Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (106)

Search Parameters:
Keywords = physical crusts

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4722 KB  
Article
Improving Finite Element Optimization of InSAR-Derived Deformation Source Using Integrated Multiscale Approach
by Andrea Barone, Pietro Tizzani, Antonio Pepe, Maurizio Fedi and Raffaele Castaldo
Remote Sens. 2025, 17(18), 3237; https://doi.org/10.3390/rs17183237 - 19 Sep 2025
Viewed by 521
Abstract
Parametric optimization/inversion of Interferometric Synthetic Aperture Radar (InSAR) measurements enables the modeling of the volcanic deformation source by considering the approximation of the analytic formulations or by defining refined scenarios within a Finite Element (FE) framework. However, the geodetic data modeling can lead [...] Read more.
Parametric optimization/inversion of Interferometric Synthetic Aperture Radar (InSAR) measurements enables the modeling of the volcanic deformation source by considering the approximation of the analytic formulations or by defining refined scenarios within a Finite Element (FE) framework. However, the geodetic data modeling can lead to ambiguous solutions when constraints are unavailable, turning out to be time-consuming. In this work, we use an integrated multiscale approach for retrieving the geometric parameters of volcanic deformation sources and then constraining a Monte Carlo optimization of FE parametric modeling. This approach allows for contemplating more physically complex scenarios and more robust statistical solutions, and significantly decreasing computing time. We propose the Campi Flegrei caldera (CFc) case study, considering the 2019–2022 uplift phenomenon observed using Sentinel-1 satellite images. The workflow firstly consists of applying the Multiridge and ScalFun methods, and Total Horizontal Derivative (THD) technique to determine the position and horizontal sizes of the deformation source. We then perform two independent cycles of parametric FE optimization by keeping (I) all the parameters unconstrained and (II) constraining the source geometric parameters. The results show that the innovative application of the integrated multiscale approach improves the performance of the FE parametric optimization in proposing a reliable interpretation of volcanic deformations, revealing that (II) yields statistically more reliable solutions than (I) in an extraordinary tenfold reduction in computing time. Finally, the retrieved solution at CFc is an oblate-like source at approximately 3 km b.s.l. embedded in a heterogeneous crust. Full article
(This article belongs to the Section Engineering Remote Sensing)
Show Figures

Figure 1

21 pages, 4092 KB  
Article
Assessment of Time-Dependent Hydration Products in Olivine-Substituted Cement Mortars
by Yusuf Tahir Altuncı and Cenk Öcal
Materials 2025, 18(17), 4212; https://doi.org/10.3390/ma18174212 - 8 Sep 2025
Viewed by 703
Abstract
It is known that approximately 8% of atmospheric carbon dioxide (CO2) emissions originate from cement production. Consequently, there is ongoing rapid research into environmentally friendly and alternative materials that could substitute for cement. Olivine [(Mg, Fe)2SiO4] is [...] Read more.
It is known that approximately 8% of atmospheric carbon dioxide (CO2) emissions originate from cement production. Consequently, there is ongoing rapid research into environmentally friendly and alternative materials that could substitute for cement. Olivine [(Mg, Fe)2SiO4] is an abundant mineral in the Earth’s crust that facilitates CO2 sequestration due to its high solubility. This study investigates the effects of hydration mechanisms in olivine-substituted cement mortars on their compressive strength, microstructural characteristics, and physical properties. For this purpose, standard cement mortars were produced using CEM IV 32.5 N-type cement with olivine substitution rates of 0%, 10%, and 20%. The compressive strength of the specimens was initially determined at 7, 28, and 90 days. Subsequently, the hydration mechanisms at 7, 28, and 90 days were characterized using X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), Differential Thermal Analysis/Thermogravimetric Analysis (DTA/TG), and Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS). The results demonstrated that the 10% substitution rate complies with the BS EN 196-1 standard, and olivine can be substituted for CEM IV type cement up to 10% without requiring calcination. Full article
Show Figures

