Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (407)

Search Parameters:
Keywords = physio-chemical analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1159 KiB  
Review
Physicochemical and Functional Properties of Soluble and Insoluble Dietary Fibers in Whole Grains and Their Health Benefits
by Pathumi Ariyarathna, Patryk Mizera, Jarosław Walkowiak and Krzysztof Dziedzic
Foods 2025, 14(14), 2447; https://doi.org/10.3390/foods14142447 - 11 Jul 2025
Viewed by 591
Abstract
The growing global prevalence of non-communicable diseases (NCDs) is drawing an increasing amount of attention to the health-promoting potential of whole-grain dietary fibers. Whole grains are rich sources of both soluble dietary fiber (SDF) and insoluble dietary fiber (IDF), contributing distinct physicochemical properties [...] Read more.
The growing global prevalence of non-communicable diseases (NCDs) is drawing an increasing amount of attention to the health-promoting potential of whole-grain dietary fibers. Whole grains are rich sources of both soluble dietary fiber (SDF) and insoluble dietary fiber (IDF), contributing distinct physicochemical properties and playing vital roles in promoting human health. This review provides a comprehensive analysis of the dietary fiber compositions of various whole grains, including wheat, oats, barley, rye, corn, sorghum, and rice, highlighting their structural characteristics, physiochemical properties, and associated health benefits. The physicochemical properties of dietary fibers, such as solubility, water- and oil-holding capacity, viscosity, swelling ability, and bile-acid-binding capacity, contribute significantly to their technological applications and potential health benefits, particularly in the prevention of NCDs. Although there is growing evidence supporting their health benefits, global whole-grain intake remains below recommended levels. Therefore, promoting whole-grain intake and developing fiber-rich functional foods are essential for enhancing public health and preventing chronic diseases. Future research should focus on enhancing the bioavailability and functionality of whole-grain dietary fibers, optimizing the methods by which they are extracted, and exploring their potential applications in the food and pharmaceutical industries. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

12 pages, 3892 KiB  
Article
A Novel Hyperspectral Microscope Imaging Technology for the Evaluation of Physicochemical Properties and Heterogeneity in ‘Xia Hui 6’ Peaches
by Shiyu Song, Zhenjie Wang, Leiqing Pan and Kang Tu
Foods 2025, 14(12), 2099; https://doi.org/10.3390/foods14122099 - 14 Jun 2025
Viewed by 465
Abstract
Hyperspectral microscope imaging (HMI) was employed to evaluate the physiochemical properties of and the large intra-variability in individual fruit of ‘Xia Hui 6’ peaches during storage, which gave insights into the heterogeneity of peach fruits at the microscale. The physicochemical characteristics such as [...] Read more.
Hyperspectral microscope imaging (HMI) was employed to evaluate the physiochemical properties of and the large intra-variability in individual fruit of ‘Xia Hui 6’ peaches during storage, which gave insights into the heterogeneity of peach fruits at the microscale. The physicochemical characteristics such as firmness (FI), soluble sugar content (SSC), and L* value of peaches showed significant changes, while the microstructure of the tissues broke down. Principal component analysis (PCA) was applied to peach tissues from the sunny side and shady side at different storage stages, which allowed us to clearly visualize the distribution of sugars, water, and pigments at the cellular scale. Single-feature variables were constructed to clarify the correlation between the characteristic bands and physicochemical parameters based on Pearson correlation analysis, with an R2 of 0.99 for firmness at 588 nm, 0.98 for titratable acidity (TA) at 432 nm, 0.88 for the L* value at 430 nm and 0.83 for the b* value at 426 nm. This work demonstrated that HMI technology as an accurate and highly effective tool in evaluating the quality of ‘Xia Hui 6’ peaches and targeting, allowing us to visualize the spatial heterogeneity within peach fruit tissues. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

