Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,967)

Search Parameters:
Keywords = physicochemical profile

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1119 KiB  
Article
The Impact of Storage Time and Reheating Method on the Quality of a Precooked Lamb-Based Dish
by Zhihao Yang, Chenlei Wang, Ye Jin, Wenjia Le, Liang Zhang, Lifei Wang, Bo Zhang, Yueying Guo, Min Zhang and Lin Su
Foods 2025, 14(15), 2748; https://doi.org/10.3390/foods14152748 - 6 Aug 2025
Abstract
Ready-to-eat meat products face quality challenges during storage and reheating. This study aimed to (i) characterize the physicochemical/microbiological changes in stewed mutton during storage (4 °C/−18 °C, 0–28 days) and (ii) evaluate reheating methods (boiling vs. microwaving) on day-7 samples. The nutritional analysis [...] Read more.
Ready-to-eat meat products face quality challenges during storage and reheating. This study aimed to (i) characterize the physicochemical/microbiological changes in stewed mutton during storage (4 °C/−18 °C, 0–28 days) and (ii) evaluate reheating methods (boiling vs. microwaving) on day-7 samples. The nutritional analysis confirmed moisture reduction (57.32 vs. 72.12 g/100 g)-concentrated protein/fat levels. Storage at −18 °C suppressed microbial growth (the total plate count (TPC), 3.73 vs. 4.80 log CFU/g at 28 days; p < 0.05) and lipid oxidation (thiobarbituric acid reactive substances (TBARS): 0.14 vs. 0.19 mg/kg) more effectively than storage at 4 °C. The total volatile basic nitrogen (TVB-N) kinetics projected a shelf life ≥90 days (4 °C) and ≥120 days (−18 °C). Microwave reheating after frozen storage (−18 °C) maximized the yield (86.21% vs. 75.90% boiling; p < 0.05) and preserved volatile profiles closest to those in the fresh samples (gas chromatography–mass spectrometry (GC-MS)/electronic nose). The combination of freezing storage and subsequent microwave reheating has been demonstrated to be an effective method for preserving the quality of a precooked lamb dish, thereby ensuring its nutritional value. Full article
Show Figures

Graphical abstract

26 pages, 3940 KiB  
Article
In Vitro Proof-of-Concept Study: Lidocaine and Epinephrine Co-Loaded in a Mucoadhesive Liquid Crystal Precursor System for Topical Oral Anesthesia
by Giovana Maria Fioramonti Calixto, Aylla Mesquita Pestana, Arthur Antunes Costa Bezerra, Marcela Tavares Luiz, Jonatas Lobato Duarte, Marlus Chorilli and Michelle Franz-Montan
Pharmaceuticals 2025, 18(8), 1166; https://doi.org/10.3390/ph18081166 - 6 Aug 2025
Abstract
Background: Local anesthesia is essential for most dental procedures, but its parenteral administration is often painful. Topical anesthetics are commonly used to minimize local anesthesia pain; however, commercial formulations fail to fully prevent the discomfort of local anesthetic injection. Methods: We developed and [...] Read more.
Background: Local anesthesia is essential for most dental procedures, but its parenteral administration is often painful. Topical anesthetics are commonly used to minimize local anesthesia pain; however, commercial formulations fail to fully prevent the discomfort of local anesthetic injection. Methods: We developed and characterized a novel lidocaine and epinephrine co-loaded liquid crystalline precursor system (LCPS) for topical anesthesia. The formulation was structurally characterized using polarized light microscopy (PLM) and small-angle X-ray scattering (SAXS). Rheological behavior was assessed through continuous and oscillatory rheological analyses. Texture profile analysis, in vitro mucoadhesive force evaluation, in vitro drug release and permeation studies, and an in vivo toxicity assay using the chicken chorioallantoic membrane (CAM) model were also conducted. Results: PLM and SAXS confirmed the transition of the LCPS from a microemulsion to a lamellar liquid crystalline structure upon contact with artificial saliva. This transition enhanced formulation consistency by over 100 times and tripled mucoadhesion strength. The LCPS also provided controlled drug release, reducing permeation flow by 93% compared to the commercial formulation. Importantly, the CAM assay indicated that the LCPS exhibited similar toxicity to the commercial product. Conclusions: The developed LCPS demonstrated promising physicochemical and biological properties for topical anesthesia, including enhanced mucoadhesion, controlled drug delivery, and acceptable biocompatibility. These findings support its potential for in vivo application and future clinical use to reduce pain during dental anesthesia procedures. Full article
(This article belongs to the Special Issue Advances in Topical and Mucosal Drug Delivery Systems)
Show Figures