Figure 1

18 pages, 2030 KB  
Article
Land Use Changes Influence Tropical Soil Diversity: An Assessment Using Soil Taxonomy and the World Reference Base for Soil Classifications
by Selvin Antonio Saravia-Maldonado, Beatriz Ramírez-Rosario, María Ángeles Rodríguez-González and Luis Francisco Fernández-Pozo
Agriculture 2025, 15(17), 1893; https://doi.org/10.3390/agriculture15171893 - 5 Sep 2025
Viewed by 839
Abstract
The transformation of natural ecosystems into agroecosystems due to changes in land use/land cover (LULC) has been shown to significantly affect soil characterization and classification. The impact of LULC on soil taxonomy was assessed in a primary forest located in central–eastern Honduras, which [...] Read more.
The transformation of natural ecosystems into agroecosystems due to changes in land use/land cover (LULC) has been shown to significantly affect soil characterization and classification. The impact of LULC on soil taxonomy was assessed in a primary forest located in central–eastern Honduras, which had been deforested approximately forty years prior to the study. Morphological, physical, and physicochemical analyses were performed by describing 10 representative profiles, applying the Soil Taxonomy (ST) and World Reference Base for Soil Resources (WRB) nomenclatures. LULC resulted in physical degradation in agricultural areas, as evidenced by lighter-colored horizons (P02), reduced granular structure (P01, P02, P05), higher bulk densities (≤1.73 Mg m−3), and surface crusting (P02, P05); this phenomenon was also observed in pastures (P06–P09). SOC loss was 62% in croplands, 47–53% in agroforestry systems (P03) and fruit tree plantations (P04), and 25% in pastures. All profiles exhibited pH values between 6.5 and 8.4 and complete base saturation (BS), except for P08 and P09, which had pH values below 5.5, high levels of Al3+, and reduced BS (50–60%). Mollic epipedons and variability in the endopedons were also observed. According to the ST of the System of Soil Classification (SSC), the soils were classified as Mollisols, Entisols, Vertisols, and Alfisols; and as Phaeozems, Fluvisols, Gleysols, Anthrosols, Gypsisols, and Plinthosols by the WRB. We advocate for the inclusion of Anthropogenic Soils as a distinct Order within Soil Taxonomy (ST). The implementation of sustainable agricultural practices, in conjunction with the formulation of regulatory frameworks governing land use based on capacity and suitability, is imperative, particularly within the context of fragile tropical systems. Full article
(This article belongs to the Special Issue Factors Affecting Soil Fertility and Improvement Measures)
Show Figures

Figure 1

21 pages, 2852 KB  
Article
Effect of Apple, Chestnut, and Acorn Flours on the Technological and Sensory Properties of Wheat Bread
by Fryderyk Sikora, Ireneusz Ochmian, Magdalena Sobolewska and Robert Iwański
Appl. Sci. 2025, 15(14), 8067; https://doi.org/10.3390/app15148067 - 20 Jul 2025
Viewed by 1044
Abstract
The increasing interest in fibre-enriched and functional bakery products has led to the exploration of novel plant-based ingredients with both technological functionality and consumer acceptance. This study evaluates the effects of incorporating flours derived from apple (Malus domestica cv. Oberländer Himbeerapfel), sweet [...] Read more.
The increasing interest in fibre-enriched and functional bakery products has led to the exploration of novel plant-based ingredients with both technological functionality and consumer acceptance. This study evaluates the effects of incorporating flours derived from apple (Malus domestica cv. Oberländer Himbeerapfel), sweet chestnut (Castanea sativa), horse chestnut (Aesculus hippocastanum), and red, sessile, and pedunculate oak (Quercus rubra, Q. petraea, and Q. robur) into wheat bread at 5%, 10%, and 15% substitution levels. The impact on crumb structure, crust colour, textural parameters (hardness, adhesiveness, springiness), and sensory attributes was assessed. The inclusion of apple and sweet chestnut flours resulted in a softer crumb, lower adhesiveness, and higher sensory scores related to flavour, aroma, and crust appearance. In contrast, higher levels of oak- and horse-chestnut-derived flours increased crumb hardness and reduced overall acceptability due to bitterness or excessive density. Apple flour preserved crumb brightness and contributed to warm tones, while oak flours caused more intense crust darkening. These findings suggest that selected non-traditional flours, especially apple and sweet chestnut, can enhance the sensory and physical properties of wheat bread, supporting the development of fibre-rich, clean-label formulations aligned with consumer trends in sustainable and functional baking. Full article
Show Figures