39 pages, 7808 KiB  
Review
Sustainable Solutions for Plastic Waste Mitigation in Sub-Saharan Africa: Challenges and Future Perspectives Review
by Comfort Yeboaa, Emmanuel Kweinor Tetteh, Martha Noro Chollom and Sudesh Rathilal
Polymers 2025, 17(11), 1521; https://doi.org/10.3390/polym17111521 - 29 May 2025
Viewed by 1101
Abstract
The anthropogenic deployment of plastic waste, especially petroleum-based plastics with toxic hydrocarbons, presents a significant environmental and health threat in sub-Saharan Africa (SSA). Herein, the high demand and rapid plastic production, coupled with improper disposal and inadequate waste management, have led to widespread [...] Read more.
The anthropogenic deployment of plastic waste, especially petroleum-based plastics with toxic hydrocarbons, presents a significant environmental and health threat in sub-Saharan Africa (SSA). Herein, the high demand and rapid plastic production, coupled with improper disposal and inadequate waste management, have led to widespread contamination of air, water, and soil. Conventionally, plastic waste management, such as incineration and recycling, provides limited long-term solutions to this growing crisis. This necessitates urgent, sustainable, and eco-friendly remediation techniques to mitigate its far-reaching environmental implications. This comprehensive review focused on sustainable and eco-friendly techniques by exploring strengths, weaknesses, opportunities, and threats (SWOT) analysis of plastic waste management. Bioremediation techniques were found as potential solutions for addressing plastic waste in SSA. This paper examines advancements in physiochemical methods, the challenges in managing various plastic types, and the role of enzymatic and microbial consortia in enhancing biodegradation. It also explores the potential of genomic technologies and engineered microbial systems to convert plastic waste into valuable products, including bioenergy via bio-upcycling. These bioremediation strategies align with the United Nations Sustainable Development Goals (UN SDGs), offering a promising path to reduce the environmental and health impacts of plastic pollution in the region. This paper also considers future directions of integrating AI-powered recycling systems to facilitate the development of a circular economy in SSA. Additionally, this paper provides progress and future perspectives on bioremediation as a sustainable solution for plastic waste management in SSA. Full article
Show Figures

Graphical abstract

16 pages, 3793 KiB  
Article
Composites of Reduced Graphene Oxide Based on Silver Nanoparticles and Their Effect on Breast Cancer Stem Cells
by Babu Vimalanathan, Devasena Thiyagarajan, Ruby Nirmala Mary, Magesh Sachidanandam, Savarimuthu Ignacimuthu, Dhanavathy Gnanasampanthapandian, Johnson Rajasingh and Kanagaraj Palaniyandi
Bioengineering 2025, 12(5), 508; https://doi.org/10.3390/bioengineering12050508 - 11 May 2025
Viewed by 812
Abstract
Graphene and its related nanocomposites have garnered significant interest due to their distinct physiochemical and biological properties. In this study, reduced graphene oxide–silver hybrid nanostructures were synthesized for applications in biomedical nanotechnology, particularly in targeting cancer stem cells (CSCs). A range of analytical [...] Read more.
Graphene and its related nanocomposites have garnered significant interest due to their distinct physiochemical and biological properties. In this study, reduced graphene oxide–silver hybrid nanostructures were synthesized for applications in biomedical nanotechnology, particularly in targeting cancer stem cells (CSCs). A range of analytical techniques, such as X-ray diffraction (XRD), Raman spectroscopy, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and UV–visible absorption spectroscopy (UV–VIS), were employed to characterize graphene oxide (GO), reduced graphene oxide (rGO)–silver nanoparticles (AgNPs), and their composite structures. The GO-rGO-AgNPs exhibited potent anticancer properties as evidenced by cell culture assays, spheroid formation assay, and quantitative RT-PCR analysis. Treatment of breast cancer cells (MCF-7) with GO, rGO, and AgNPs significantly reduced cell proliferation and mammosphere formation. Furthermore, these treatments downregulated the expression of marker genes associated with CSCs in MCF-7 cells. Among the tested materials, rGO-AgNP, sodium citrate-mediated GO-AgNP, and rGO-AgNP nanocomposites demonstrated superior inhibitory effects on cell survival compared to GO alone. These findings suggest that these nanocomposites hold promise as effective and non-toxic therapeutic agents for targeting cancer cells and CSCs, thereby offering a novel approach to cancer treatment. Full article
(This article belongs to the Special Issue Advances in Drug Delivery in Cancer Treatment)
Show Figures