Figure 1

24 pages, 10588 KiB  
Article
Genome-Wide Identification, Evolution, and Expression Patterns of the Fructose-1,6-Bisphosphatase Gene Family in Saccharum Species
by Chunyan Tian, Xiuting Hua, Peifang Zhao, Chunjia Li, Xujuan Li, Hongbo Liu and Xinlong Liu
Plants 2025, 14(15), 2433; https://doi.org/10.3390/plants14152433 - 6 Aug 2025
Abstract
Fructose-1,6-bisphosphatase (FBP) is a crucial regulatory enzyme in sucrose synthesis and photosynthetic carbon assimilation, functioning through two distinct isoforms: cytosolic FBP (cyFBP) and chloroplastic FBP (cpFBP). However, the identification and functional characterization of FBP genes in Saccharum remains limited. In this study, we [...] Read more.
Fructose-1,6-bisphosphatase (FBP) is a crucial regulatory enzyme in sucrose synthesis and photosynthetic carbon assimilation, functioning through two distinct isoforms: cytosolic FBP (cyFBP) and chloroplastic FBP (cpFBP). However, the identification and functional characterization of FBP genes in Saccharum remains limited. In this study, we conducted a systematic identification and comparative genomics analyses of FBPs in three Saccharum species. We further examined their expression patterns across leaf developmental zones, spatiotemporal profiles, and responses to diurnal rhythms and hormonal treatments. Our analysis identified 95 FBP genes, including 44 cyFBPs and 51 cpFBPs. Comparative analyses revealed significant divergence in physicochemical properties, gene structures, and motif compositions between the two isoforms. Expression profiling indicated that both cyFBPs and cpFBPs were predominantly expressed in leaves, particularly in maturing and mature zones. During diurnal cycles, their expression peaked around the night–day transition, with cpFBPs exhibiting earlier peaks than cyFBPs. FBP genes in Saccharum spontaneum displayed greater diurnal sensitivity than those in Saccharum officinarum. Hormonal treatments further revealed significant regulatory divergence in FBP genes, both between isoforms and across species. Notably, cyFBP_2 and cpFBP_2 members consistently exhibited higher expression levels across all datasets, suggesting their pivotal roles in sugarcane physiology. These findings not only identify potential target genes for enhancing sucrose accumulation, but also highlight the breeding value of S. spontaneum and S. officinarum in sugarcane breeding. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

20 pages, 1722 KiB  
Article
Andean Pistacia vera L. Crops: Phytochemical Update and Influence of Soil-Growing Elemental Composition on Nutritional Properties of Nuts
by Daniela Zalazar-García, Mario J. Simirgiotis, Jessica Gómez, Alejandro Tapia and María Paula Fabani
Horticulturae 2025, 11(8), 925; https://doi.org/10.3390/horticulturae11080925 (registering DOI) - 5 Aug 2025
Abstract
Pistachio nuts are among the 50 best foods with the highest antioxidant potential. They have a balanced content of mono- (~70%) and polyunsaturated (~20%) fatty acids, minerals, and bioactive compounds such as tocopherols, phytosterols, and phenolic compounds, which have shown rapid accessibility in [...] Read more.
Pistachio nuts are among the 50 best foods with the highest antioxidant potential. They have a balanced content of mono- (~70%) and polyunsaturated (~20%) fatty acids, minerals, and bioactive compounds such as tocopherols, phytosterols, and phenolic compounds, which have shown rapid accessibility in the stomach. Pistachio consumption provides several health benefits, primarily due to its antioxidant properties and high content of essential nutrients. In this study, we analyzed the mineral composition, total phenolic content (TP), antioxidant activity (AA), and UHPLC/MS-MS polyphenolic profile of three Argentinian pistachio crops. Additionally, the physicochemical parameters and the elemental profiles of the growing soils were determined, as they influence mineral uptake and the synthesis of bioactive compounds in pistachio kernels. The TP was not significantly modified by the growing soils, with Crop3 presenting the highest TP content (276 ± 14 mg GA/100 g DW). Crop3 exhibited 18% higher TP content compared to Crop2. Similarly, FRAP values ranged from 28.0 to 36.5 mmol TE/100 g DW, with Crop1 showing a 30% increase compared to Crop2. DPPH values varied from 19.0 to 24.3 mmol TE/100 g DW, with Crop1 displaying 28% higher activity than Crop2. However, the polyphenolic profile was similar for all crops analyzed. Thirty compounds were identified; only Crop 1 contained the flavanone eriodyctiol and the isoflavone genistein, while the flavanone naringenin and the flavone luteolin were identified in Crop1 and Crop3. Regarding mineral content, the pistachio kernels mainly contained K, Ca, and Mg. Multivariate analyses revealed distinct elemental and antioxidant profiles among crops. LDA achieved classification accuracies of 77.7% for soils and 74.4% for kernels, with Pb, Zn, Cu, Rb, Sr, and Mn as key discriminants. CCA confirmed strong soil–kernel mineral correlations (r = 1), while GPA showed higher congruence between antioxidant traits and kernel composition than with soil geochemistry. These findings underscore the importance of soil composition in determining the nutritional quality of pistachio kernels, thereby supporting the beneficial health effects associated with pistachio consumption. Full article
Show Figures