Figure 1

14 pages, 844 KB  
Article
An Exergy-Based “Degree of Sustainability”: Definition, Derivation, and Examples of Application
by Enrico Sciubba
Sustainability 2025, 17(12), 5588; https://doi.org/10.3390/su17125588 - 18 Jun 2025
Cited by 1 | Viewed by 758
Abstract
The work presented in this paper is a contribution to the practical implementation of the “sustainability” concept, which is tightly connected with “resource thriftiness”, i.e., with reduction in the anthropic extraction of the irreplaceable supplies of fossil materials—ores and fuels—contained in the Earth’s [...] Read more.
The work presented in this paper is a contribution to the practical implementation of the “sustainability” concept, which is tightly connected with “resource thriftiness”, i.e., with reduction in the anthropic extraction of the irreplaceable supplies of fossil materials—ores and fuels—contained in the Earth’s crust. The saving is tied with “environmental conservation”, which is another concept embedded in the definition of sustainability. This paper starts from the assumption that the best measure of “resource consumption” is the total equivalent primary exergy extracted from the biosphere. The question is, then, while it is evidently correct to include social, ethical, and monetary matters into the definition of “sustainability”, what about the required resource consumption? To answer this question, the dynamic balances of a society represented as a thermodynamic system were examined to show that a “sustainable state” can be reached under two necessary conditions: first, the supply must consist only of renewable resources; and, second, the rate of such a supply must be higher than a certain threshold that can be attributed a physical significance. The procedure outlined in this paper leads to a rigorous definition of a society’s “thermodynamical degree of sustainability”, which is based solely on the primary renewable and non-renewable exergy inputs, as well as on the final exergy consumption. Some examples of applications to industrialized and non-industrialized countries are also presented and discussed. Full article
Show Figures

Figure 1

26 pages, 14766 KB  
Article
Genesis and Magmatic Evolution of the Gejiu Complex in Southeastern Yunnan, China
by Chuntian Wang, Jiasheng Wang, Xiaojun Zheng, Rong Wang and Bin Ye
Appl. Sci. 2025, 15(8), 4242; https://doi.org/10.3390/app15084242 - 11 Apr 2025
Viewed by 862
Abstract
Gejiu, a prominent tin–polymetallic ore district, is distinguished by its diverse mineral complexes. However, the genesis of these complexes and their relationship with mineralization remain inadequately studied. This study utilized whole-rock geochemical analyses to investigate the magmatic sources and petrogenesis of different complex [...] Read more.
Gejiu, a prominent tin–polymetallic ore district, is distinguished by its diverse mineral complexes. However, the genesis of these complexes and their relationship with mineralization remain inadequately studied. This study utilized whole-rock geochemical analyses to investigate the magmatic sources and petrogenesis of different complex types, aiming to elucidate their implications for tin–polymetallic mineralization. The results indicate that gabbro, monzonite, diorite, and syenite are derived from enriched mantle-derived magmas and have undergone limited crustal contamination. Granites are formed by the mixing of mantle- and crust-derived magmas, involving both physical mixing and chemical diffusion. Major and trace element characteristics suggest that the Gejiu granites predominantly exhibit features of both A-type and I-type granites. Harker diagrams and whole-rock indicators, such as Nb/Ta and Zr/Hf, suggest that granites experienced a two-stage fractional crystallization process, ultimately forming highly evolved biotite monzogranite. Fractional crystallization is the dominant mechanism controlling magmatic evolution, while high-temperature melting and biotite decomposition reactions are critical for the formation of the world-class Gejiu tin deposit. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

