Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,240)

Search Parameters:
Keywords = pharmacological findings

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
41 pages, 2949 KiB  
Review
Nanocarriers Containing Curcumin and Derivatives for Arthritis Treatment: Mapping the Evidence in a Scoping Review
by Beatriz Yurie Sugisawa Sato, Susan Iida Chong, Nathalia Marçallo Peixoto Souza, Raul Edison Luna Lazo, Roberto Pontarolo, Fabiane Gomes de Moraes Rego, Luana Mota Ferreira and Marcel Henrique Marcondes Sari
Pharmaceutics 2025, 17(8), 1022; https://doi.org/10.3390/pharmaceutics17081022 - 6 Aug 2025
Abstract
Background/Objectives: Curcumin (CUR) is well known for its therapeutic properties, particularly attributed to its antioxidant and anti-inflammatory effects in managing chronic diseases such as arthritis. While CUR application for biomedical purposes is well known, the phytochemical has several restrictions given its poor water [...] Read more.
Background/Objectives: Curcumin (CUR) is well known for its therapeutic properties, particularly attributed to its antioxidant and anti-inflammatory effects in managing chronic diseases such as arthritis. While CUR application for biomedical purposes is well known, the phytochemical has several restrictions given its poor water solubility, physicochemical instability, and low bioavailability. These limitations have led to innovative formulations, with nanocarriers emerging as a promising alternative. For this reason, this study aimed to address the potential advantages of associating CUR with nanocarrier systems in managing arthritis through a scoping review. Methods: A systematic literature search of preclinical (in vivo) and clinical studies was performed in PubMed, Scopus, and Web of Science (December 2024). General inclusion criteria include using CUR or natural derivatives in nano-based formulations for arthritis treatment. These elements lead to the question: “What is the impact of the association of CUR or derivatives in nanocarriers in treating arthritis?”. Results: From an initial 536 articles, 34 were selected for further analysis (31 preclinical investigations and three randomized clinical trials). Most studies used pure CUR (25/34), associated with organic (30/34) nanocarrier systems. Remarkably, nanoparticles (16/34) and nanoemulsions (5/34) were emphasized. The formulations were primarily presented in liquid form (23/34) and were generally administered to animal models through intra-articular injection (11/31). Complete Freund’s Adjuvant (CFA) was the most frequently utilized among the various models to induce arthritis-like joint damage. The findings indicate that associating CUR or its derivatives with nanocarrier systems enhances its pharmacological efficacy through controlled release and enhanced solubility, bioavailability, and stability. Moreover, the encapsulation of CUR showed better results in most cases than in its free form. Nonetheless, most studies were restricted to the preclinical model, not providing direct evidence in humans. Additionally, inadequate information and clarity presented considerable challenges for preclinical evidence, which was confirmed by SYRCLE’s bias detection tools. Conclusions: Hence, this scoping review highlights the anti-arthritic effects of CUR nanocarriers as a promising alternative for improved treatment. Full article
(This article belongs to the Special Issue Advances in Polymer-Based Devices and Platforms for Pain Management)
19 pages, 1548 KiB  
Article
Phytochemical Analysis, Antioxidant Activity, and Anticancer Potential of Afzelia quanzensis Welw—Bark Extract: A Traditional Remedy Utilized by Indigenous Communities in KwaZulu-Natal and Eastern Cape Provinces of South Africa
by Siphamandla Qhubekani Njabuliso Lamula, Thando Bhanisa, Martha Wium, Juliano Domiraci Paccez, Luiz Fernando Zerbini and Lisa V. Buwa-Komoreng
Int. J. Mol. Sci. 2025, 26(15), 7623; https://doi.org/10.3390/ijms26157623 - 6 Aug 2025
Abstract
Despite the significant advancements in treatment and prevention, the fight against cancer is ongoing worldwide. This study evaluated the pharmacological properties and anticancer activity of Afzelia quanzensis bark, traditionally used by the indigenous communities of KwaZulu Natal and Eastern Cape Provinces of South [...] Read more.
