Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = photothermal adaptation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4267 KiB  
Article
Proof of Concept of an Integrated Laser Irradiation and Thermal/Visible Imaging System for Optimized Photothermal Therapy in Skin Cancer
by Diogo Novas, Alessandro Fortes, Pedro Vieira and João M. P. Coelho
Sensors 2025, 25(14), 4495; https://doi.org/10.3390/s25144495 - 19 Jul 2025
Viewed by 390
Abstract
Laser energy is widely used as a selective photothermal heating agent in cancer treatment, standing out for not relying on ionizing radiation. However, in vivo tests have highlighted the need to develop irradiation techniques that allow precise control over the illuminated area, adapting [...] Read more.
Laser energy is widely used as a selective photothermal heating agent in cancer treatment, standing out for not relying on ionizing radiation. However, in vivo tests have highlighted the need to develop irradiation techniques that allow precise control over the illuminated area, adapting it to the tumor size to further minimize damage to surrounding healthy tissue. To address this challenge, a proof of concept based on a laser irradiation system has been designed, enabling control over energy, exposure time, and irradiated area, using galvanometric mirrors. The control software, implemented in Python, employs a set of cameras (visible and infrared) to detect and monitor real-time thermal distributions in the region of interest, transmitting this information to a microcontroller responsible for adjusting the laser power and controlling the scanning process. Image alignment procedures, tunning of the controller’s gain parameters and the impact of the different engineering parameters are illustrated on a dedicated setup. As proof of concept, this approach has demonstrated the ability to irradiate a phantom of black modeling clay within an area of up to 5 cm × 5 cm, from 15 cm away, as well as to monitor and regulate the temperature over time (5 min). Full article
Show Figures

Graphical abstract

15 pages, 2902 KiB  
Article
Synergistic Integration of MXene Photothermal Conversion and TiO2 Radiative Cooling in Bifunctional PLA Fabrics for Adaptive Personal Thermal Management
by Tianci Han and Yunjie Yin
Solids 2025, 6(3), 37; https://doi.org/10.3390/solids6030037 - 12 Jul 2025
Viewed by 306
Abstract
Polylactic acid (PLA) fabrics exhibit significant sunlight reflectivity and high emissivity within the atmospheric window, making them suitable as the foundational material for this study. This research involves the modification of one side of the fabric with hydrophilic agents and titanium dioxide (TiO [...] Read more.
Polylactic acid (PLA) fabrics exhibit significant sunlight reflectivity and high emissivity within the atmospheric window, making them suitable as the foundational material for this study. This research involves the modification of one side of the fabric with hydrophilic agents and titanium dioxide (TiO2), while the opposite side is treated with MXene and subsequently coated with polydimethylsiloxane (PDMS) to inhibit oxidation of the MXene. Through these surface modifications, a thermal management fabric based on PLA was successfully developed, capable of passively regulating temperature in response to environmental conditions and user requirements. The study discusses the optimal concentrations of TiO2 and MXene for the fabric, and characterizes and evaluates the functional surface of the PLA. Surface morphology analyses and tests indicate that the resulting functional PLA fabrics possess excellent ultraviolet (UV) resistance, favorable air permeability, high sunlight reflectivity on the TiO2-treated side, and superior photothermal conversion capabilities on the MXene-treated side. Furthermore, photothermal effect tests conducted under a light intensity of 1000 W/m2 reveal that the MXene-treated fabric exhibits a heating effect of approximately 25 °C, while the TiO2-treated side demonstrates a cooling effect exceeding 5 °C. This study developed PLA functional fabrics with heating and cooling capabilities. Full article
Show Figures