Graphical abstract

17 pages, 3683 KiB  
Article
Changes in Soil Properties, Content of Cd, and Cd-Resistant Bacterial Community with Biochar After One-Time Addition Under Soybean Continuous Cropping and Crop Rotation Patterns
by Qin Yao, Gege He, Shubo Yan, Jie Song, Yuetong Zhang, Xiaoyu Zhang, Yan Sun, Yibo Wang, Yongjuan Li, Yu Tian, Changjiang Zhao and Yongxia Guo
Agronomy 2025, 15(5), 1084; https://doi.org/10.3390/agronomy15051084 - 29 Apr 2025
Viewed by 415
Abstract
In recent years, Cadmium (Cd) pollution in soybean farmland is severe. Therefore, this study focused on whether biochar influences soil physiochemical properties, the Cd content in soil and soybean grains, and the abundance and community structure of the czcA gene. Four doses of [...] Read more.
In recent years, Cadmium (Cd) pollution in soybean farmland is severe. Therefore, this study focused on whether biochar influences soil physiochemical properties, the Cd content in soil and soybean grains, and the abundance and community structure of the czcA gene. Four doses of rice husk biochar (0, 5, 15, and 25 t·ha−1) were applied under continuous cropping and crop rotation systems, and soil samples were collected after four years of one-time addition. The results indicated that biochar addition significantly increased soil available nitrogen, phosphorus, and soil organic carbon contents under continuous cropping and rotation. Biochar application significantly reduced the total Cd content of soil samples and soybean grains. Additionally, biochar application reduced czcA gene abundance in soybean soils by 14.26–37.88% and 35.96–48.71%, respectively. Correlation analysis revealed that Cd content and the abundance of the czcA gene significantly correlated with soil nutrients and pH. High-throughput sequencing revealed that the relative abundances of several Cd-resistant microorganisms were decreased by biochar addition. In addition, adding biochar significantly affected the Cd-resistant microbial community structure and diversity by influencing soil properties and Cd content. Therefore, this study has important practical significance for improving the soil environment and ensuring the quality and safety of agricultural products. Full article
Show Figures

Figure 1

23 pages, 875 KiB  
Article
Microbial and Physiochemical Profiling of Zarqa River Supplemented with Treated Wastewater: A High-Resolution PCR Analysis
by Raha Alassaf and Alfred P. Blaschke
Resources 2025, 14(5), 69; https://doi.org/10.3390/resources14050069 - 22 Apr 2025
Cited by 1 | Viewed by 1238
Abstract
Background: This study aims to evaluate the quality of treated wastewater flowing in the Zarqa River to determine its suitability for agricultural use. The assessment is based on physicochemical and biological parameters in accordance with Jordanian standards (JS 893:2021), the CCME water quality [...] Read more.
Background: This study aims to evaluate the quality of treated wastewater flowing in the Zarqa River to determine its suitability for agricultural use. The assessment is based on physicochemical and biological parameters in accordance with Jordanian standards (JS 893:2021), the CCME water quality index, and the weighted arithmetic water quality index (WAWQI). Additionally, a microbial assessment was conducted to identify the presence of pathogens in the treated wastewater. Methods: A total of 168 water samples were collected from seven different sites along the Zarqa River over a 24-month period. This study focused on microbial assessment and selected parameters from the JS 893:2021, including total dissolved solids (TDSs), biochemical oxygen demand (BOD), dissolved oxygen (DO), chemical oxygen demand (COD), and E. coli levels. Furthermore, data were gathered on additional physicochemical parameters such as pH, mineral content (including Na, Ca, K, Mg, and Cl), salts (HCO3, SO4, NO3, and PO4), and heavy metals (Fe, Cu, Pb, Mn, and Co). The CCME water quality index and weighted arithmetic WQI scores were calculated to determine the water quality from all seven study sites. Results: In terms of Jordanian standards, Site 1 had the lowest TDS and DO values along with E. coli concentration. Further, in terms of minerals and salts, the maximum concentrations found for the sites are given herewith: Site 2 (K+ and NO3), Site 3 (Cl, Na+), Site 5 (Ca, HCO3), and Site 7 (Mg2+, PO4, and SO4). In terms of pH, all the study sites had pH values within the acceptable range, i.e., between 6 and 9, for irrigation purposes. The concentrations of certain heavy metals, specifically lead (Pb), manganese (Mn), and cobalt (Co), were observed to be negligible. In contrast, Site 6 exhibited the highest concentration of iron (Fe) (0.0178 mg/L), while Site 5 recorded the maximum concentration of copper (Cu) (0.0210 mg/L) among the study locations. Site 1 demonstrated the most favorable water quality among the seven sites evaluated, whereas Site 6 exhibited the poorest water quality. Overall, the water quality from the majority of the sites was deemed suitable for drainage and for irrigating crops classified under the B category. However, based on the weighted arithmetic water quality index (WQI) values, none of the sites achieved a classification of good or excellent water quality, although the water quality at these sites may still be utilized for irrigation purposes. The current study is the first to report the presence of SARS-CoV-2 in Zarqa River water samples. Conclusions: The current study outcomes are promising and provide knowledgeable insights in terms of water quality parameters, while public health aspects should be considered when planning the WWTPs in parallel to reclaiming the wastewater for irrigation purposes. Full article
Show Figures

