Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (75)

Search Parameters:
Keywords = photoresponsive polymers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2557 KiB  
Article
Multiline Laser Interferometry for Non-Contact Dynamic Morphing of Hierarchical Surfaces
by Biagio Audia, Caterina Maria Tone, Pasquale Pagliusi, Alfredo Mazzulla, George Papavieros, Vassilios Constantoudis and Gabriella Cipparrone
Biomimetics 2025, 10(8), 486; https://doi.org/10.3390/biomimetics10080486 - 23 Jul 2025
Viewed by 355
Abstract
Hierarchical surface structuring is a critical aspect of advanced materials design, impacting fields ranging from optics to biomimetics. Among several laser-based methods for complex structuring of photo-responsive surfaces, the broadband vectorial interferometry proposed here offers unique performances. Such a method leverages a polychromatic [...] Read more.
Hierarchical surface structuring is a critical aspect of advanced materials design, impacting fields ranging from optics to biomimetics. Among several laser-based methods for complex structuring of photo-responsive surfaces, the broadband vectorial interferometry proposed here offers unique performances. Such a method leverages a polychromatic laser source, an unconventional choice for holographic encoding, to achieve deterministic multiscale surface structuring through interference light patterning. Azopolymer films are used as photosensitive substrates. By exploring the interaction between optomechanical stress modulations at different spatial periodicities induced within the polymer bulk, we demonstrate the emergence of hierarchical Fourier surfaces composed of multiple deterministic levels. These structures range from sub-micrometer to tens of micrometers scale, exhibiting a high degree of control over their morphology. The experimental findings reveal that the optical encoding scheme significantly influences the resulting topographies. The polarization light patterns lead to more regular and symmetric hierarchical structures compared to those obtained with intensity patterns, underscoring the role of vectorial light properties in controlling surface morphologies. The proposed method is fully scalable, compatible with more complex recording schemes (including multi-beam interference), and it is applicable to a wide range of advanced technological fields. These include optics and photonics (diffractive elements, polarimetric devices), biomimetic surfaces, topographical design, information encoding, and anti-counterfeiting, offering a rapid, reliable, and versatile strategy for high-precision surface structuring at a submicrometric scale. Full article
Show Figures

Figure 1

19 pages, 6145 KiB  
Article
Study on Photodeformation of Solvent Resistance in Hydrogen-Bonded Cross-Linked Main-Chain Azobenzene Films
by Zhaoyang Zhang, Shengkui Ma and Jianfeng Gao
Molecules 2025, 30(10), 2106; https://doi.org/10.3390/molecules30102106 - 9 May 2025
Viewed by 579
Abstract
Hydrogen-bonded cross-linked main chain azobenzene (azo) photoactive polymers have broad application prospects in flexible actuators, optical actuators, and other fields. Most of the research on this kind of photoresponsive material is mainly focused on air, and exploration in solvents remains underexplored. In this [...] Read more.
Hydrogen-bonded cross-linked main chain azobenzene (azo) photoactive polymers have broad application prospects in flexible actuators, optical actuators, and other fields. Most of the research on this kind of photoresponsive material is mainly focused on air, and exploration in solvents remains underexplored. In this paper, azobenzene polyamide ester semicrystalline polymer (PEA-6T) with hydrogen-bond cross-linking was synthesized by Michael addition polymerization. The uniaxially oriented polymer film with high orientation (48.85%) and fast response (5 s under UV light and 55 s under visible light) was obtained by a simple solution casting/mechanical stretching method. Compared with PEA-2T and PEA-4T, PEA-6T exhibits enhanced mechanical properties (elastic modulus increased by 17.4%; yield strength increased by 34.1%; breaking strength increased by 75.4%; elongation at break increased by 33.8%; toughness increased by 101.3%; photoinduced stress increased by 43.5%) and reduced light response time (decreased by 58.3% in ultraviolet light and 50% in visible light) due to the elongation of the compliant chain length. The thin PEA-6T film exhibited light-induced deformation not only in air but also in polar solvents such as water, methanol, ethanol, butanol, and saline solutions (e.g., normal saline, 0.9 wt% NaCl, and simulated seawater, 3.5 wt% NaCl). In addition, polarizing optical microscope (POM) observations showed that the brightness and texture direction of the films remained stable (ΔBrightness < 5%), the light response time was consistent (6 s under UV light, 65 s under visible light), the light-induced stress retention rate was 95%, and the films exhibited good solvent resistance. This study bridges the research gap in azobenzene photoresponsive materials in solvent environments, and the material shows potential for applications in marine equipment coatings or biomedical actuators. Full article
(This article belongs to the Section Macromolecular Chemistry)
Show Figures