Graphical abstract

23 pages, 3893 KiB  
Article
Subtypes I and II of Ulva prolifera O.F. Müller: Dominant Green Tide Species in the Southern Yellow Sea and Their Responses to Natural Light and Temperature Conditions
by Shuang Zhao, Jinlin Liu, Zhangyi Xia, Jingyi Sun, Jianheng Zhang and Peimin He
Biology 2025, 14(6), 702; https://doi.org/10.3390/biology14060702 - 15 Jun 2025
Viewed by 499
Abstract
This study systematically investigated two ecotypes of Ulva prolifera, the dominant species responsible for green tides in the Yellow Sea, classified as Subtype I (strain I08-1) and Subtype II (strain QD-7). Both subtypes produce positively phototactic biflagellate gametes with oval/pear-shaped [...] Read more.
This study systematically investigated two ecotypes of Ulva prolifera, the dominant species responsible for green tides in the Yellow Sea, classified as Subtype I (strain I08-1) and Subtype II (strain QD-7). Both subtypes produce positively phototactic biflagellate gametes with oval/pear-shaped morphology but exhibit distinct cellular dimensions. Subtype I gametes demonstrated significantly larger cell sizes, with long and short axes measuring 6.55 μm and 4.62 μm, respectively, compared to Subtype II’s dimensions of 6.46 μm (long axis) and 3.03 μm (short axis). Developmental analysis revealed striking morphological divergence at the 6-day germling stage: Subtype I attained an average length of 1301.14 μm, more than doubling Subtype II’s 562.25 μm. Superior growth kinetics were observed in Subtype I, exhibiting enhanced specific growth rates (SGRs) across multiple parameters—main stem length (8.58% vs. 3.55%), primary branch elongation (19.17% vs. 12.59%), main stem width expansion (17.29% vs. 5.00%), and biomass accumulation (41.90% vs. 40.96% fresh weight). Chlorophyll quantification confirmed significantly higher pigment content in Subtype I. Pre-co-culture photosynthetic profiling demonstrated Subtype I’s superior quantum efficiency (α = 0.077 vs. 0.045) with marked differences in regulated energy dissipation (YNPQ) and non-photochemical quenching (NPQ). Post-co-culture physiological adaptation was evident in Subtype II, showing significant elevation of non-regulated energy dissipation quantum yield (YNO) and eventual surpassing of maximum electron transport rate (ETRmax) compared to Subtype I. These findings establish that U. prolifera employs robust photoprotective and thermal adaptation strategies under natural photothermal conditions. Crucially, YNO-based analysis revealed Subtype II’s enhanced high-light protection mechanisms and superior adaptability to intense irradiance environments. This research elucidates ecotype-specific environmental adaptation mechanisms in U. prolifera, providing critical insights for optimizing green tide mitigation strategies and advancing ecological understanding of algal bloom dynamics. Full article
(This article belongs to the Special Issue Advances in Aquatic Ecological Disasters and Toxicology)
Show Figures

Graphical abstract

33 pages, 4970 KiB  
Review
A Review on the Recent Advancements of Polymer-Modified Mesoporous Silica Nanoparticles for Drug Delivery Under Stimuli-Trigger
by Madhappan Santhamoorthy, Perumal Asaithambi, Vanaraj Ramkumar, Natarajan Elangovan, Ilaiyaraja Perumal and Seong Cheol Kim
Polymers 2025, 17(12), 1640; https://doi.org/10.3390/polym17121640 - 13 Jun 2025
Cited by 1 | Viewed by 1253
Abstract
Mesoporous silica nanoparticles (MSNs) are gaining popularity in nanomedicine due to their large surface area, variable pore size, great biocompatibility, and chemical adaptability. In recent years, the combination of smart polymeric materials with MSNs has transformed the area of regulated drug administration, particularly [...] Read more.
Mesoporous silica nanoparticles (MSNs) are gaining popularity in nanomedicine due to their large surface area, variable pore size, great biocompatibility, and chemical adaptability. In recent years, the combination of smart polymeric materials with MSNs has transformed the area of regulated drug administration, particularly under stimuli-responsive settings. Polymer-modified MSNs provide increased stability, longer circulation times, and, most crucially, the capacity to respond to diverse internal (pH, redox potential, enzymes, and temperature) and external (light, magnetic field, and ultrasonic) stimuli. These systems allow for the site-specific, on-demand release of therapeutic molecules, increasing treatment effectiveness while decreasing off-target effects. This review presents a comprehensive analysis of recent advancements in the development and application of polymer-functionalized MSNs for stimuli-triggered drug delivery. Key polymeric modifications, including thermoresponsive, pH-sensitive, redox-responsive, and enzyme-degradable systems, are discussed in terms of their design strategies and therapeutic outcomes. The synergistic use of dual or multiple stimuli-responsive polymers is also highlighted as a promising avenue to enhance precision and control in complex biological environments. Moreover, the integration of targeting ligands and stealth polymers such as PEG further enables selective tumor targeting and immune evasion, broadening the potential clinical applications of these nanocarriers. Recent progress in stimuli-triggered MSNs for combination therapies such as chemo-photothermal and chemo-photodynamic therapy is also covered, emphasizing how polymer modifications enhance responsiveness and therapeutic synergy. Finally, the review discusses current challenges, including scalability, biosafety, and regulatory considerations, and provides perspectives on future directions to bridge the gap between laboratory research and clinical translation. Full article
Show Figures