Figure 1

17 pages, 9665 KiB  
Article
Comparative Transcriptomic Analyses Reveal Key Pathways in Response to Cold Stress at the Germination Stage of Quinoa (Chenopodium quinoa Willd.) Seeds
by Rao Fu, Xiaoyan Liang, Jiajia Li, Yanjing Song, Kuihua Yi, Wenjing Nie, Lan Ma, Junlin Li, Meng Li, Xiangyu Wang, Haiyang Zhang and Hongxia Zhang
Plants 2025, 14(8), 1212; https://doi.org/10.3390/plants14081212 - 15 Apr 2025
Viewed by 622
Abstract
Quinoa (Chenopodium quinoa Willd.) has been widely grown as a cash crop. However, the molecular mechanism by which it responds to cold stress at the seed germination stage is still largely unknown. In this study, we performed a comparative transcriptomic analysis between [...] Read more.
Quinoa (Chenopodium quinoa Willd.) has been widely grown as a cash crop. However, the molecular mechanism by which it responds to cold stress at the seed germination stage is still largely unknown. In this study, we performed a comparative transcriptomic analysis between the cold-tolerant cultivar XCq and cold-sensitive cultivar QCq in response to cold stress. A total number of 4552 and 4845 differentially expressed genes (DEGs) were identified in XCq and QCq upon the treatment of cold stress, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis demonstrated that the mitogen-activated protein kinase (MAPK) signaling pathway was identified only among the up-regulated DEGs in XCq.The expression of DEGs, which encoding transcription factors, such as AP2/ERF, bHLH, bZIP, MYB, ICEs, and CORs related to cold response, were higher in XCq than in QCq in response to cold stress. Weighted gene co-expression network analysis (WGCNA) showed that DEGs clustered in the co-expression modules positively correlated with the factors of quinoa variety and temperature were significantly enriched in the oxidative phosphorylation metabolic pathway. Further physiochemical analyses showed that the activities of superoxide dismutase and peroxidase as well as the contents of soluble protein and sugar, were significantly higher in XCq than in QCq. In summary, MAPK signaling and oxidative metabolism were the key pathways in quinoa upon cold stress. Our findings revealed that the enhanced activities of antioxidant enzymes alleviate the lipid peroxidation of membranes and promote the accumulation of osmotic adjustment substances, thereby enabling seeds to better resist oxidative damage under cold stress. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

17 pages, 2214 KiB  
Article
The Physiochemical Properties of Pellets Made from the Foliage of Vegetable Crops
by Omid Gholami Banadkoki, Shahab Sokhansanj, Anthony Lau, Selvakumari Arunachalam and Donald Smith
Energies 2025, 18(8), 1969; https://doi.org/10.3390/en18081969 - 11 Apr 2025
Cited by 1 | Viewed by 483
Abstract
The increasing demand for renewable energy has driven interest in utilizing agricultural residues for bioenergy applications. This study investigates the pelletization of foliage from six vegetable crops, including tomato, eggplant, summer squash, cucumber corn, and soybean, to assess their potential as bioenergy feedstocks. [...] Read more.
The increasing demand for renewable energy has driven interest in utilizing agricultural residues for bioenergy applications. This study investigates the pelletization of foliage from six vegetable crops, including tomato, eggplant, summer squash, cucumber corn, and soybean, to assess their potential as bioenergy feedstocks. The physiochemical properties of these biomasses, including particle size and shape, lignin, and elemental composition, were analyzed to determine their impact on pellet density and durability. The results reveal significant variations in pellet quality across different biomasses. Cucumber and summer squash demonstrated the highest pellet densities (1.48–1.51 g/cm3) and superior durability (98.1% and 94.2%, respectively), making them the most promising candidates for pelletization. In contrast, eggplant exhibited the lowest density (1.14 g/cm3) and durability (47.2%), indicating poor pellet quality. The correlation between pellet durability and pellet density was positive and modest at r=0.647. The study further highlights the impact of inorganic elements on pellet properties, where the high silica and chlorine content of cucumber, summer squash, tomato, and eggplant reduced energy efficiency and increased ash-related challenges. The resulting color parameters analysis (L*, a*, and b*) shows that the pellets from eggplant, tomato, summer squash, and cucumber foliage are darker than pellets from sawdust, corn stover, and soybean residues. Full article
(This article belongs to the Special Issue Biomass and Waste-to-Energy for Sustainable Energy Production)
Show Figures