Figure 1

19 pages, 847 KiB  
Article
Characterization and Selection of Lycium barbarum Cultivars Based on Physicochemical, Bioactive, and Aromatic Properties
by Juan Carlos Solomando González, María José Rodríguez Gómez, María Ramos García, Noelia Nicolás Barroso and Patricia Calvo Magro
Horticulturae 2025, 11(8), 924; https://doi.org/10.3390/horticulturae11080924 (registering DOI) - 5 Aug 2025
Abstract
Goji berries (Lycium barbarum L.) are considered a functional food due to their high content of bioactive compounds with demonstrated health benefits. This study evaluated four cultivars (G3, G4, G5, and G7) grown under Mediterranean climate conditions, focusing on their physicochemical properties [...] Read more.
Goji berries (Lycium barbarum L.) are considered a functional food due to their high content of bioactive compounds with demonstrated health benefits. This study evaluated four cultivars (G3, G4, G5, and G7) grown under Mediterranean climate conditions, focusing on their physicochemical properties (total soluble solids, titratable acidity, and pH), bioactive compound (sugars and organic acids, total and individual phenolic and carotenoid compounds, and antioxidant activities (DPPH and CUPRAC assay)), and aromatic profiles (by GC-MS) to assess their suitability for fresh consumption or incorporation into food products. G4 exhibited the most favorable physicochemical characteristics, with the highest total soluble solids (20.2 °Brix) and sugar content (92.8 g 100 g−1 dw). G5 stood out for its lower titratable acidity (0.34%) and highest ripening index (54.8), indicating desirable flavor attributes. Concerning bioactive compounds, G3 and G4 showed the highest total phenolic content (17.9 and 19.1 mg GAE g−1 dw, respectively), with neochlorogenic acid being predominant. G4 was notable for its high carotenoid content, particularly zeaxanthin (1722.6 μg g−1 dw). These compounds significantly contributed to antioxidant activity. Volatile organic compound (VOC) profiles revealed alcohols and aldehydes as the dominant chemical families, with hexanal being the most abundant. G5 and G7 exhibited the highest total VOC concentrations. Principal component analysis grouped G3 and G4 based on their high sugar and phenolic content, while G5 and G7 were characterized by their complex aromatic profiles. Therefore, G3 and G4 are promising candidates for fresh consumption and potential functional applications, while G5 and G7 are particularly suitable for new product development due to their nutraceutical and aromatic value. Full article
(This article belongs to the Section Postharvest Biology, Quality, Safety, and Technology)
Show Figures