30 pages, 15713 KB  
Article
Magma Mixing Origin for the Menyuan Granodioritic Pluton in the North Qilian Orogenic Belt, China
by Shugang Xia, Yu Qi, Shengyao Yu, Xiaocong Jiang, Xiangyu Gao, Yue Wang, Chuanzhi Li, Qian Wang, Lintao Wang and Yinbiao Peng
Minerals 2025, 15(4), 391; https://doi.org/10.3390/min15040391 - 8 Apr 2025
Viewed by 890
Abstract
Magma mixing or mingling is not just a geological phenomenon that widely occurs in granitoid magmatism, but a complex dynamic process that influences the formation of mafic microgranular enclaves (MMEs) and the diversity of granitic rocks. Herein, we carried out a comprehensive study [...] Read more.
Magma mixing or mingling is not just a geological phenomenon that widely occurs in granitoid magmatism, but a complex dynamic process that influences the formation of mafic microgranular enclaves (MMEs) and the diversity of granitic rocks. Herein, we carried out a comprehensive study that encompassed the petrology, mineral chemistry, zircon U-Pb ages, Lu-Hf isotopes, whole-rock elements, and Sr-Nd isotope compositions of the Menyuan Granodioritic Pluton in the northern margin of the Qilian Block, to elucidate the petrogenesis and physical and chemical processes occurring during magma mixing. The Menyuan Granodioritic Pluton is mainly composed of granodiorites accompanied by numerous mafic microgranular enclaves (MMEs) and is intruded by minor gabbro dikes. LA-ICP-MS zircon U-Pb dating reveals that these rocks possess a similar crystallization age of ca. 456 Ma. The Menyuan host granodiorites, characterized as metaluminous to weakly peraluminous, belong to subduction-related I-type calc-alkaline granites. The MMEs and gabbroic dikes have relatively low SiO2 contents and high Mg# values, probably reflecting a mantle-derived origin. They are enriched in large ion lithophile elements (LILEs) and light, rare earth elements (LREEs) but are depleted in high field strength elements (HFSEs), indicating continental arc-like geochemical affinities. The host granodiorites yield relatively enriched whole-rock Sr-Nd and zircon Hf isotopic compositions (87Sr/86Sri = 0.7072–0.7158; εNd(t) = −9.21 to −4.23; εHf(t) = −8.8 to −1.2), implying a derivation from the anatexis of the ancient mafic lower continental crust beneath the Qilian Block. The MMEs have similar initial Sr isotopes but distinct whole-rock Nd and zircon Hf isotopic compositions compared with the host granodiorites (87Sr/86Sri = 0.7078–0.7089; εNd(t) = −3.88 to −1.68; εHf(t) = −0.1 to +4.1). Field observation, microtextural and mineral chemical evidence, geochemical characteristics, and whole-rock Nd and zircon Hf isotopic differences between the host granodiorites and MMEs suggest insufficient magma mixing of lithospheric mantle mafic magma and lower continental crust felsic melt. In combination with evidence from regional geology, we propose that the anatexis of the ancient mafic lower continental crust and subsequent magma mixing formed in an active continental arc setting, which was triggered by the subducted slab rollback and mantle upwelling during the southward subduction of the Qilian Proto-Tethys Ocean during the Middle-Late Ordovician. Full article
(This article belongs to the Special Issue Tectonic Evolution of the Tethys Ocean in the Qinghai–Tibet Plateau)
Show Figures

Figure 1

24 pages, 1668 KB  
Review
Progress and Prospects of Research on Physical Soil Crust
by Huiyun Xu, Xuchao Zhu and Meixia Mi
Soil Syst. 2025, 9(1), 23; https://doi.org/10.3390/soilsystems9010023 - 4 Mar 2025
Viewed by 1978
Abstract
Physical soil crust (PSC) is a dense structural layer formed on the surface of bare or very low-cover land due to raindrop splashes or runoff. The formation of crust changes the properties of the soil and strongly affects water infiltration and runoff and [...] Read more.
Physical soil crust (PSC) is a dense structural layer formed on the surface of bare or very low-cover land due to raindrop splashes or runoff. The formation of crust changes the properties of the soil and strongly affects water infiltration and runoff and sediment production processes on slopes. The irrational use of soil and water resources and frequent human production activity under the influence of urbanization increase the possibility of inducing erosion. Studying the formation and structural characteristics of PSC to predict terrestrial hydrological processes and improve models for predicting erosion is very important. Many studies of PSC have been carried out in China and abroad, but they are mainly unilateral discussions of the basic properties and characteristics of crust and its effects on runoff and sediment yield on slopes. Studies systematically analyzing and synthesizing the progress of crust research, however, are lacking. By reading the literature and analyzing the developmental history of PSC, we provide a comprehensive review of the following: (1) the meaning, main types, and classification of PSC, (2) the mechanism of formation and the characteristics and dynamic development of crust, (3) the factors affecting the formation of crust, including natural and anthropogenic factors and comprehensive effects, and (4) the development and formation of crust in the soil environment, i.e., hydrological processes and erosion. We also summarize the potential directions for future research on PSC: (1) studying the dynamics of soil structure during the development of crust, (2) developing an objective and standardized quantitative method for studying crust formation, (3) using models of erosion influenced by crust development, (4) improving the scale of the degree of crust development and structural characteristics, and (5) rationalizing the management of crust to optimize land structure and increase crop yield. Full article
Show Figures