Figure 1

18 pages, 5055 KiB  
Article
Metagenomic and Physicochemical Analyses Reveal Microbial Community and Functional Differences Between Three Different Grades of Hongxin Low-Temperature Daqu
by Chao Ren, Mengke Zhao, Tinghui Xue, Tianpei Geng, Xiao Nie, Chaoyue Han, Yuge Wen and Liyan Jia
Foods 2025, 14(7), 1104; https://doi.org/10.3390/foods14071104 - 22 Mar 2025
Viewed by 556
Abstract
Hongxin (HX) is an indispensable Daqu in the production of light-flavor Baijiu (LFB). However, the classification method of HX is highly subjective, and the classification and functional differences in microorganisms in different grades of HX are still unclear. In this study, metagenomics and [...] Read more.
Hongxin (HX) is an indispensable Daqu in the production of light-flavor Baijiu (LFB). However, the classification method of HX is highly subjective, and the classification and functional differences in microorganisms in different grades of HX are still unclear. In this study, metagenomics and physiochemical analysis were used to compare three grades of HX (top, first, second) and clarify their brewing functions in LFB. The results showed that a total of 1556 genera and 5367 species were detected in all samples. Bacteria and fungi are the main microorganisms in HX, and the relative abundance of bacteria and fungi is above 4.5:1. Kroppenstedtia (11.43%), Leuconostoc (10.52%), Fructilactobacillus (9.00%) were the top three genera in HX. Although the microbial community composition of the three grades of HX is highly similar, each HX has a specific microbial community structure and macrogene functional characteristics, indicating that they have different brewing functions. The dominant microorganisms in top-grade HX and first-grade HX were mainly positively correlated with energy metabolism and lipid metabolism, while the dominant microorganisms in second-grade HX were mainly positively correlated with carbohydrate metabolism and amino acid metabolism. This study revealed the different fermentation effects of different grades of HX in LFB and provided suggestions for the scientific classification and quality control of HX. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

28 pages, 9610 KiB  
Article
Development and Evaluation of Hydrogel-Based Sulfasalazine-Loaded Nanosponges for Enhanced Topical Psoriasis Therapy
by Sunil Kumar, Anroop B. Nair, Varsha Kadian, Pooja Dalal, Babu Lal Jangir, Bandar Aldhubiab, Rashed M. Almuqbil, Ahmed S. Alnaim, Nouf Alwadei and Rekha Rao
Pharmaceuticals 2025, 18(3), 391; https://doi.org/10.3390/ph18030391 - 10 Mar 2025
Cited by 1 | Viewed by 1188
Abstract
Background: The low solubility and poor skin permeability of sulfasalazine (SLZ) present significant challenges for its effective topical delivery. The objective of the current investigation is to formulate a hydrogel-based SLZ-loaded cyclodextrin nanosponge for topical therapy in psoriasis. Methods: SLZ-loaded nanosponges were prepared [...] Read more.
Background: The low solubility and poor skin permeability of sulfasalazine (SLZ) present significant challenges for its effective topical delivery. The objective of the current investigation is to formulate a hydrogel-based SLZ-loaded cyclodextrin nanosponge for topical therapy in psoriasis. Methods: SLZ-loaded nanosponges were prepared by the melt polymerization method and evaluated for physiochemical characteristics, drug release, and cytocompatibility. The selected nanosponges (SLZ-NS4) were transformed to hydrogel and further evaluated for rheology, texture, safety, skin permeability, and in vivo for anti-psoriatic effect in mouse tail and imiquimod-induced psoriasis-like inflammation models in mice. Results: Physiochemical data confirms nanoscale architecture, drug inclusion in nanosponges, crystalline structure, and formulation stability. The release profile of SLZ-NS4 revealed sustained release behavior (22.98 ± 2.24% in 3 h). Cytotoxicity assays indicated negligible toxicity against THP1 cells, resulting in higher viability of cells than pure SLZ (p < 0.05). The HET-CAM assay confirmed the safety, while confocal laser scanning microscopy demonstrated deeper skin permeation of SLZ. In the mouse tail model, a remarkable decline in relative epidermal thickness, potential improvement in percent orthokeratosis, and drug activity with respect to control was observed in animals treated with SLZ-NS4 hydrogel. The efficiency of the developed SLZ-NS4-loaded hydrogel in treating psoriasis was confirmed by the decline in PASI score (81.68 ± 3.61 and 84.86 ± 5.74 with 1 and 2% w/v of SLZ-NS-HG). Histopathological analysis and assessment of oxidative stress markers revealed the profound anti-psoriatic potential of the fabricated SLZ-NS4 hydrogel. Conclusions: These findings highlight the profound potential of the developed delivery system as an effective topical therapy for psoriasis. Full article
(This article belongs to the Special Issue Progress of Hydrogel Applications in Novel Drug Delivery Platforms)
Show Figures