Figure 1

33 pages, 10641 KiB  
Review
Recent Advances in Nano-Drug Delivery Strategies for Chalcogen–Based Therapeutic Agents in Cancer Phototherapy
by Subhrakant Jena and Abderrazzak Douhal
Int. J. Mol. Sci. 2025, 26(10), 4819; https://doi.org/10.3390/ijms26104819 - 17 May 2025
Viewed by 814
Abstract
Chalcogen–containing therapeutic agents (TAs), which include sulfur (S), selenium (Se), and tellurium (Te) atoms, have recently emerged as a promising class of photosensitizers (PSs) and photothermal agents (PTAs) for cancer phototherapy. The incorporation of heavier chalcogens into organic chromophores leads to visible–to–near–infrared (VIS–NIR) [...] Read more.
Chalcogen–containing therapeutic agents (TAs), which include sulfur (S), selenium (Se), and tellurium (Te) atoms, have recently emerged as a promising class of photosensitizers (PSs) and photothermal agents (PTAs) for cancer phototherapy. The incorporation of heavier chalcogens into organic chromophores leads to visible–to–near–infrared (VIS–NIR) light absorption, efficient triplet harvesting, and adequate heat and energy transfer efficiency, all of which are paramount for photodynamic therapy (PDT) and photothermal therapy (PTT). However, chalcogen–based PSs/PTAs suffer from photostability, bioavailability, and targeted delivery issues, which minimize their PDT/PTT performances. Nevertheless, significant progress in the rational design of nanoencapsulation strategies has been achieved to overcome the challenges of chalcogen–based TAs for effective phototherapeutic cancer treatment. This review highlights the recent advances (within the last five years) in nano-drug delivery approaches adapted for chalcogen–substituted PSs/PTAs for PDT, PTT, or synergistic PDT/PTT, integrating imaging and treatment. The PSs/PTAs described in this review are classified into three classes: (i) sulfur, (ii) selenium, and (iii) tellurium–containing TAs used in phototherapy applications. This review offers a comprehensive perspective on the design of chalcogen–substituted photosensitizers (PSs) and photothermal agents (PTAs), covering spectroscopic and computational characterization, nanoformulation strategies, and their roles in enhancing reactive oxygen species (ROS) generation and photothermal conversion efficiency for improved in vitro and in vivo performance. We hope this work will encourage further research into nanotechnological strategies designed to enhance the phototherapeutic efficacy of chalcogen–containing therapeutic agents. Full article
Show Figures