Figure 1

25 pages, 2096 KB  
Article
Cucurbita maxima Plomo Peel as a Valuable Ingredient for Bread-Making
by Durim Alija, Remigiusz Olędzki, Daniela Nikolovska Nedelkoska, Ewa Pejcz, Agata Wojciechowicz-Budzisz, Viktorija Stamatovska and Joanna Harasym
Foods 2025, 14(4), 597; https://doi.org/10.3390/foods14040597 - 11 Feb 2025
Cited by 3 | Viewed by 3249
Abstract
The utilization of food industry by-products represents a significant opportunity for developing functional foods. This study investigated the incorporation of Cucurbita maxima Plomo peel powder (PS) into wheat bread formulations to assess its potential as a valuable ingredient for bread-making. PS was incorporated [...] Read more.
The utilization of food industry by-products represents a significant opportunity for developing functional foods. This study investigated the incorporation of Cucurbita maxima Plomo peel powder (PS) into wheat bread formulations to assess its potential as a valuable ingredient for bread-making. PS was incorporated into wheat flour at 1%, 10%, and 20% levels. The dough’s rheological properties were analyzed using Mixolab. Bread samples were evaluated for physical characteristics (volume, texture, colour), antioxidant properties (DPPH, ABTS, FRAP), and reducing sugar content. Analyses were performed on day 0 and after 7 days of storage. PS incorporation significantly modified dough rheology, with increased development time and enhanced protein stability. Bread volume decreased progressively with PS addition (from 195.5 cm3 to 109.8 cm3 at 20% PS). However, antioxidant activity increased substantially, particularly in the crust, with ABTS values rising from 2.37 to 10.08 TE μM/g DM in water extracts. Total phenolic content and reducing sugars showed significant increases across all PS concentrations. Storage studies revealed stable antioxidant properties but progressive textural changes, with hardness increasing from 6.83 N to 108.8 N at 20% PS after 7 days. While PS incorporation affects bread’s physical properties, the significant enhancement in antioxidant activity and phenolic content suggests its potential as a functional ingredient. The optimal incorporation level should balance technological properties with nutritional benefits. Full article
Show Figures

Figure 1

25 pages, 4775 KB  
Review
Sodium-Ion Batteries: Applications and Properties
by Petr Bača, Jiří Libich, Sára Gazdošová and Jaroslav Polkorab
Batteries 2025, 11(2), 61; https://doi.org/10.3390/batteries11020061 - 6 Feb 2025
Cited by 8 | Viewed by 11906
Abstract
With the growing interest in reducing CO2 emissions to combat climate change, humanity is turning to green or renewable sources of electricity. There are numerous issues associated with the development of these sources. One of the key aspects of renewable energy sources [...] Read more.
With the growing interest in reducing CO2 emissions to combat climate change, humanity is turning to green or renewable sources of electricity. There are numerous issues associated with the development of these sources. One of the key aspects of renewable energy sources is their problematic controllability, namely the control of energy production over time. Renewable sources are also associated with issues of recycling, utilization in different geographical zones, environmental impact within the required area, and so on. One of the most discussed issues today, however, is the question of efficient use of the energy produced from these sources. There are several different approaches to storing renewable energy, e.g., supercapacitors, flywheels, batteries, PCMs, pumped-storage hydroelectricity, and flow batteries. In the commercial sector, however, mainly due to acquisition costs, these options are narrowed down to only one concept: storing energy using an electrochemical storage device—batteries. Nowadays, lithium-ion batteries (LIBs) are the most widespread battery type. Despite many advantages of LIB technology, the availability of materials needed for the production of these batteries and the associated costs must also be considered. Thus, this battery type is not very ideal for large-scale stationary energy storage applications. Sodium-ion batteries (SIBs) are considered one of the most promising alternatives to LIBs in the field of stationary battery storage, as sodium (Na) is the most abundant alkali metal in the Earth’s crust, and the cell manufacturing process of SIBs is similar to that of LIBs. Unfortunately, considering the physical and electrochemical properties of Na, different electrode materials, electrolytes, and so on, are required. SIBs have come a long way since they were discovered. This review discusses the latest developments regarding the materials used in SIB technology. Full article
(This article belongs to the Special Issue Towards a Smarter Battery Management System: 2nd Edition)
Show Figures