Figure 1

17 pages, 1981 KiB  
Article
Physicochemical Properties, Polyphenol and Mineral Composition of Different Triticale Varieties Cultivated in the Republic of Moldova
by Georgiana Gabriela Codină, Florin Ursachi, Adriana Dabija, Sergiu Paiu, Iurie Rumeus, Svetlana Leatamborg, Galina Lupascu, Silviu-Gabriel Stroe and Aliona Ghendov-Mosanu
Molecules 2025, 30(6), 1233; https://doi.org/10.3390/molecules30061233 - 10 Mar 2025
Cited by 1 | Viewed by 889
Abstract
The quality characteristics of seven triticale grain varieties were determined by different physiochemical analyses. For this purpose, the content of protein, wet gluten, fat, ash, moisture, carbohydrates, test weight, and thousand-kernel mass; mineral elements Ca, Na, Zn, Fe, and Cu; and total phenolic [...] Read more.
The quality characteristics of seven triticale grain varieties were determined by different physiochemical analyses. For this purpose, the content of protein, wet gluten, fat, ash, moisture, carbohydrates, test weight, and thousand-kernel mass; mineral elements Ca, Na, Zn, Fe, and Cu; and total phenolic content (TPC), total flavonoid content (TFC), free radical scavenging activity (DPPH assay), and phenolic profile (4-hydroxybenzoic acid, vanillic acid, caffeic acid, chlorogenic acid, p-coumaric acid, and rosmarinic acid) were analyzed. Also, Fourier transform infrared spectroscopy (FT-IR) was used to evaluate the quality parameters of triticale grains. According to the chemical data obtained, all triticale varieties may be used for breadmaking. A high variability was obtained among triticale varieties for mineral elements and antioxidant compounds. The highest values were recorded for Ca, followed by Fe, Na, Zn, and Cu. The TPC, TFC, DPPH, and phenolic compounds of the analyzed triticale samples increased with the increasing temperature used in the extraction method. Generally, the highest value for phenolic acid was obtained by p-coumaric acid followed by rosmarinic acid, caffeic acid, 4-hydroxybenzoic acid, vanillic acid, and chlorogenic acid. Principal component analysis of triticale cultivars related to their physicochemical data showed close association between some varieties such as Costel; Ingen 54, Ingen 35, Ingen 33, and Ingen 93, and Ingen 40; and Fanica varieties. Full article
(This article belongs to the Special Issue Application of Analytical Chemistry in Food Science)
Show Figures