Graphical abstract

22 pages, 8463 KiB  
Article
Synergistic Impacts of Phosphorus Deficiency Coupled with Thermal and High-Light Stress on Physiological Profiles of Cultivated Saccharina japonica
by Jing Zhang, Xiaonan Wang, Xingyue Ren, Xu Gao and Jingyu Li
Plants 2025, 14(10), 1412; https://doi.org/10.3390/plants14101412 - 8 May 2025
Viewed by 683
Abstract
Global kelp farming is garnering growing attention for its contributions to fishery yields, environmental remediation, and carbon neutrality efforts. Kelp farming systems face escalating pressures from compounded climatic and environmental stressors. A severe outbreak disaster caused extensive kelp mortality and significant economic losses [...] Read more.
Global kelp farming is garnering growing attention for its contributions to fishery yields, environmental remediation, and carbon neutrality efforts. Kelp farming systems face escalating pressures from compounded climatic and environmental stressors. A severe outbreak disaster caused extensive kelp mortality and significant economic losses in Rongcheng, China, one of the world’s largest kelp farming areas. This study investigated the growth and physiological responses of Saccharina japonica to combined stressors involving three levels of N:P ratios (10:1 as a control; 100:1 and 500:1 to represent phosphorus deficiency stress) and two temperature/light regimes (12 °C, 90 μmol photons m−2 s−1 as a control, and 17 °C, 340 μmol photons m−2 s−1 to represent thermal and high-light stress). The results demonstrated that phosphorus deficiency significantly inhibited the relative growth rate of kelp (24% decrease), and the strongest growth inhibition in kelp was observed at the N:P ratio of 500:1 combined with thermal and high-light stress. The algal tissue was whitened due to its progressive disintegration under escalating stress, coupled with damage to its chloroplasts and nucleus ultrastructures. Phosphorus-deficiency-induced declines in photochemistry (27–56% decrease) and chlorophyll content (63% decrease) were paradoxically and transiently reversed by thermal and high-light stress, but this “false recovery” accelerated subsequent metabolic collapse (a 60–75% decrease in the growth rate and a loss of thallus integrity). Alkaline phosphatase was preferentially activated to cope with phosphorus deficiency combined with photothermal stress, while acid phosphatase was subsequently induced to provide auxiliary support. S. japonica suppressed its metabolism but upregulated its nucleotides under phosphorus deficiency; however, the energy/amino acid/coenzyme pathways were activated and a broad spectrum of metabolites were upregulated under combined stressors, indicating that S. japonica employs a dual adaptive strategy where phosphorus scarcity triggers metabolic conservation. Thermal/light stress can override phosphorus limitations by activating specific compensatory pathways. The findings of this study provide a foundation for the sustainable development of kelp farming under climate and environmental changes. Full article
(This article belongs to the Special Issue Marine Macrophytes Responses to Global Change)
Show Figures

Figure 1

9 pages, 1596 KiB  
Article
Polarization-Independent Broadband Infrared Selective Absorber Based on Multilayer Thin Film
by Shenglan Wu, Hao Huang, Xin Wang, Chunhui Tian, Zhenyong Huang, Zhiyong Zhong and Shuang Liu
Nanomaterials 2025, 15(9), 678; https://doi.org/10.3390/nano15090678 - 29 Apr 2025
Viewed by 505
Abstract
Spectrally selective infrared absorbers play a pivotal role in enabling optoelectronic applications such as infrared detection, thermal imaging, and photothermal conversion. In this paper, a dual-band wide-spectrum infrared selective absorber based on a metal–dielectric multilayer structure is designed. Through optimized design, the absorptance [...] Read more.
Spectrally selective infrared absorbers play a pivotal role in enabling optoelectronic applications such as infrared detection, thermal imaging, and photothermal conversion. In this paper, a dual-band wide-spectrum infrared selective absorber based on a metal–dielectric multilayer structure is designed. Through optimized design, the absorptance of the absorber reaches the peak values of 0.87 and 1.0 in the target bands (3–5 μm and 8–14 μm), while maintaining a low absorptance of about 0.2 in the non-working bands of 5–8 μm, with excellent spectral selectivity. By analyzing the Poynting vector and loss distribution, the synergistic mechanism of the ultra-thin metal localized enhancement effect, impedance matching, and intrinsic absorption of the material is revealed. This structure exhibits good polarization-insensitive characteristics and angle robustness within a large incident angle range, showing strong adaptability to complex optical field environments. Moreover, the proposed planarized structure design is compatible with standard fabrication processes and has good scalability, which can be applied to other electromagnetic wave bands. This research provides new design ideas and technical solutions for advanced optoelectronic applications such as radiation cooling, infrared stealth, and thermal radiation regulation. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