Figure 1

15 pages, 642 KiB  
Article
Evaluation of the Profile of Selected Bioactive Compounds and the Potential of Barley Wort Enriched with Malted and Unmalted Hemp Seeds for Brewing Applications
by Marek Zdaniewicz, Robert Duliński, Jana Lakatošová, Janusz Gołaszewski and Krystyna Żuk-Gołaszewska
Molecules 2025, 30(15), 3261; https://doi.org/10.3390/molecules30153261 - 4 Aug 2025
Abstract
The incorporation of Cannabis sativa L. seeds into barley wort was investigated to enhance the functional profile of beer. Hemp seeds (cv. Henola) were malted via controlled steeping, germination, and kilning, then added to barley malt at 10% and 30% (w/ [...] Read more.
The incorporation of Cannabis sativa L. seeds into barley wort was investigated to enhance the functional profile of beer. Hemp seeds (cv. Henola) were malted via controlled steeping, germination, and kilning, then added to barley malt at 10% and 30% (w/w) in both malted and unmalted forms. Standard congress mashing produced worts whose physicochemical parameters (pH, extract, colour, turbidity, filtration and saccharification times) were assessed, alongside profiles of fermentable sugars, polyphenols, B-group vitamins, and cannabinoids. Addition of hemp seeds reduced extract yield without impairing saccharification or filtration and slightly elevated mash pH and turbidity. Maltose and glucose levels declined significantly at higher hemp dosages, whereas sucrose remained stable. Wort enriched with 30% unmalted seeds exhibited the highest levels of trans-ferulic (20.61 µg/g), gallic (5.66 µg/g), trans-p-coumaric (3.68 µg/g), quercetin (6.07 µg/g), and trans-cinnamic (4.07 µg/g) acids. Malted hemp addition enhanced thiamine (up to 0.302 mg/mL) and riboflavin (up to 178.8 µg/mL) concentrations. Cannabinoids (THCA-A, THCV, CBDV, CBG, CBN) were successfully extracted at µg/mL levels, with the total cannabinoid content peaking at 14.59 µg/mL in the 30% malted treatment. These findings demonstrate that hemp seeds, particularly in malted form, can enrich barley wort with bioactive polyphenols, vitamins, and non-psychoactive cannabinoids under standard mashing conditions, without compromising key brewing performance metrics. Further work on fermentation, sensory evaluation, stability, and bioavailability is warranted to realise hemp-enriched functional beers. Full article
Show Figures

Figure 1

23 pages, 3877 KiB  
Article
Enhancing Bioactive Compound Extraction from Rose Hips Using Pulsed Electric Field (PEF) Treatment: Impacts on Polyphenols, Carotenoids, Volatiles, and Fermentation Potential
by George Ntourtoglou, Chaido Bardouki, Andreas Douros, Nikolaos Gkanatsios, Eleni Bozinou, Vassilis Athanasiadis, Stavros I. Lalas and Vassilis G. Dourtoglou
Molecules 2025, 30(15), 3259; https://doi.org/10.3390/molecules30153259 - 4 Aug 2025
Viewed by 47
Abstract
Rose hips are rich in polyphenols, making them a promising ingredient for the development of functional fruit-based beverages. This study aimed to evaluate the effect of Pulsed Electric Field (PEF) extraction treatment on rose hip (RH) pulp to enhance the extraction of polyphenols, [...] Read more.
Rose hips are rich in polyphenols, making them a promising ingredient for the development of functional fruit-based beverages. This study aimed to evaluate the effect of Pulsed Electric Field (PEF) extraction treatment on rose hip (RH) pulp to enhance the extraction of polyphenols, carotenoids, and volatile compounds. Additionally, this study examined the impact of adding rose hip berries during different stages of carbohydrate fermentation on the resulting phenolic and aroma profiles. A control wort and four experimental formulations were prepared. Rose hip pulp—treated or untreated with PEF—was added either during fermentation or beforehand, and the volatiles produced were analyzed using GC-MS (in triplicate). Fermentation was carried out over 10 days at 20 °C using Saccharomyces cerevisiae and Torulaspora delbrueckii. At a 10:1 ratio, all beverage samples were subjected to physicochemical testing and HPLC analysis for polyphenols, organic acids, and carotenoids, as well as GC-MS analysis for aroma compounds. The results demonstrated that the use of PEF-treated rose hips significantly improved phenolic compound extraction. Moreover, the PEF treatment enhanced the aroma profile of the beverage, contributing to a more complex and appealing sensory experience. This research highlights the rich polyphenol content of rose hips and the potential of PEF-treated fruit as a natural ingredient to improve both the functional and sensory qualities of fruit-based beverages. Their application opens new possibilities for the development of innovative, health-promoting drinks in the brewing industry. Full article
Show Figures