Graphical abstract

19 pages, 8444 KiB  
Review
Hybrid Photonic Integrated Circuits for Wireless Transceivers
by Tianwen Qian, Ben Schuler, Y. Durvasa Gupta, Milan Deumer, Efstathios Andrianopoulos, Nikolaos K. Lyras, Martin Kresse, Madeleine Weigel, Jakob Reck, Klara Mihov, Philipp Winklhofer, Csongor Keuer, Laurids von Emden, Marcel Amberg, Crispin Zawadzki, Moritz Kleinert, Simon Nellen, Davide de Felipe, Hercules Avramopoulos, Robert B. Kohlhaas, Norbert Keil and Martin Schelladd Show full author list remove Hide full author list
Photonics 2025, 12(4), 371; https://doi.org/10.3390/photonics12040371 - 12 Apr 2025
Cited by 1 | Viewed by 1431
Abstract
Recent advancements in hybrid photonic integrated circuits (PICs) for wireless communications are reviewed, with a focus on innovations developed at Fraunhofer HHI. This work leverages hybrid integration technology, which combines indium phosphide (InP) active elements, silicon nitride (Si3N4) low-loss [...] Read more.
Recent advancements in hybrid photonic integrated circuits (PICs) for wireless communications are reviewed, with a focus on innovations developed at Fraunhofer HHI. This work leverages hybrid integration technology, which combines indium phosphide (InP) active elements, silicon nitride (Si3N4) low-loss waveguides, and high-efficient thermal-optical tunable polymers with micro-optical functions to achieve fully integrated wireless transceivers. Key contributions include (1) On-chip optical injection locking for generating phase-locked optical beat notes at 45 GHz, enabled by cascaded InP phase modulators and hybrid InP/polymer tunable lasers with a 3.8 GHz locking range. (2) Waveguide-integrated THz emitters and receivers, featuring photoconductive antennas (PCAs) with a 22× improved photoresponse compared to top-illuminated designs, alongside scalable 1 × 4 PIN-PD and PCA arrays for enhanced power and directivity. (3) Beam steering at 300 GHz using a polymer-based optical phased array (OPA) integrated with an InP antenna array, achieving continuous steering across 20° and a 10.6 dB increase in output power. (4) Demonstration of fully integrated hybrid wireless transceiver PICs combining InP, Si3N4, and polymer material platforms, validated through key component characterization, on-chip optical frequency comb generation, and coherent beat note generation at 45 GHz. These advancements result in compact form factors, reduced power consumption, and enhanced scalability, positioning PICs as an enabling technology for future high-speed wireless networks. Full article
(This article belongs to the Special Issue Advanced Technologies in Optical Wireless Communications)
Show Figures

Figure 1

12 pages, 3700 KiB  
Article
Improvement of Dye-Sensitized Solar Cell Performance via Addition of Azopyridine Derivative in Polymer Gel Electrolytes
by Muhammad Faisal Amin, Paweł Gnida, Jolanta Konieczkowska, Magdalena Szubka and Ewa Schab-Balcerzak
Materials 2024, 17(24), 6107; https://doi.org/10.3390/ma17246107 - 13 Dec 2024
Viewed by 774
Abstract
In this study, a polymer gel electrolyte based on polyacrylonitrile was synthesized with varying polymer-to-liquid-electrolyte ratios. DSSCs incorporating a 1:3 ratio showed optimum PV parameters. Choosing this proportion, the effect of incorporating the photoresponsive AZO dye into this polymer electrolyte was studied. When [...] Read more.
In this study, a polymer gel electrolyte based on polyacrylonitrile was synthesized with varying polymer-to-liquid-electrolyte ratios. DSSCs incorporating a 1:3 ratio showed optimum PV parameters. Choosing this proportion, the effect of incorporating the photoresponsive AZO dye into this polymer electrolyte was studied. When irradiated with a UV light of 365 nm, the AZO dye underwent photoisomerization, which allowed the gel electrolyte to absorb heat from the UV irradiation and increase its ionic conductivity. It was found that by the addition of azopyridine into the polymer electrolyte, there was an improvement in the photovoltaic parameters of cells. By increasing the dye content from 1% to 10% by weight in the electrolyte, an 11% growth in short current density was observed, resulting in about a 10% rise in cell efficiency. Full article
Show Figures