15 pages, 3390 KiB  
Article
Achievement of 15-Minute Adaptive PCR Benchmark with 1370 nm Laser Heating
by Nicholas Spurlock, Rosana Alfaro, William E. Gabella, Kunal Chugh, Megan E. Pask, Franz Baudenbacher and Frederick R. Haselton
Biosensors 2025, 15(4), 258; https://doi.org/10.3390/bios15040258 - 17 Apr 2025
Cited by 1 | Viewed by 1048
Abstract
In low-resource and point-of-care settings, traditional PCR often faces challenges of poor sample preparation, adverse environmental conditions, and long assay times. We have previously described a laboratory-based instrument to achieve “adaptive” PCR, a PCR thermocycling control system that replaces preset cycling times and [...] Read more.
In low-resource and point-of-care settings, traditional PCR often faces challenges of poor sample preparation, adverse environmental conditions, and long assay times. We have previously described a laboratory-based instrument to achieve “adaptive” PCR, a PCR thermocycling control system that replaces preset cycling times and temperatures with the optical monitoring of added L-DNA stereoisomers matching the sequences of the reaction primers and target. These L-DNA biosensors directly monitor DNA hybridization, compensating for ambient environmental conditions and poor sample preparation. This report describes instrument simplifications and a comparative evaluation of both direct photothermal and plasmonic laser heating to reduce the assay time to 15 min. Instrument performance was assessed using a split sample design to compare reaction performances of 1370 and 808 nm adaptive PCR heating modalities to a standard PCR instrument. Both the novel 1370 nm direct heating and the 808 nm plasmonic method achieved target amplification similar to the traditional PCR system within 15 min. However, a major disadvantage of 808 nm heating was nanorod optical interference that reduced the fluorescence signal from PCR probes and optical cycling components. Further characterization of the 1370 nm direct heating method found comparable limits of detection of 100 copies/µL and reaction efficiencies of approximately 2 for both the 1370 nm system and the traditional PCR instrument. These results suggest that a field-deployable PCR instrument design incorporating both adaptive optical control and 1370 nm laser heating can achieve 15 min sample assay times without sacrificing analytical sensitivity. Full article
(This article belongs to the Special Issue Feature Paper in Biosensor and Bioelectronic Devices 2025)
Show Figures

Figure 1

17 pages, 4291 KiB  
Article
Natural Variations in Key Maturity Genes Underpin Soybean Cultivars Adaptation Beyond 50° N in Northeast China
by Hongchang Jia, Baiquan Sun, Bingjun Jiang, Peiguo Wang, Mahmoud Naser, Shuqing Qian, Liwei Wang, Lixin Zhang, Mikhail Sinegovskii, Shi Sun, Wencheng Lu, Valentina Sinegovskaya, Jiangping Bai and Tianfu Han
Int. J. Mol. Sci. 2025, 26(7), 3362; https://doi.org/10.3390/ijms26073362 - 3 Apr 2025
Viewed by 494
Abstract
Expanding soybean planting is vital for food security both in China and globally. The 50° N latitude serves as the northern boundary of major soybean regions. However, enhancing the adaptability of soybean to photothermal conditions enables the potential to extend cultivation to higher [...] Read more.
Expanding soybean planting is vital for food security both in China and globally. The 50° N latitude serves as the northern boundary of major soybean regions. However, enhancing the adaptability of soybean to photothermal conditions enables the potential to extend cultivation to higher latitudes and altitudes. Understanding the genetic basis of super-early maturity of soybean is crucial to achieving this goal. In this study, 438 soybean germplasms collected from high-latitude regions were evaluated in Heihe (HH) (50°15′ N, 127°28′ E, 154 m), Beijicun (BJC) (53°28′ N, 122°21′ E, 295 m) and Labudalin (LBDL) (50°15′ N, 120°19′ E, 577 m). Using resequencing data, we analyzed natural variation and haplotypes in 35 key genes associated with flowering time and maturity. The results showed that the relative maturity groups (RMGs) for BJC, HH, and LBDL were −1.0, 0.0, and −1.2, respectively. Among the 35 genes analyzed, 23 had identical allelic variations, while 12 genes exhibited 19 SNPs and four InDels. Functional mutations were identified in E1, E2, E3, and E4. Notably, all cultivars carried the e1-as allele of E1, which is likely critical for high-latitude adaptation. Additional mutations included a single-base substitution in E2 (16142 A > T) and E3 (5203 C > T), causing premature codon termination, along with frameshift mutations in E4 (3726 and 4099) and E3 (2649). Haplotype analysis revealed significant differences in growth stages among nine gene haplotypes. The higher frequency of early-maturing haplotypes in BJC and LBDL highlights the role of gene accumulation in soybean adaptation. These findings offer valuable insights for improving soybean maturity and expanding its cultivation in high-latitude regions of China. Full article
(This article belongs to the Special Issue Recent Advances in Soybean Molecular Breeding)
Show Figures