Figure 1

16 pages, 1650 KiB  
Article
Profiling of Disubstituted Chloroacetamides’ Potential Biological Activity by Liquid Chromatography
by Suzana Apostolov, Dragana Mekić, Marija Mitrović, Slobodan Petrović and Gyöngyi Vastag
Organics 2025, 6(3), 35; https://doi.org/10.3390/org6030035 - 4 Aug 2025
Viewed by 61
Abstract
Modern agriculture relies heavily on the use of pesticides, with one-third of them being herbicides. Chloroacetamides are the most widely used herbicides because of their high effectiveness, but their extensive use poses environmental challenges and threatens the health of living organisms due to [...] Read more.
Modern agriculture relies heavily on the use of pesticides, with one-third of them being herbicides. Chloroacetamides are the most widely used herbicides because of their high effectiveness, but their extensive use poses environmental challenges and threatens the health of living organisms due to toxicity risks. Since the pharmacokinetic behavior and toxicity of a compound are influenced by its lipophilicity, this essential physicochemical parameter for disubstituted chloroacetamides was determined in silico and experimentally through thin-layer chromatography on reversed phases (RPTLC C18/UV254s) in mixtures of water and distinct organic modifiers. The pharmacokinetic profile of chloroacetamides was analyzed by using the BOILED-Egg model. The correlation between the obtained chromatographic parameters and software-based lipophilicity, pharmacokinetic, and ecotoxicity predictors of the studied chloroacetamides was assessed by using linear regression, but more comprehensive insight was obtained through multivariate methods—Cluster Analysis and Principal Component Analysis. It was observed that the total number of carbon atoms in the structure of their molecules, along with the type of hydrocarbon substituents, are the most important factors affecting lipophilicity, pharmacokinetics, and potential toxicity to non-target organisms. Full article
Show Figures

Figure 1

21 pages, 1870 KiB  
Article
Characterization of Bimi® Broccoli as a Convenience Food: Nutritional Composition and Quality Traits Following Industrial Sous-Vide Processing
by Elisa Canazza, Christine Mayr Marangon, Dasha Mihaylova, Valerio Giaccone and Anna Lante
Molecules 2025, 30(15), 3255; https://doi.org/10.3390/molecules30153255 - 3 Aug 2025
Viewed by 233
Abstract
This study investigates Bimi® (Brassica oleracea Italica × Alboglabra), a hybrid between kailan and conventional broccoli, to evaluate its compositional, functional, and sensory properties in relation to industrial sous-vide processing and refrigerated storage. Proximate composition, amino acid and fatty acid profiles, [...] Read more.
This study investigates Bimi® (Brassica oleracea Italica × Alboglabra), a hybrid between kailan and conventional broccoli, to evaluate its compositional, functional, and sensory properties in relation to industrial sous-vide processing and refrigerated storage. Proximate composition, amino acid and fatty acid profiles, and mineral content were determined in raw samples. Color, chlorophyll content, total polyphenols, and antioxidant capacity (FRAP, ABTS, DPPH) were analyzed before and after sous-vide treatment and following 60 days of storage. Microbiological and physicochemical stability was monitored over 90 days under standard (4 °C) and mildly abusive (6–10 °C) storage conditions. Sensory profiling of Bimi® and conventional broccoli was performed on sous-vide samples. The results showed an increase in total polyphenols and antioxidant activity after processing, while chlorophylls decreased. Microbiological safety was maintained under all conditions, with stable water activity and only moderate acidification. Bimi® provided a valuable source of protein (4.32 g/100 g FW, 8.63% RDA), appreciable amounts of dietary fiber (2.96 g/100 g FW, 11.85% RDA), and essential minerals such as potassium (15.59% RDA), phosphorus (14.05% RDA), and calcium (8.09% RDA). Sensory evaluation revealed a milder flavor profile than that of conventional broccoli, accompanied by an asparagus-like aroma. These findings support the suitability of Bimi® for industrial sous-vide processing and its potential as a nutritious convenience food. Full article
(This article belongs to the Special Issue Bioactive Compounds in Food and Their Applications)
Show Figures