Figure 1

19 pages, 4429 KiB  
Article
Self-Powered Deep-Ultraviolet Photodetector Driven by Combined Piezoelectric/Ferroelectric Effects
by Vo Pham Hoang Huy and Chung Wung Bark
Nanomaterials 2024, 14(23), 1903; https://doi.org/10.3390/nano14231903 - 27 Nov 2024
Cited by 2 | Viewed by 1380
Abstract
In this study, in situ piezoelectricity was incorporated into the photoactive region to prepare a self-powered deep-ultraviolet photodetector based on a mixture of polyvinylidene fluoride (PVDF)@Ga2O3 and polyethyleneimine (PEI)/carbon quantum dots (CQDs). A ferroelectric composite layer was prepared using β-Ga [...] Read more.
In this study, in situ piezoelectricity was incorporated into the photoactive region to prepare a self-powered deep-ultraviolet photodetector based on a mixture of polyvinylidene fluoride (PVDF)@Ga2O3 and polyethyleneimine (PEI)/carbon quantum dots (CQDs). A ferroelectric composite layer was prepared using β-Ga2O3 as a filler, and the β-phase of PVDF was used as the polymer matrix. The strong piezoelectricity of β-PVDF can facilitate the separation and transport of photogenerated carriers in the depletion region and significantly reduce the dark current when the device is biased with an external bias, resulting in a high on/off ratio and high detection capability. The self-powered PD exhibited specific detectivity (D* = 3.5 × 1010 Jones), an on/off ratio of 2.7, and a response speed of 0.11/0.33 s. Furthermore, the prepared PD exhibits excellent photoresponse stability under continuous UV light, with the photocurrent retaining 83% of its initial value after about 500 s of irradiation. Our findings suggest a new approach for developing cost-effective UV PDs for optoelectronic applications in related fields. Full article
(This article belongs to the Special Issue The Interaction of Electron Phenomena on the Mesoscopic Scale)
Show Figures

Figure 1

8 pages, 3634 KiB  
Article
Influence of PCBM Nanocrystals on the Donor-Acceptor Polymer Ultraviolet Phototransistors
by Hong Zhu, Quanhua Chen, Lijian Chen, Rozalina Zakaria, Min-Su Park, Chee Leong Tan, Li Zhu and Yong Xu
Nanomaterials 2024, 14(21), 1748; https://doi.org/10.3390/nano14211748 - 30 Oct 2024
Viewed by 1152
Abstract
Organic phototransistors, renowned for their exceptional biocompatibility, hold promise in phototherapy for tracking the efficacy of photosensitive drugs within treatment areas. Nevertheless, it has been found that organic semiconductors are less effective in detecting ultraviolet (UV) light because of their narrow bandgap. Here, [...] Read more.
Organic phototransistors, renowned for their exceptional biocompatibility, hold promise in phototherapy for tracking the efficacy of photosensitive drugs within treatment areas. Nevertheless, it has been found that organic semiconductors are less effective in detecting ultraviolet (UV) light because of their narrow bandgap. Here, we show that UV photodetection in phototransistors using donor-acceptor (D-A) polymer semiconductors can be significantly enhanced by incorporating PCBM nanocrystals. This integration results in a band mismatch between the nanocrystals and the D-A polymer at the interface. These nanocrystals also demonstrate a notable capability of modulating threshold voltage under UV light. The devices incorporating nanocrystals exhibit a photoresponsivity of 0.16 A/W, surpassing the photoresponsivity of the devices without nanocrystals by 50%. The specific detection rate of devices with nanocrystals is around 2.00 × 1010 Jones, which is twice as high as that of devices without nanocrystals. The presented findings offer a potential avenue to improve the efficiency of polymer phototransistors for UV detection. Full article
(This article belongs to the Special Issue The Interaction of Electron Phenomena on the Mesoscopic Scale)
Show Figures