Figure 1

18 pages, 2481 KiB  
Article
Physicochemical Characteristics, Antioxidant Properties, and Identification of Bioactive Compounds in Australian Stingless Bee Honey Using High-Performance Thin-Layer Chromatography
by Mariana Mello dos Santos, Tomislav Sostaric, Lee Yong Lim and Cornelia Locher
Molecules 2025, 30(6), 1223; https://doi.org/10.3390/molecules30061223 - 9 Mar 2025
Cited by 1 | Viewed by 1129
Abstract
This study investigates the physiochemical properties, chemical composition, and antioxidant activity of Australian stingless bee honey blends from two bee species, Tetragonula carbonaria and Tetragonula hockingsi, harvested in Burpengary East, Queensland at different times of the year. The moisture content of the [...] Read more.
This study investigates the physiochemical properties, chemical composition, and antioxidant activity of Australian stingless bee honey blends from two bee species, Tetragonula carbonaria and Tetragonula hockingsi, harvested in Burpengary East, Queensland at different times of the year. The moisture content of the honey samples ranged from 26.5% to 30.0%, total soluble solids from 70.0 to 73.5° Brix, and pH from 3.57 to 4.19. The main sugars identified were trehalulose (13.9 to 30.3 g/100 g), fructose (12.9 to 32.3 g/100 g), and glucose (4.80 to 23.7 g/100 g). The total phenolic content (TPC), measured using the Folin–Ciocalteu assay, ranged from 26.1 to 58.6 mg of gallic acid equivalents/100 g. The antioxidant activity was investigated with the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, with values ranging from 1.39 to 6.08 mmol of Trolox equivalents/kg. Antioxidant constituents were determined using a High-Performance Thin-Layer Chromatography (HPTLC)-DPPH assay. The HPTLC-DPPH analysis revealed that honey samples collected in May 2022 contained the highest number of antioxidant compounds. Some constituents were identified using an HPTLC-derived database and also quantified utilising HPTLC analysis. Lumichrome was present in all honey samples, while luteolin and kaempferide were detected only in some. Kaempferol or isorhamnetin was also found to be present, although a definitive distinction between these two chemically closely related compounds could not be made by HPTLC analysis. The results showed that honey produced by Tetragonula hockingsi and Tetragonula carbonaria shares similar properties and composition when harvested at the same time, with only minor differences in moisture, fructose, and glucose content. Full article
Show Figures

Graphical abstract

11 pages, 4011 KiB  
Article
Enhancing the Properties of Sodium Alginate with a Glycerol–Silicate Plasticizer
by Anthony Fasulo, Corradina Towie, Lucie Mouchiroud, Hamza Malik, Daniel Foucher and Guerino Sacripante
Polysaccharides 2025, 6(1), 20; https://doi.org/10.3390/polysaccharides6010020 - 7 Mar 2025
Viewed by 1942
Abstract
The impact of a glycerol–silicate (GS) plasticizer on the mechanical, thermal and hydrophobic properties pertaining to sodium alginate (NaAlg) and calcium alginate (CaAlg) films were investigated. Spectroscopic and physio-chemical analysis were conducted to evaluate the effects of the GS incorporation. The results determine [...] Read more.
The impact of a glycerol–silicate (GS) plasticizer on the mechanical, thermal and hydrophobic properties pertaining to sodium alginate (NaAlg) and calcium alginate (CaAlg) films were investigated. Spectroscopic and physio-chemical analysis were conducted to evaluate the effects of the GS incorporation. The results determine that both NaAlg and CaAlg films exhibited poor mechanical properties which only improved by increasing the GS loading (up to 25 wt%), after which it declined. CaAlg exhibited the highest tensile strength after 25 wt% GS loading was incorporated. The elongation at break varied, with NaAlg films showing a ~10-fold increase, while the CaAlg films remained relatively unchanged. Thermal gravimetric analysis (TGA) revealed that GS reduced the onset decomposition temperature of NaAlg films, whereas CaAlg films maintained a greater onset decomposition temperature. The advancing contact angle measurements indicated a nearly linear decrease (from 54° to 39°) in hydrophobicity for the NaAlg films while the hydrophobicity for CaAlg films initially increased from 65° to 74°, and then became more hydrophilic with greater GS loading. These findings highlight the potential of GS plasticization to enhance and tailor alginate film properties, providing insights into the development of sustainable bioplastics with improved mechanical properties. Full article
Show Figures

