shangqing Zhang and Dianping Di
Microorganisms 2025, 13(5), 1128; https://doi.org/10.3390/microorganisms13051128 - 14 May 2025
Cited by 2 | Viewed by 1357
Abstract
Tomato is a widely cultivated vegetable crop worldwide. It is susceptible to various phytopathogens, including fungi, bacteria, viruses, and nematodes. In 2024, an unknown leaf spot disease outbreak, characterized by distinct brown necrotic lesions on leaves, was observed in tomato plants in Yunnan [...] Read more.
Tomato is a widely cultivated vegetable crop worldwide. It is susceptible to various phytopathogens, including fungi, bacteria, viruses, and nematodes. In 2024, an unknown leaf spot disease outbreak, characterized by distinct brown necrotic lesions on leaves, was observed in tomato plants in Yunnan Province, China. Through rigorous pathogen isolation and the fulfillment of Koch’s postulates, it was proved that the fungal isolate could infect tomato leaves and cause typical symptoms. The pathogen isolated from tomato leaves was identified as Nigrospora oryzae based on its morphology and using a multilocus sequence analysis method with the internal transcribed spacer gene (ITS1), beta-tubulin gene (TUB2), and translation elongation factor 1-alpha gene (TEF1-α). This represents the first documented case of N. oryzae infecting tomatoes in the world. Given the damage caused by N. oryzae to tomato plants, we explored biocontrol methods. Through a dual-culture assay on PDA plates, Bacillus velezensis B31 demonstrated significant biocontrol potential, exhibiting strong antagonistic activity toward N. oryzae. In addition, we developed a polyethylene glycol (PEG)-mediated transformation system that successfully introduced pYF11-GFP into the protoplasts of N. oryzae. This achievement provides a foundation for future genetic manipulation studies of N. oryzae. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

19 pages, 8331 KB  
Article
Genome-Wide Characterization of Soybean 1-Aminocyclopropane-1-carboxylic Acid Synthase Genes Demonstrates the Importance of GmACS15 in the Salt Stress Responses
by Peng Cheng, Yi-Cheng Yu, Si-Hui Wang, Jun Yang, Run-Nan Zhou, Xin-Ling Zhang, Chun-Yan Liu, Zhan-Guo Zhang, Ming-Liang Yang, Qing-Shan Chen, Xiao-Xia Wu and Ying Zhao
Int. J. Mol. Sci. 2025, 26(6), 2526; https://doi.org/10.3390/ijms26062526 - 12 Mar 2025
Viewed by 1124
Abstract
ACS (1-aminocyclopropane-1-carboxylic acid synthase) is a member of the aminotransferase superfamily and a pyridoxal phosphate-dependent enzyme. ACS is also a rate-limiting enzyme for the biosynthesis of ethylene and has been linked with plant development, growth, and stress responses. However, information on ACS genes [...] Read more.
ACS (1-aminocyclopropane-1-carboxylic acid synthase) is a member of the aminotransferase superfamily and a pyridoxal phosphate-dependent enzyme. ACS is also a rate-limiting enzyme for the biosynthesis of ethylene and has been linked with plant development, growth, and stress responses. However, information on ACS genes in the soybean genome is limited. In this study, we identified ACS genes in soybean through phylogenetic trees and conserved motifs and analyzed their cis-acting elements, subcellular localization, and expression patterns. Twenty-two members of the ACS family were identified in soybean, and they were divided into four subfamilies based on phylogenetic relationships. Moreover, the results of Arabidopsis mesophyll protoplasts showed that GmACS1, GmACS8, and GmACS15 were all localized in the nucleus and cell membrane. Cis-regulatory elements and qRT-PCR analyses indicated markedly increased levels of GmACS transcripts under hormone treatments and abiotic stress conditions (drought, alkalinity, and salt). In addition, under different abiotic stresses, the potential functional variations across the GmACS isoforms were mirrored in their differential expression. The analysis of transcriptional response to salinity indicated that salt stress might primarily be mediated by the GmACS15 gene. GmACS15 was also found to reduce salt-induced oxidative damage by modulating the ROS-scavenging system, cellular redox homeostasis, and maintaining intracellular Na+/K+ balance. The results of this investigation revealed the involvement of the ACS gene family in soybean stress-response pathways, including the identification of a potential target for enhancing salt tolerance in soybean. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

21 pages, 4386 KB  
Article
Target Selection, Homokaryotic Isolation, and Screening Methods for Gene Editing in the Destructive Global Pathogen, Phytophthora cinnamomi
by Aayushree Kharel, Mark Ziemann, Jim Rookes and David M. Cahill
Int. J. Plant Biol. 2025, 16(1), 22; https://doi.org/10.3390/ijpb16010022 - 12 Feb 2025
Viewed by 1523
Abstract
Phytophthora cinnamomi is a major plant pathogen that affects economically important crops and natural ecosystems, posing a threat to global biodiversity. While gene editing has emerged as a powerful tool for functional genomics in various Phytophthora species, its application in P. cinnamomi remains [...] Read more.
Phytophthora cinnamomi is a major plant pathogen that affects economically important crops and natural ecosystems, posing a threat to global biodiversity. While gene editing has emerged as a powerful tool for functional genomics in various Phytophthora species, its application in P. cinnamomi remains underexplored. To address this gap, our study investigated the challenges of implementing CRISPR/Cas9-mediated gene editing in P. cinnamomi, with the insights gained applicable to other gene editing platforms. We designed guide RNAs (gRNAs) targeting β-cinnamomin, a highly basic elicitin expressed by the pathogen during early infection stages, known for its role in sterol recruitment. Using an “all-in-one” plasmid containing the gRNA, Cas9, and an antibiotic resistance gene as a selectable marker, we transformed P. cinnamomi protoplasts via PEG/CaCl2-mediated methods. The successful integration of the nptII gene, which confers geneticin (G418) resistance, was confirmed in heterokaryotic regenerants. To isolate pure mutants and eliminate wild-type dominance, we derived homokaryotic colonies from nptII-positive transformants. Mutation screening was performed using mismatch detection assays, T7 endonuclease 1 (T7E1), and restriction fragment length polymorphism (RFLP), followed by Sanger sequencing. Despite the integration of the nptII gene, the β-cinnamomin sequence in the transformants remained identical to the wild-type sequence, indicating challenges in detecting and achieving targeted gene disruption. This study identifies critical steps for optimising mutagenesis in P. cinnamomi, highlighting the importance of thorough preliminary screening, effective separation of heterokaryotic populations, and the isolation of homokaryotic colonies. Full article
(This article belongs to the Section Plant–Microorganisms Interactions)
Show Figures

Figure 1

Back to TopTop