Figure 1

30 pages, 12791 KB  
Article
Tiltmeter Data Revealing Transient Magma Viscosity Changes During Eruptions
by David Gomez-Ortiz, Jose Arnoso, Silvia Martín-Velázquez, Tomás Martín-Crespo, Fuensanta González Montesinos, Emilio Vélez and Maite Benavent
Remote Sens. 2025, 17(2), 317; https://doi.org/10.3390/rs17020317 - 17 Jan 2025
Viewed by 1519
Abstract
Volcanic processes related to episodes of inflation, dike propagation, effusive activity, etc., can be detected by continuous surface tilt measurements. The interpretation of these measurements helps comprehend medium-to-short-term precursors of volcanic eruptions or establishes early warning alerts. Additionally, studying the transport and evolution [...] Read more.
Volcanic processes related to episodes of inflation, dike propagation, effusive activity, etc., can be detected by continuous surface tilt measurements. The interpretation of these measurements helps comprehend medium-to-short-term precursors of volcanic eruptions or establishes early warning alerts. Additionally, studying the transport and evolution of magmas from the Moho to the crust is key to understanding the eruptive process, but to date, they have not been traced from surface tilts. In this work, we witnessed two relevant and unique dynamic eruptive processes, as revealed by tilt signals, both in the 2021 La Palma eruption and in the 2011–2012 El Hierro eruption (Canary Islands). On the one hand, magma injection from the reservoir at depth is controlled by a pressure gradient. On the other hand, changes in magma viscosity, resulting from pressure variations, have been revealed from cyclic tilt signals. In the case of these signals, matching with a physical model helped us decipher them and establish the duration of this magmatic process, which varied depending on the size and rheological properties of the respective magma plumbing systems. Full article
Show Figures

Graphical abstract

18 pages, 8369 KB  
Article
Remaining Oil Distribution and Enhanced Oil Recovery Mechanisms Through Multi-Well Water and Gas Injection in Weathered Crust Reservoirs
by Yuegang Wang, Wanjiang Guo, Gangzheng Sun, Xu Zhou, Junzhang Lin, Mingshan Ding, Zhaoqin Huang and Yingchang Cao
Processes 2025, 13(1), 241; https://doi.org/10.3390/pr13010241 - 15 Jan 2025
Cited by 3 | Viewed by 1475
Abstract
Weathered crust karst reservoirs with intricately interconnected fractures and caves are common but challenging enhanced oil recovery (EOR) targets. This paper investigated the remaining oil distribution rules, formation mechanisms, and EOR methods through physical experiments on acrylic models resembling the geological features of [...] Read more.
Weathered crust karst reservoirs with intricately interconnected fractures and caves are common but challenging enhanced oil recovery (EOR) targets. This paper investigated the remaining oil distribution rules, formation mechanisms, and EOR methods through physical experiments on acrylic models resembling the geological features of weathered crust reservoirs. Acrylic models with precision dimensions and morphologies were fabricated using laser etching technology. By comparing experiments under different cave filling modes and production well locations, it was shown that a higher cave filling extent led to poorer bottom water flooding recovery due to stronger flow resistance but slower rising water cut owing to continued production from the filling medium. Multi-well water and gas injection achieved higher incremental oil recovery by alternating injection–production arrangements to establish new displacement channels and change drive energy. Gas injection recovered more attic remaining oil from upper cave regions, while subsequent water injection helped wash the residual oil in the filling medium. The findings reveal the significant effects of fracture cave morphological configuration and connectivity on remaining oil distribution. This study provides new insights and guidance for EOR design optimization catering to the unique features of weathered crust karst fractured vuggy reservoirs. Full article
Show Figures