Graphical abstract

22 pages, 5123 KiB  
Article
Tailored Effects of Plasma-Activated Water on Hair Structure Through Comparative Analysis of Nitrate-Rich and Peroxide-Rich Formulations Across Different Hair Types
by Antonia de Souza Leal, Michaela Shiotani Marcondes, Ariane Leite, Douglas Leite, Clodomiro Alves Junior, Laurita dos Santos and Rodrigo Pessoa
Appl. Sci. 2025, 15(15), 8573; https://doi.org/10.3390/app15158573 (registering DOI) - 1 Aug 2025
Viewed by 201
Abstract
Plasma-activated water (PAW), enriched with reactive oxygen and nitrogen species (RONS), presents oxidative and antimicrobial characteristics with potential in cosmetic applications. This study examined the effects of two PAW formulations—nitrate-rich (PAW-N) and peroxide-rich (PAW-P)—on human hair types classified as straight (Type 1), wavy [...] Read more.
Plasma-activated water (PAW), enriched with reactive oxygen and nitrogen species (RONS), presents oxidative and antimicrobial characteristics with potential in cosmetic applications. This study examined the effects of two PAW formulations—nitrate-rich (PAW-N) and peroxide-rich (PAW-P)—on human hair types classified as straight (Type 1), wavy (Type 2), and coily/kinky (Type 4). The impact of PAW on hair structure and chemistry was evaluated using Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), UV–Vis spectrophotometry, and physicochemical analyses of the liquids (pH, ORP, conductivity, and TDS). PAW-N, with high nitrate content (~500 mg/L), low pH (2.15), and elevated conductivity (6244 µS/cm), induced significant damage to porous hair types, including disulfide bond cleavage, protein oxidation, and lipid degradation, as indicated by FTIR and EDS data. SEM confirmed severe cuticle disruption. In contrast, PAW-P, containing >25 mg/L of hydrogen peroxide and exhibiting milder acidity and lower ionic strength, caused more localized and controlled oxidation with minimal morphological damage. Straight hair showed greater resistance to both treatments, while coily and wavy hair were more susceptible, particularly to PAW-N. These findings suggest that the formulation and ionic profile of PAW should be matched to hair porosity for safe oxidative treatments, supporting the use of PAW-P as a gentler alternative in hair care technologies. Full article
Show Figures

Figure 1

23 pages, 2663 KiB  
Review
Toxic Effects of the Most Common Components of Energetic Co-Crystals
by Xinying Peng, Cunzhi Li, Huan Li, Hui Deng, Xiaoqiang Lv, Ting Gao, Jiachen Shen, Bin Zhao, Zhiyong Liu and Junhong Gao
Molecules 2025, 30(15), 3234; https://doi.org/10.3390/molecules30153234 - 1 Aug 2025
Viewed by 108
Abstract
Hexanitrohexaazaisowurtzitane (CL-20) is a high-energy-density material known for its exceptional explosive performance, but it suffers from significant safety concerns due to its high sensitivity. To mitigate this issue, researchers have explored the synthesis of CL-20-based cocrystals with other energetic materials to achieve a [...] Read more.
Hexanitrohexaazaisowurtzitane (CL-20) is a high-energy-density material known for its exceptional explosive performance, but it suffers from significant safety concerns due to its high sensitivity. To mitigate this issue, researchers have explored the synthesis of CL-20-based cocrystals with other energetic materials to achieve a balance between energy output and safety. Recent advancements in CL-20 cocrystals have focused on developing novel synthesis methods and leveraging computational design techniques to predict and optimize their physicochemical properties. However, the toxicity of CL-20 cocrystals, along with their environmental and health risks, remains a critical concern. This review systematically examines recent progress in CL-20 cocrystal energetic materials, emphasizing toxicity profiles and mechanistic insights into their components. The findings serve as a foundation for the development of safer energetic materials, thereby facilitating sustainable advancements in manufacturing technologies and industrial applications of CL-20. Full article
Show Figures

Figure 1

20 pages, 2782 KiB  
Article
Urban Forest Fragmentation Reshapes Soil Microbiome–Carbon Dynamics
by Melinda Haydee Kovacs, Nguyen Khoi Nghia and Emoke Dalma Kovacs
Diversity 2025, 17(8), 545; https://doi.org/10.3390/d17080545 - 1 Aug 2025
Viewed by 169
Abstract
Urban expansion fragments once-contiguous forest patches, generating pronounced edge gradients that modulate soil physicochemical properties and biodiversity. We quantified how fragmentation reshaped the soil microbiome continuum and its implications for soil carbon storage in a temperate urban mixed deciduous forest. A total of [...] Read more.
Urban expansion fragments once-contiguous forest patches, generating pronounced edge gradients that modulate soil physicochemical properties and biodiversity. We quantified how fragmentation reshaped the soil microbiome continuum and its implications for soil carbon storage in a temperate urban mixed deciduous forest. A total of 18 plots were considered in this study, with six plots for each fragment type. Intact interior forest (F), internal forest path fragment (IF), and external forest path fragment (EF) soils were sampled at 0–15, 15–30, and 30–45 cm depths and profiled through phospholipid-derived fatty acid (PLFA) chemotyping and amino sugar proxies for living microbiome and microbial-derived necromass assessment, respectively. Carbon fractionation was performed through the chemical oxidation method. Diversity indices (Shannon–Wiener, Pielou evenness, Margalef richness, and Simpson dominance) were calculated based on the determined fatty acids derived from the phospholipid fraction. The microbial biomass ranged from 85.1 to 214.6 nmol g−1 dry soil, with the surface layers of F exhibiting the highest values (p < 0.01). Shannon diversity declined systematically from F > IF > EF. The microbial necromass varied from 11.3 to 23.2 g⋅kg−1. Fragmentation intensified the stratification of carbon pools, with organic carbon decreasing by approximately 14% from F to EF. Our results show that EFs possess a declining microbiome continuum that weakens their carbon sequestration capacity in urban forests. Full article
Show Figures