Graphical abstract

16 pages, 1243 KiB  
Article
Evaluating the Impact of Various Drying Processes on the Comprehensive Properties of Thyme Powder (Thymus vulgaris) for Retention of Its Bioactive Properties
by Nisha Roy, Neha Sharma and Ashish M. Mohite
AgriEngineering 2025, 7(3), 59; https://doi.org/10.3390/agriengineering7030059 - 25 Feb 2025
Cited by 2 | Viewed by 1034
Abstract
Thyme (Thymus vulgaris) was dried using a tray dryer, recirculating tray dryer, and vacuum dryer at 35 °C, 40 °C, and 45 °C, respectively. The dried thyme after attaining 5% moisture content was subjected to a grinding process to obtain powder [...] Read more.
Thyme (Thymus vulgaris) was dried using a tray dryer, recirculating tray dryer, and vacuum dryer at 35 °C, 40 °C, and 45 °C, respectively. The dried thyme after attaining 5% moisture content was subjected to a grinding process to obtain powder using a hammer mill for further analysis of physiochemical properties, bioactive compounds, and techno-functional properties. The ash content was 10.21%, fiber content was 13.57%, fat content was 1.69%, protein content was 5.61%, and carbohydrate content was 22.91% for the thyme sample dried at 35 °C via vacuum drying. Meanwhile, regarding the functional properties, the swelling power was 0.31%, dispersibility was 27.72%, emulsion capacity was 35.44%, foam capacity was 35.47%, and foam stability was 1.84% for the thyme sample dried at 40 °C in the vacuum dryer. The total chlorophyll content, ascorbic acid content, and bioactive compounds were retained best in the vacuum-dried sample at 40 °C. Bioactive compound retention for VDT among the selected three techniques at 35 °C was considerably better. The color values were found to be similar to those of freshly harvested thyme (hue, 93.39; chroma, 3.47) for the thyme sample dried at 40 °C in a vacuum dryer. Based on the analysis, it was found that vacuum drying at 40 °C gave better results, followed by the recirculating tray dryer at 40 °C and the tray dryer at 40 °C. The adequately dried thyme samples with the time–temperature combinations for different drying techniques used can be used further for product development and studies on their shelf life. Full article
(This article belongs to the Special Issue Recent Trends and Advances in Agricultural Engineering)
Show Figures

Figure 1

22 pages, 2734 KiB  
Article
Computational Identification and Characterization of Glycosyltransferase 47 (GT47) Gene Family in Sorghum bicolor and Their Expression Profile in Internode Tissues Based on RNA-Seq Data
by Rehana Rehana, Muhammad Anwar, Sarmad Frogh Arshad and Muhammad Asif Saleem
Processes 2025, 13(3), 628; https://doi.org/10.3390/pr13030628 - 22 Feb 2025
Viewed by 729
Abstract
Sorghum is an essential crop for biofuel. Many glycosyltransferase (GT) families, including GT47, are involved in the production of both types of polysaccharides. However, a comprehensive study related to the GT47 gene family is needed. The glycosyltransferase (GT) [...] Read more.
Sorghum is an essential crop for biofuel. Many glycosyltransferase (GT) families, including GT47, are involved in the production of both types of polysaccharides. However, a comprehensive study related to the GT47 gene family is needed. The glycosyltransferase (GT) 47 family helps in the synthesis of xylose, pectin, and xyloglucan and plays an essential role in the formation of the proper shape of the plant cell wall. In this study, we performed identification, phylogenetic tree, physiochemical properties, subcellular localization, protein–protein interaction network, detection of motif analysis, gene structure, secondary structure, functional domain, gene duplication, Cis-acting elements, sequence logos, and gene expression profiles based on RNA-sequence analyses in the GT47 gene family. As a result, we identified thirty-one members of the GT47 gene family. The phylogenetic analysis grouped them into three distinct clusters. According to their physiochemical properties, all GT47 proteins were hydrophilic, and their molecular weights ranged from 22.7 to 88.6 kDa. Three essential motifs were identified via motif and conserved domain analysis, emphasizing structural conservation. Subcellular localization was proposed for the various functional roles across cellular compartments. While gene structure analysis showed significant variation in introns–exons, promoter study verified susceptibility to phytohormones like ABA. RNA sequencing revealed that several GT47 genes were highly expressed in internodes, and this was linked to biomass accumulation, cell wall manufacturing, and stem elongation. Analysis of networks of protein–protein interactions and Cis-elements confirmed involvement in stress adaptation and growth regulation. These results contribute to a better understanding of the functional and evolutionary significance of the GT47 gene family in sorghum. Full article
(This article belongs to the Section Biological Processes and Systems)
Show Figures

Figure 1

Back to TopTop