Figure 1

18 pages, 4085 KB  
Article
Error Modeling of Fiber Optic Gyroscope Universal Time Measurement
by Zishuai Wang, Yingmin Yi, Chunyi Su, Jinsheng Zhang, Yiwei Yuan and Yuchen Zhao
Appl. Sci. 2025, 15(1), 24; https://doi.org/10.3390/app15010024 - 24 Dec 2024
Viewed by 1742
Abstract
Since the fiber optic gyroscope (FOG) is rigidly strapped down to the earth’s crust, there are various errors that affect the universal time (UT1) measurements. In this paper, the errors caused by various physical factors and mechanisms are analyzed in detail, with precession [...] Read more.
Since the fiber optic gyroscope (FOG) is rigidly strapped down to the earth’s crust, there are various errors that affect the universal time (UT1) measurements. In this paper, the errors caused by various physical factors and mechanisms are analyzed in detail, with precession and nutation errors being taken into account, and modeling of the observation equations based on precession and nutation error correction is proposed. The mapping relationship with UT1 is established based on this observation equation; after the corresponding error correction and VLBI calibration, the high-accuracy solution of UT1 is finally completed. Through 14-day measurement experiments under a room temperature environment without any vibration isolation and magnetic shielding devices, the error variation of UT1 solution compared with the earth orientation parameter (EOP) 14 C04 data is calculated at less than 3.57 ms, with UT1 solution accuracy improved by 56% compared with the traditional method. These results indicate that this work facilitates the study of giant FOG error modeling and correction, advancing our understanding of errors in giant FOG measurements and improving the accuracy of UT1 solution. Full article
Show Figures

Figure 1

9 pages, 1766 KB  
Communication
Estimating Secondary Earthquake Aftershocks from Tsunamis
by Sergey A. Arsen’yev and Lev V. Eppelbaum
Geosciences 2024, 14(12), 344; https://doi.org/10.3390/geosciences14120344 - 13 Dec 2024
Viewed by 1430
Abstract
Nonlinear solitary waves influence the Earth’s crust because wave pressure on the ocean bottom contains non-hydrostatic components. Our physical-mathematical model allows us to calculate the surplus super-hydrostatic pressure on the Earth’s crust. It depends on the amplitudes of solitary waves and the depth [...] Read more.
Nonlinear solitary waves influence the Earth’s crust because wave pressure on the ocean bottom contains non-hydrostatic components. Our physical-mathematical model allows us to calculate the surplus super-hydrostatic pressure on the Earth’s crust. It depends on the amplitudes of solitary waves and the depth of an ocean. The surplus wave pressure averages 50% from hydrostatic pressure on the shallow ocean shelves. Thus, the solitary wave’s tsunami class can provoke novel (repeated) earthquakes (or landslides) because surplus stresses affect the seismic focus. Theoretical results and experimental physical modeling of soliton waves have shown good agreement. A calculated example of the mega-tsunami in Lituya Bay and a described example of Dickson Fjord (AK, USA) indicate changes in the dynamic pressure after the onset of the tsunami. The presented studies demonstrate a first attempt at creating a numerical model of this phenomenon. Full article
Show Figures

Figure 1

22 pages, 6059 KB  
Article
Impact of Soil Biological Crusts on the Sustainability of Arid Ecosystems in Central-Western Argentina: Their Influence on Nutrient Dynamics and Soil Properties
by Ana L. Navas Romero, Mario A. Herrera Moratta, Viviana Fernández-Maldonado, Eduardo Martínez Carretero, German Mazza and Rosa Rodriguez
Sustainability 2024, 16(23), 10468; https://doi.org/10.3390/su162310468 - 29 Nov 2024
Viewed by 2209
Abstract
Biological soil crusts (BSCs) are common in arid and semi-arid regions, found in vegetation patches and interpatches. However, their distribution, functionality, and composition studies are limited, especially in South America and Argentina. This study assessed the functional differences in BSCs between patches and [...] Read more.
Biological soil crusts (BSCs) are common in arid and semi-arid regions, found in vegetation patches and interpatches. However, their distribution, functionality, and composition studies are limited, especially in South America and Argentina. This study assessed the functional differences in BSCs between patches and interpatches focusing on their role as fertility islands. Sixty plots were analyzed at two sites, measuring the soil’s composition, diversity, and physical and chemical properties, including stability, compaction, temperature, moisture, nitrogen, phosphorus, organic matter, electrical conductivity, and pH. The results showed similar BSC coverage in patches and interpatches but with compositional variations: mosses dominated patches, while cyanobacteria and lichens were more common in interpatches. BSCs enhance soil stability, moisture retention, nitrogen fixation, and phosphorus availability, which are essential for soil health and ecosystem functionality. The observed variations across microenvironments are crucial for sustainability. Understanding these dynamics is vital for managing arid ecosystems, as healthy BSCs mitigate erosion, improve nutrient cycling, and enhance resilience to climate change. Preserving and managing BSCs composition and distribution are essential for the sustainability of these ecosystems in the region. Full article
Show Figures

Figure 1

Back to TopTop