Figure 1

24 pages, 5797 KiB  
Article
Topical Meglumine Antimoniate Gel for Cutaneous Leishmaniasis: Formulation, Evaluation, and In Silico Insights
by Lilian Sosa, Lupe Carolina Espinoza, Alba Pujol, José Correa-Basurto, David Méndez-Luna, Paulo Sarango-Granda, Diana Berenguer, Cristina Riera, Beatriz Clares-Naveros, Ana Cristina Calpena, Rafel Prohens and Marcelle Silva-Abreu
Gels 2025, 11(8), 601; https://doi.org/10.3390/gels11080601 - 1 Aug 2025
Viewed by 236
Abstract
Leishmaniasis is an infectious disease common in tropical and subtropical regions worldwide. This study aimed to develop a topical meglumine antimoniate gel (MA-gel) for the treatment of cutaneous leishmaniasis. The MA-gel was characterized in terms of morphology, pH, swelling, porosity, rheology, and thermal [...] Read more.
Leishmaniasis is an infectious disease common in tropical and subtropical regions worldwide. This study aimed to develop a topical meglumine antimoniate gel (MA-gel) for the treatment of cutaneous leishmaniasis. The MA-gel was characterized in terms of morphology, pH, swelling, porosity, rheology, and thermal properties by differential scanning calorimetry (DSC). Biopharmaceutical evaluation included in vitro drug release and ex vivo skin permeation. Safety was evaluated through biomechanical skin property measurements and cytotoxicity in HaCaT and RAW 267 cells. Leishmanicidal activity was tested against promastigotes and amastigotes of Leishmania infantum, and in silico studies were conducted to explore possible mechanisms of action. The composition of the MA-gel included 30% MA, 20% Pluronic® F127 (P407), and 50% water. Scanning electron microscopy revealed a sponge-like and porous internal structure of the MA-gel. This formula exhibited a pH of 5.45, swelling at approximately 12 min, and a porosity of 85.07%. The DSC showed that there was no incompatibility between MA and P407. Drug release followed a first-order kinetic profile, with 22.11 µg/g/cm2 of the drug retained in the skin and no permeation into the receptor compartment. The MA-gel showed no microbial growth, no cytotoxicity in keratinocytes, and no skin damage. The IC50 for promastigotes and amastigotes of L. infantum were 3.56 and 23.11 µg/mL, respectively. In silico studies suggested that MA could act on three potential therapeutic targets according to its binding mode. The MA-gel demonstrated promising physicochemical, safety, and antiparasitic properties, supporting its potential as a topical treatment for cutaneous leishmaniasis. Full article
(This article belongs to the Special Issue Functional Hydrogels: Design, Processing and Biomedical Applications)
Show Figures