Figure 1

11 pages, 8746 KiB  
Article
Group Control of Photo-Responsive Colloidal Motors with a Structured Light Field
by Dianyang Li, Huan Wei, Hui Fang and Yongxiang Gao
Photonics 2024, 11(5), 421; https://doi.org/10.3390/photonics11050421 - 1 May 2024
Cited by 2 | Viewed by 1612
Abstract
Using structured light to drive colloidal motors, due to its advantages of remote manipulation, energy tunability, programmability, and the controllability of spatiotemporal distribution, has been attracting much attention in the fields of targeted drug delivery, environmental control, chemical agent detection, and smart device [...] Read more.
Using structured light to drive colloidal motors, due to its advantages of remote manipulation, energy tunability, programmability, and the controllability of spatiotemporal distribution, has been attracting much attention in the fields of targeted drug delivery, environmental control, chemical agent detection, and smart device design. Here, we focus on studying the group control of colloidal motors made from a photo-responsive organic polymer molecule NO-COP (N,O-Covalent organic polymer). These colloidal motors mainly respond to light intensity patterns. Considering its merits of fast refreshing speed, good programmability, and high-power threshold, we chose a digital micromirror device (DMD) to modulate the structured light field shining on the sample. It was found that under ultraviolet or green light modulation, such colloidal motors exhibit various group behaviors including group spreading, group patterning, and group migration. A qualitative interpretation is also provided for these observations. Full article
(This article belongs to the Special Issue Emerging Topics in Structured Light)
Show Figures

Figure 1

13 pages, 2986 KiB  
Article
NIR-Mediated Deformation from a CNT-Based Bilayer Hydrogel
by Shijun Long, Chang Liu, Han Ren, Yali Hu, Chao Chen, Yiwan Huang and Xuefeng Li
Polymers 2024, 16(8), 1152; https://doi.org/10.3390/polym16081152 - 19 Apr 2024
Cited by 3 | Viewed by 1551
Abstract
Shape-shifting polymers are widely used in various fields such as intelligent switches, soft robots and sensors, which require both multiple stimulus-response functions and qualified mechanical strength. In this study, a novel near-infrared-light (NIR)-responsible shape-shifting hydrogel system was designed and fabricated through embedding vinylsilane-modified [...] Read more.
Shape-shifting polymers are widely used in various fields such as intelligent switches, soft robots and sensors, which require both multiple stimulus-response functions and qualified mechanical strength. In this study, a novel near-infrared-light (NIR)-responsible shape-shifting hydrogel system was designed and fabricated through embedding vinylsilane-modified carbon nanotubes (CNTs) into particle double-network (P-DN) hydrogels by micellar copolymerisation. The dispersed brittle Poly(sodium 2-acrylamido-2-methylpropane-1-sulfonate) (PNaAMPS) network of the microgels can serve as sacrificial bonds to toughen the hydrogels, and the CNTs endow it with NIR photothermal conversion ability. The results show that the CNTs embedded in the P-DN hydrogels present excellent mechanical strength, i.e., a fracture strength of 312 kPa and a fracture strain of 357%. Moreover, an asymmetric bilayer hydrogel, where the active layer contains CNTs, can achieve 0°–110° bending deformation within 10 min under NIR irradiation and can realise complex deformation movement. This study provides a theoretical and experimental basis for the design and manufacture of photoresponsive soft actuators. Full article
(This article belongs to the Special Issue Advances in Multifunctional Hydrogel, 2nd Edition)
Show Figures

Figure 1

15 pages, 4812 KiB  
Article
Investigation into the Exciton Binding Energy of Carbon Nitrides on Band Structure and Carrier Concentration through the Photoluminescence Effect
by Zhiyou Lin, Xu Cai and Wei Lin
Catalysts 2024, 14(4), 262; https://doi.org/10.3390/catal14040262 - 15 Apr 2024
Cited by 4 | Viewed by 1785
Abstract
Carbon nitrides form a series of polymer semiconductors popular in photocatalysis. In the course of photoresponse, the separation of light-induced electron–hole pairs is one of the critical factors that affect the conversion rate from photoenergy to chemical substance. Exciton binding energy ( [...] Read more.
Carbon nitrides form a series of polymer semiconductors popular in photocatalysis. In the course of photoresponse, the separation of light-induced electron–hole pairs is one of the critical factors that affect the conversion rate from photoenergy to chemical substance. Exciton binding energy (Eb) is treated as a classical parameter to evaluate the barrier of exciton dissociation. In this work, we study the electronic and optical nature of two specific members of the carbon nitride family, polymeric carbon nitride (melon) and crystallized poly(triazine imide) (PTI/Li+Cl) by employing the photoluminescence spectra and density functional theory (DFT) calculations based on the Wannier-Mott exciton module. The results of self-consistent GW computation were applied. The measurement of photoluminescence spectra, by which exciton binding energies are estimated, is likewise discussed. Generally, compared with the results calculated by GW-BSE, the DFT results based on the Wannier-Mott model are closer to the experimental values. From a materials perspective, on the other hand, the exciton binding energy of the melon is lower than that of PTI/Li+Cl. Full article
(This article belongs to the Special Issue Application of Photocatalysts in Air Pollution)
Show Figures