Figure 1

37 pages, 31186 KiB  
Review
Application of Graphene-Based Solar Driven Interfacial Evaporation-Coupled Photocatalysis in Water Treatment
by Yining Zhang, Huiqin Wang and Jisheng Zhang
Catalysts 2025, 15(4), 336; https://doi.org/10.3390/catal15040336 - 31 Mar 2025
Cited by 1 | Viewed by 1308
Abstract
The global shortage of freshwater resources and the energy crisis have propelled solar-driven interfacial evaporation (SDIE) coupled with photocatalytic technology to become a research focus in efficient and low-carbon water treatment. Graphene-based materials demonstrate unique advantages in SDIE–photocatalysis integrated systems, owing to their [...] Read more.
The global shortage of freshwater resources and the energy crisis have propelled solar-driven interfacial evaporation (SDIE) coupled with photocatalytic technology to become a research focus in efficient and low-carbon water treatment. Graphene-based materials demonstrate unique advantages in SDIE–photocatalysis integrated systems, owing to their broadband light absorption, ultrafast thermal carrier dynamics, tunable electronic structure, and low evaporation enthalpy characteristics. This review systematically investigates the enhancement mechanisms of graphene photothermal conversion on photocatalytic processes, including (1) improving light absorption through surface morphology modulation, defect engineering, and plasmonic material compositing; (2) reducing water evaporation enthalpy via hydrophilic functional group modification and porous structure design; (3) suppressing heat loss through thermal insulation layers and 3D structural optimization; and (4) enhancing water transport efficiency via fluid channel engineering and wettability control. Furthermore, salt resistance strategies and structural optimization significantly improve system practicality and stability. In water treatment applications, graphene-based SDIE systems achieve synergistic “adsorption–catalysis–evaporation” effects, enabling efficient the degradation of organic pollutants, reduction in/fixation of heavy metal ions, and microbial inactivation. However, practical implementation still faces challenges including low steam condensation efficiency, insufficient long-term material durability, and high scaling-up costs. Future research should prioritize enhancing heat and mass transfer in condensation systems, optimizing material environmental adaptability, and developing low-cost manufacturing processes to promote widespread application of graphene-based SDIE–photocatalysis integrated systems. Full article
(This article belongs to the Special Issue Mineral-Based Composite Catalytic Materials)
Show Figures

Figure 1

21 pages, 6062 KiB  
Review
Employing Copper-Based Nanomaterials to Combat Multi-Drug-Resistant Bacteria
by Yujie Zhai, Zhuxiao Liang, Xijun Liu and Weiqing Zhang
Microorganisms 2025, 13(4), 708; https://doi.org/10.3390/microorganisms13040708 - 21 Mar 2025
Viewed by 1157
Abstract
The rise of multi-drug-resistant (MDR) bacteria poses a severe global threat to public health, necessitating the development of innovative therapeutic strategies to overcome these challenges. Copper-based nanomaterials have emerged as promising agents due to their intrinsic antibacterial properties, cost-effectiveness, and adaptability for multifunctional [...] Read more.
The rise of multi-drug-resistant (MDR) bacteria poses a severe global threat to public health, necessitating the development of innovative therapeutic strategies to overcome these challenges. Copper-based nanomaterials have emerged as promising agents due to their intrinsic antibacterial properties, cost-effectiveness, and adaptability for multifunctional therapeutic approaches. These materials exhibit exceptional potential in advanced antibacterial therapies, including chemodynamic therapy (CDT), photothermal therapy (PTT), and photodynamic therapy (PDT). Their unique physicochemical properties, such as controlled ion release, reactive oxygen species (ROS) generation, and tunable catalytic activity, enable them to target MDR bacteria effectively while minimizing off-target effects. This paper systematically reviews the mechanisms through which Cu-based nanomaterials enhance antibacterial efficiency and emphasizes their specific performance in the antibacterial field. Key factors influencing their antibacterial properties—such as electronic interactions, photothermal characteristics, size effects, ligand effects, single-atom doping, and geometric configurations—are analyzed in depth. By uncovering the potential of copper-based nanomaterials, this work aims to inspire innovative approaches that improve patient outcomes, reduce the burden of bacterial infections, and enhance global public health initiatives. Full article
(This article belongs to the Special Issue Novel Nanomaterials with Antimicrobial Activity)
Show Figures