Figure 1

16 pages, 1265 KiB  
Article
Enhancing Stability of Boesenbergia rotunda Bioactive Compounds: Microencapsulation via Spray-Drying and Its Physicochemical Evaluation
by Fahmi Ilman Fahrudin, Suphat Phongthai and Pilairuk Intipunya
Foods 2025, 14(15), 2699; https://doi.org/10.3390/foods14152699 - 31 Jul 2025
Viewed by 249
Abstract
This study aimed to microencapsulate Boesenbergia rotunda (fingerroot) extract using maltodextrin (MD) and gum arabic (GA) as wall materials via spray-drying to improve powder physicochemical properties and protect bioactive compounds. MD and GA were employed as wall materials in varying ratios (MD:GA of [...] Read more.
This study aimed to microencapsulate Boesenbergia rotunda (fingerroot) extract using maltodextrin (MD) and gum arabic (GA) as wall materials via spray-drying to improve powder physicochemical properties and protect bioactive compounds. MD and GA were employed as wall materials in varying ratios (MD:GA of 1:0, 0:1, 1:1, 2:1, 1:2) to evaluate their effects on the physicochemical properties of the resulting microcapsules. Spray-dried microcapsules were evaluated for morphology, flowability, particle size distribution, moisture content, hygroscopicity, solubility, encapsulation efficiency, major bioactive compound retention, and thermal stability. The extract encapsulation using MD:GA at 1:1 ratio (MD1GA1) demonstrated a favorable balance, with high solubility (98.70%), low moisture content (8.69%), low hygroscopicity (5.08%), and uniform particle morphology, despite its moderate EE (75.06%). SEM images revealed spherical particles with fewer surface indentations in MD-rich formulations. Microencapsulation effectively retained pinostrobin and pinocembrin in all formulations with pinostrobin consistently retained at a higher value, indicating its higher stability. The balanced profile of physical and functional properties of fingerroot extract with MD1GA1 microcapsule makes it a promising candidate for food and nutraceutical applications. Full article
Show Figures

Graphical abstract

21 pages, 4846 KiB  
Article
Bioactive Chalcone-Loaded Mesoporous Silica KIT-6 Nanocarrier: A Promising Strategy for Inflammation and Pain Management in Zebrafish
by Maria Kueirislene Amâncio Ferreira, Francisco Rogenio Silva Mendes, Emmanuel Silva Marinho, Roberto Lima de Albuquerque, Jesyka Macedo Guedes, Izabell Maria Martins Teixeira, Ramon Róseo Paula Pessoa Bezerra de Menezes, Vinicius Patricio Santos Caldeira, Anne Gabriella Dias Santos, Marisa Jádna Silva Frederico, Antônio César Honorato Barreto, Inês Domingues, Tigressa Helena Soares Rodrigues, Jane Eire Silva Alencar de Menezes and Hélcio Silva dos Santos
Pharmaceutics 2025, 17(8), 981; https://doi.org/10.3390/pharmaceutics17080981 - 30 Jul 2025
Viewed by 526
Abstract
Background/Objectives: The incorporation of bioactive molecules into mesoporous carriers is a promising strategy to improve stability, solubility, and therapeutic efficacy. In this study, we report for the first time the encapsulation of the synthetic chalcone 4-Cl into KIT-6 mesoporous silica and evaluate [...] Read more.
Background/Objectives: The incorporation of bioactive molecules into mesoporous carriers is a promising strategy to improve stability, solubility, and therapeutic efficacy. In this study, we report for the first time the encapsulation of the synthetic chalcone 4-Cl into KIT-6 mesoporous silica and evaluate its cytotoxicity, toxicological profile, and pharmacological activities (antinociceptive, anti-inflammatory, and anxiolytic) using an in vivo zebrafish (Danio rerio) model. Methods: Zebrafish were orally dosed with 4-Cl, 4-Cl/KIT-6, or KIT-6 (4, 20, 40 mg/kg) and mortality was recorded for 96 h. For analgesia, zebrafish pretreated with 4-Cl, 4-Cl/KIT-6, KIT-6, or morphine received a tail stimulus (0.1% formalin). Locomotor activity (quadrant crossings) was monitored for 30 min to assess analgesia (neurogenic: 0–5 min; inflammatory: 15–30 min). For inflammation, abdominal edema and weight gain were assessed 4 h after intraperitoneal carrageenan (1.5%). Zebrafish (n = 6/group) received 4-Cl, 4-Cl/KIT-6, or KIT-6 (4, 20, 40 mg/kg, p.o.). Controls received ibuprofen (100 mg/kg, p.o.) or 3% DMSO. Weight was measured hourly for 4 h post-carrageenan (difference between baseline and hourly weights). Results: Physicochemical characterizations confirmed successful encapsulation without compromising the ordered structure of KIT-6, as evidenced by a significant reduction in surface area and pore volume, indicating efficient drug incorporation. In vivo assays demonstrated that the 4-Cl/KIT-6 formulation maintained the pharmacological activities of the free chalcone, reduced toxicity, and, notably, revealed a significant anxiolytic effect for the first time. Conclusions: These findings highlight KIT-6 as a promising platform for chalcone delivery systems and provide a solid basis for future preclinical investigations. Full article
Show Figures

Figure 1

Back to TopTop