Figure 1

17 pages, 4773 KiB  
Article
Nonwoven Reinforced Photocurable Poly(glycerol sebacate)-Based Hydrogels
by Michael Phillips, Giuseppe Tronci, Christopher M. Pask and Stephen J. Russell
Polymers 2024, 16(7), 869; https://doi.org/10.3390/polym16070869 - 22 Mar 2024
Cited by 1 | Viewed by 1680
Abstract
Implantable hydrogels should ideally possess mechanical properties matched to the surrounding tissues to enable adequate mechanical function while regeneration occurs. This can be challenging, especially when degradable systems with a high water content and hydrolysable chemical bonds are required in anatomical sites under [...] Read more.
Implantable hydrogels should ideally possess mechanical properties matched to the surrounding tissues to enable adequate mechanical function while regeneration occurs. This can be challenging, especially when degradable systems with a high water content and hydrolysable chemical bonds are required in anatomical sites under constant mechanical stimulation, e.g., a foot ulcer cavity. In these circumstances, the design of hydrogel composites is a promising strategy for providing controlled structural features and macroscopic properties over time. To explore this strategy, the synthesis of a new photocurable elastomeric polymer, poly(glycerol-co-sebacic acid-co-lactic acid-co-polyethylene glycol) acrylate (PGSLPA), is investigated, along with its processing into UV-cured hydrogels, electrospun nonwovens and fibre-reinforced variants, without the need for a high temperature curing step or the use of hazardous solvents. The mechanical properties of bioresorbable PGSLPA hydrogels were studied with and without electrospun nonwoven reinforcement and with varied layered configurations, aiming to determine the effects of the microstructure on the bulk compressive strength and elasticity. The nonwoven reinforced PGSLPA hydrogels exhibited a 60% increase in compressive strength and an 80% increase in elastic moduli compared to the fibre-free PGSLPA samples. The mechanical properties of the fibre-reinforced hydrogels could also be modulated by altering the layering arrangement of the nonwoven and hydrogel phase. The nanofibre-reinforced PGSLPA hydrogels also exhibited good elastic recovery, as evidenced by the hysteresis in compression fatigue stress–strain evaluations showing a return to the original dimensions. Full article
(This article belongs to the Section Polymer Networks and Gels)
Show Figures

Figure 1

16 pages, 4630 KiB  
Article
Chitosan/Virgin Coconut Oil-Based Emulsions Doped with Photosensitive Curcumin Loaded Capsules: A Functional Carrier to Topical Treatment
by Luísa C. Rodrigues, Adriana P. Ribeiro, Simone S. Silva and Rui L. Reis
Polymers 2024, 16(5), 641; https://doi.org/10.3390/polym16050641 - 27 Feb 2024
Cited by 2 | Viewed by 2174
Abstract
In recent years, there has been a growing interest in developing smart drug delivery systems based on natural resources combined with stimulus-sensitive elements. This trend aims to formulate innovative and sustainable delivery platforms tailored for topical applications. This work proposed the use of [...] Read more.
In recent years, there has been a growing interest in developing smart drug delivery systems based on natural resources combined with stimulus-sensitive elements. This trend aims to formulate innovative and sustainable delivery platforms tailored for topical applications. This work proposed the use of layer-by-layer (LbL) methodology to fabricate biocompatible photo-responsive multilayer systems. These systems are composed of a polyoxometalate inorganic salt (POM) ([NaP5W30O110]14−) and a natural origin polymer, chitosan (CHT). Curcumin (CUR), a natural bioactive compound, was incorporated to enhance the functionality of these systems during the formation of hollow capsules. The capsules produced, with sizes between 2–5µm (SEM), were further dispersed into CHT/VCO (virgin coconut oil) emulsion solutions that were casted into molds and dried at 37 °C for 48 h. The system presented a higher water uptake in PBS than in acidic conditions, still significantly lower than that earlier reported to other CHT/VCO-based systems. The drug release profile is not significantly influenced by the medium pH reaching a maximum of 37% ± 1% after 48 h. The antioxidant performance of the designed structures was further studied, suggesting a synergistic beneficial effect resulting from CUR, POM, and VCO individual bioactivities. The increased amount of those excipients released to the media over time promoted an increase in the antioxidant activity of the system, reaching a maximum of 38.1% ± 0.1% after 48 h. This work represents a promising step towards developing advanced, sustainable drug delivery systems for topical applications. Full article
(This article belongs to the Special Issue Advanced Biopolymer-Based Composites)
Show Figures