Figure 1

16 pages, 4784 KiB  
Article
Ultra High Efficiency Solar Capture Device Based on InAs Nanoring Microstructure
by Zao Yi, Xiangchao Yao, Qianju Song and Xianwen Wu
Coatings 2025, 15(2), 243; https://doi.org/10.3390/coatings15020243 - 19 Feb 2025
Cited by 4 | Viewed by 868
Abstract
As a widely used clean energy source, solar energy has demonstrated significant promise across various applications due to its wide spectral range and efficient absorption performance. This study introduces a cross-structured, ultra-broadband solar absorber utilizing titanium (Ti) and titanium dioxide (TiO2) [...] Read more.
As a widely used clean energy source, solar energy has demonstrated significant promise across various applications due to its wide spectral range and efficient absorption performance. This study introduces a cross-structured, ultra-broadband solar absorber utilizing titanium (Ti) and titanium dioxide (TiO2) as its foundational materials. The absorber exhibits over 90% absorption within the 280–4000 nm wavelength range and surpasses 95% absorption in the broader spectrum from 542 to 3833 nm through the cavity coupling effect of incident light excitation and the subsequent initiation of the surface plasmon resonance mechanism, thus successfully achieving the goal of broadband high absorption. Through the finite difference time domain method (FDTD) simulation, the average absorption efficiency reaches 97.38% within the range from 280 nm to 4000 nm, and it is 97.75% in the range from 542 nm to 3833 nm. At the air mass of 1.5 (AM 1.5), the average absorption efficiency of solar energy is 97.46%, and the loss of solar energy is 2.54%, which has extremely high absorption efficiency. In addition, thanks to the material considerations, the absorber adopts a variety of high-temperature resistant materials, making the thermal radiation efficiency in a high-temperature environment still good; specifically, at the temperature of 900 K, its thermal radiation efficiency can reach 97.27%, and at the extreme 1800 K temperature, it can still maintain 97.52% of high efficiency thermal radiation, further highlighting its excellent thermal stability and comprehensive performance. The structure exhibits excellent optical absorption and thermal radiation properties, which give it broad applicability as an ideal absorber or thermal emitter. More importantly, the absorber is insensitive to the polarization state of the light and can effectively handle the incident light lines in the wide-angle range. In addition, its photothermal conversion efficiency (Hereafter referred to as pc efficiency) can sustain an elevated level under various temperature conditions, which enables it to flexibly adapt to diverse environmental conditions, especially suitable for the integration and application of solar photovoltaic systems, and further broaden its potential application range in the field of renewable energy. Full article
Show Figures

Figure 1

27 pages, 2258 KiB  
Review
The Medical Basis for the Photoluminescence of Indocyanine Green
by Wiktoria Mytych, Dorota Bartusik-Aebisher and David Aebisher
Molecules 2025, 30(4), 888; https://doi.org/10.3390/molecules30040888 - 14 Feb 2025
Cited by 2 | Viewed by 1773
Abstract
Indocyanine green (ICG), a near-infrared (NIR) fluorescent dye with unique photoluminescent properties, is a helpful tool in many medical applications. ICG produces fluorescence when excited by NIR light, enabling accurate tissue visualization and real-time imaging. This study investigates the fundamental processes behind ICG’s [...] Read more.
Indocyanine green (ICG), a near-infrared (NIR) fluorescent dye with unique photoluminescent properties, is a helpful tool in many medical applications. ICG produces fluorescence when excited by NIR light, enabling accurate tissue visualization and real-time imaging. This study investigates the fundamental processes behind ICG’s photoluminescence as well as its present and possible applications in treatments and medical diagnostics. Fluorescence-guided surgery (FGS) has been transformed by ICG’s capacity to visualize tumors, highlight blood flow, and facilitate lymphatic mapping, all of which have improved surgical accuracy and patient outcomes. Furthermore, the fluorescence of the dye is being studied for new therapeutic approaches, like photothermal therapy, in which NIR light can activate ICG to target and destroy cancer cells. We go over the benefits and drawbacks of ICG’s photoluminescent qualities in therapeutic contexts, as well as current studies that focus on improving its effectiveness, security, and adaptability. More precise disease detection, real-time monitoring, and tailored therapy options across a variety of medical specialties are made possible by the ongoing advancement of ICG-based imaging methods and therapies. In the main part of our work, we strive to take into account the latest reports; therefore, we used clinical articles going back to 2020. However, for the sake of the theoretical part, the oldest article used by us is from 1995. Full article
(This article belongs to the Special Issue Chemiluminescence and Photoluminescence of Advanced Compounds)
Show Figures