Graphical abstract

20 pages, 2220 KiB  
Article
An Electron Spin Resonance Study Comparing Nanometer–Nanosecond Dynamics in Diblock Copolymers and Their Poly(methyl Methacrylate) Binary Blends
by Laura Andreozzi and Elisa Martinelli
Polymers 2023, 15(20), 4195; https://doi.org/10.3390/polym15204195 - 23 Oct 2023
Cited by 1 | Viewed by 1176
Abstract
Block copolymers are a class of materials that are particularly interesting with respect to their capability to self-assemble in ordered structures. In this context, the coupling between environment and dynamics is particularly relevant given that movements at the molecular level influence various properties [...] Read more.
Block copolymers are a class of materials that are particularly interesting with respect to their capability to self-assemble in ordered structures. In this context, the coupling between environment and dynamics is particularly relevant given that movements at the molecular level influence various properties of macromolecules. Mixing the polymer with a second macromolecule appears to be an easy method for studying these relationships. In this work, we studied blends of poly(methyl methacrylate) (PMMA) and a block copolymer composed of PMMA as the first block and poly(3-methyl-4-[6-(methylacryloyloxy)-hexyloxy]-4′-pentyloxy azobenzene) as the second block. The relaxational properties of these blends were investigated via electron spin resonance (ESR) spectroscopy, which is sensitive to nanometric length scales. The results of the investigations on the blends were related to the dynamic behavior of the copolymers. At the nanoscale, the study revealed the presence of heterogeneities, with slow and fast dynamics available for molecular reorientation, which are further modulated by the ability of the block copolymers to form supramolecular structures. For blends, the heterogeneities at the nanoscale were still detected. However, it was observed that the presence of the PMMA as a major component of the blends modified their dynamic behavior. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Graphical abstract

13 pages, 3149 KiB  
Article
Highly Uniform Spherical MoO2-MoO3/Polypyrrole Core-Shell Nanocomposite as an Optoelectronic Photodetector in UV, Vis, and IR Domains
by Asmaa M. Elsayed, Fatemah H. Alkallas, Amira Ben Gouider Trabelsi and Mohamed Rabia
Micromachines 2023, 14(9), 1694; https://doi.org/10.3390/mi14091694 - 30 Aug 2023
Cited by 16 | Viewed by 1894
Abstract
A highly uniform spherical MoO2-MoO3/polypyrrole core-shell nanocomposite has been successfully synthesized as an optoelectronic photon sensing material, capable of detecting light in the UV, Vis, and IR domains. The nanocomposite is prepared through the oxidation of pyrrole using Na [...] Read more.
A highly uniform spherical MoO2-MoO3/polypyrrole core-shell nanocomposite has been successfully synthesized as an optoelectronic photon sensing material, capable of detecting light in the UV, Vis, and IR domains. The nanocomposite is prepared through the oxidation of pyrrole using Na2MoO4, resulting in a uniform spherical morphology that has been confirmed by TEM, theoretical modeling, and SEM analyses. This morphology contributes to its promising optical behavior, characterized by a small bandgap of 1.36 eV. The optoelectronic photosensing capability of the nanocomposite has been evaluated across the UV, Vis, and IR spectra, demonstrating high efficiency. The photoresponsivity R values indicate the ability of the nanocomposite to generate hot electrons in response to incident photons. With an R value of 4.15 mA·W−1 at 440 nm, this optoelectronic device exhibits considerable promise for integration into an advanced technological apparatus. The detection (D) value of 9.30 × 108 Jones at 440 nm further confirms the high sensitivity in the Vis region. The excellent stability of the device can be attributed to the inherent MoO2-MoO3 oxide and Ppy polymer materials. This stability has been demonstrated through reproducibility studies and current-voltage measurements under various optical conditions. The combination of stability, efficiency, and sensitivity makes this optoelectronic device well suited for light sensing applications in both industrial and commercial settings. Its promising performance opens up opportunities for advancements in various fields requiring accurate and reliable light detection. Full article
Show Figures

Figure 1

13 pages, 2658 KiB  
Article
Decoration of Poly-3-methyl Aniline with As(III) Oxide and Hydroxide as an Effective Photoelectrode for Electroanalytical Photon Sensing with Photodiode-like Behavior
by Mohamed Rabia, Asmaa M. Elsayed and Maha Abdallah Alnuwaiser
Micromachines 2023, 14(8), 1573; https://doi.org/10.3390/mi14081573 - 9 Aug 2023
Cited by 10 | Viewed by 1173
Abstract
This study achieved the decoration of poly-3-methyl aniline (P3MA) with As2O3–As(OH)3 using K2S2O8 and NaAsO2 on the 3-methyl aniline monomer. This resulted in a highly porous nanocomposite polymer composite with wide absorption [...] Read more.
This study achieved the decoration of poly-3-methyl aniline (P3MA) with As2O3–As(OH)3 using K2S2O8 and NaAsO2 on the 3-methyl aniline monomer. This resulted in a highly porous nanocomposite polymer composite with wide absorption optical behavior, an average crystalline size of 22 nm, and a 1.73 eV bandgap. The photoelectrode exhibited a great electrical response for electroanalytical applications, such as photon sensing and photodiodes, with a Jph of 0.015 mA/cm2 and Jo of 0.004 mA/cm2. The variable Jph values ranged from 0.015 to 0.010 mA/cm2 under various monochromatic filters from 340 to 730 nm, which demonstrates high sensitivity to wavelengths. Effective photon numbers were calculated to be 8.0 × 1021 and 5.6 × 1021 photons/s for these wavelength values, and the photoresponsivity (R) values were 0.16 and 0.10 mA/W, respectively. These high sensitivities make the nanocomposite material a promising candidate for use in photodetectors and photodiodes, with potential for commercial applications in highly technological systems and devices. Additionally, the material opens up possibilities for the development of photodiodes using n- and p-type materials. Full article
(This article belongs to the Special Issue Electrochemical Capacitors and Photovoltaic Applications)
Show Figures

Figure 1

27 pages, 6239 KiB  
Review
Controllable Preparation and Research Progress of Photosensitive Antibacterial Complex Hydrogels
by Zhijun Wang, Lili Fu, Dongliang Liu, Dongxu Tang, Kun Liu, Lu Rao, Jinyu Yang, Yi Liu, Yuesheng Li, Huangqin Chen and Xiaojie Yang
Gels 2023, 9(7), 571; https://doi.org/10.3390/gels9070571 - 13 Jul 2023
Cited by 4 | Viewed by 2601
Abstract
Hydrogels are materials consisting of a network of hydrophilic polymers. Due to their good biocompatibility and hydrophilicity, they are widely used in biomedicine, food safety, environmental protection, agriculture, and other fields. This paper summarizes the typical complex materials of photocatalysts, photosensitizers, and hydrogels, [...] Read more.
Hydrogels are materials consisting of a network of hydrophilic polymers. Due to their good biocompatibility and hydrophilicity, they are widely used in biomedicine, food safety, environmental protection, agriculture, and other fields. This paper summarizes the typical complex materials of photocatalysts, photosensitizers, and hydrogels, as week as their antibacterial activities and the basic mechanisms of photothermal and photodynamic effects. In addition, the application of hydrogel-based photoresponsive materials in microbial inactivation is discussed, including the challenges faced in their application. The advantages of photosensitive antibacterial complex hydrogels are highlighted, and their application and research progress in various fields are introduced in detail. Full article
(This article belongs to the Special Issue Designing Gels for Catalysts)
Show Figures

Figure 1

Back to TopTop