Figure 1

20 pages, 5958 KiB  
Article
Scalable Fabrication of Light-Responsive Superhydrophobic Composite Phase Change Materials via Bionic-Engineered Wood for Solar–Thermal Energy Management
by Yang Meng, Jiangyu Zhang, Yuchan Li, Hui Jiang and Delong Xie
Molecules 2025, 30(1), 168; https://doi.org/10.3390/molecules30010168 - 4 Jan 2025
Viewed by 1256
Abstract
The growing demand for sustainable energy storage solutions has underscored the importance of phase change materials (PCMs) for thermal energy management. However, traditional PCMs are always inherently constrained by issues such as leakage, poor thermal conductivity, and lack of solar energy conversion capacity. [...] Read more.
The growing demand for sustainable energy storage solutions has underscored the importance of phase change materials (PCMs) for thermal energy management. However, traditional PCMs are always inherently constrained by issues such as leakage, poor thermal conductivity, and lack of solar energy conversion capacity. Herein, a multifunctional composite phase change material (CPCM) is developed using a balsa-derived morphology genetic scaffold, engineered via bionic catechol surface chemistry. The scaffold undergoes selective delignification, followed by a simple, room-temperature polydopamine (PDA) modification to deposit Ag nanoparticles (Ag NPs) and graft octadecyl chains, resulting in a superhydrophobic hierarchical structure. This superhydrophobicity plays a critical role in preventing PCM leakage and enhancing environmental adaptability, ensuring long-term stability under diverse conditions. Encapsulating stearic acid (SA) as the PCM, the CPCM exhibits exceptional stability, achieving a high latent heat of 175.5 J g−1 and an energy storage efficiency of 87.7%. In addition, the thermal conductivity of the CPCM is significantly enhanced along the longitudinal direction, a 2.1-fold increase compared to pure SA, due to the integration of Ag NPs and the unidirectional wood architecture. This synergy also drives efficient photothermal conversion via π-π stacking interactions of PDA and the surface plasmon effects of Ag NPs, enabling rapid solar-to-thermal energy conversion. Moreover, the CPCM demonstrates remarkable water resistance, self-cleaning ability, and long-term thermal reliability, retaining its functionality through 100 heating–cooling cycles. This multifunctional balsa-based CPCM represents a breakthrough in integrating phase-change behavior with advanced environmental adaptability, offering promising applications in solar–thermal energy systems. Full article
(This article belongs to the Special Issue Recent Advances in Superhydrophobic Materials and Their Application)
Show Figures

Graphical abstract

13 pages, 3082 KiB  
Article
Tungsten Diselenide Nanoparticles Produced via Femtosecond Ablation for SERS and Theranostics Applications
by Andrei Ushkov, Dmitriy Dyubo, Nadezhda Belozerova, Ivan Kazantsev, Dmitry Yakubovsky, Alexander Syuy, Gleb V. Tikhonowski, Daniil Tselikov, Ilya Martynov, Georgy Ermolaev, Dmitriy Grudinin, Alexander Melentev, Anton A. Popov, Alexander Chernov, Alexey D. Bolshakov, Andrey A. Vyshnevyy, Aleksey Arsenin, Andrei V. Kabashin, Gleb I. Tselikov and Valentyn Volkov
Nanomaterials 2025, 15(1), 4; https://doi.org/10.3390/nano15010004 - 24 Dec 2024
Cited by 4 | Viewed by 1326
Abstract
Due to their high refractive index, record optical anisotropy and a set of excitonic transitions in visible range at a room temperature, transition metal dichalcogenides have gained much attention. Here, we adapted a femtosecond laser ablation for the synthesis of WSe2 nanoparticles [...] Read more.
Due to their high refractive index, record optical anisotropy and a set of excitonic transitions in visible range at a room temperature, transition metal dichalcogenides have gained much attention. Here, we adapted a femtosecond laser ablation for the synthesis of WSe2 nanoparticles (NPs) with diameters from 5 to 150 nm, which conserve the crystalline structure of the original bulk crystal. This method was chosen due to its inherently substrate-additive-free nature and a high output level. The obtained nanoparticles absorb light stronger than the bulk crystal thanks to the local field enhancement, and they have a much higher photothermal conversion than conventional Si nanospheres. The highly mobile colloidal state of produced NPs makes them flexible for further application-dependent manipulations, which we demonstrated by creating substrates for SERS sensors. Full article
Show Figures

Figure 1

Back to TopTop