Despite the significant advancements in treatment and prevention, the fight against cancer is ongoing worldwide. This study evaluated the pharmacological properties and anticancer activity of Afzelia quanzensis bark, traditionally used by the indigenous communities of KwaZulu Natal and Eastern Cape Provinces of South Africa to treat cancer and related illnesses. Phytochemical screening, high-performance liquid chromatography–diode array detection (HPLC-DAD), and Fourier-transform infrared spectroscopy (FTIR) analyses were carried out using established protocols. The antioxidant activity was assessed via the 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging capacity and nitric oxide radicals. The anticancer activity was evaluated using the MTT assay (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide). Phytochemical analysis revealed the presence of saponins, flavonoids, terpenoids, alkaloids, steroids, cardiac glycosides, and phlobatannins. The HPLC-DAD analysis detected seven distinctive peaks in the aqueous extract and three distinctive peaks in the methanolic extract. The FTIR spectra of the aqueous extract displayed characteristic peaks corresponding to O-H, C=O, C=C, and =C–H functional groups. Among the tested extracts, the methanol extract exhibited the strongest antioxidant activity, followed by the ethanolic extract, in both DPPH and nitric oxide. The methanol extract showed a higher cell proliferation inhibition against the DU-145 cancer cell line with the percentage of inhibition of 37.8%, followed by the aqueous extract with 36.3%. In contrast, limited activity was observed against PC-3, SK-UT-1, and AGS cell lines. The results demonstrated notable dose-dependent antioxidant and antiproliferative activities supporting the ethnomedicinal use of Afzelia quanzensis bark in cancer management. These findings warrant further investigation into its bioactive constituents and mechanisms of action. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
42 pages, 1579 KiB  
Review
Antimicrobial Potential of Bee-Derived Products: Insights into Honey, Propolis and Bee Venom
by Agnieszka Grinn-Gofroń, Maciej Kołodziejczak, Rafał Hrynkiewicz, Filip Lewandowski, Dominika Bębnowska, Cezary Adamski and Paulina Niedźwiedzka-Rystwej
Pathogens 2025, 14(8), 780; https://doi.org/10.3390/pathogens14080780 - 6 Aug 2025
Abstract
Bee products, in particular honey, propolis and bee venom, are of growing scientific interest due to their broad spectrum of antimicrobial activity. In the face of increasing antibiotic resistance and the limitations of conventional therapies, natural bee-derived substances offer a promising alternative or [...] Read more.
Bee products, in particular honey, propolis and bee venom, are of growing scientific interest due to their broad spectrum of antimicrobial activity. In the face of increasing antibiotic resistance and the limitations of conventional therapies, natural bee-derived substances offer a promising alternative or support for the treatment of infections. This paper summarizes the current state of knowledge on the chemical composition, biological properties and antimicrobial activity of key bee products. The main mechanisms of action of honey, propolis and bee venom are presented, and their potential applications in the prevention and treatment of bacterial, viral and fungal infections are discussed. Data on their synergy with conventional drugs and prospects for use in medicine and pharmacology are also included. The available findings suggest that, with appropriate standardization and further preclinical and clinical analyses, bee products could become an effective support for the treatment of infections, especially those caused by pathogens resistant to standard therapies. Full article
14 pages, 3011 KiB  
Article
Ameliorative Effects of Soybean Powder Fermented by Bacillus subtilis on Constipation Induced by Loperamide in Rats
by Gi Soo Lee, Su Kang Kim, Ju Yeon Ban and Chung-Hun Oh
Int. J. Mol. Sci. 2025, 26(15), 7615; https://doi.org/10.3390/ijms26157615 - 6 Aug 2025
Abstract
Constipation is a prevalent gastrointestinal disorder that significantly impairs quality of life. While pharmacological agents such as loperamide are widely used to induce constipation in experimental models, there is increasing interest in natural alternatives for alleviating intestinal dysfunction. In this study, we investigated [...] Read more.
Constipation is a prevalent gastrointestinal disorder that significantly impairs quality of life. While pharmacological agents such as loperamide are widely used to induce constipation in experimental models, there is increasing interest in natural alternatives for alleviating intestinal dysfunction. In this study, we investigated the laxative effects of soybean powder fermented by Bacillus subtilis DKU_09 in a loperamide-induced rat model of constipation. The probiotic strain was isolated from cheonggukjang, a traditional Korean fermented soybean paste, and its identity was confirmed through 16S rRNA sequencing. Fermented soybean powder was characterized morphologically via scanning electron microscopy and chemically via HPLC to assess its isoflavone content. Rats were administered loperamide (5 mg/kg) for four days to induce constipation and were then treated with fermented soybean powder at doses of 100, 200, or 300 mg/kg. No pharmacological laxatives (e.g., PEG) were used as a positive control; instead, values from the treatment groups were compared with those from the loperamide-only constipation group. Key outcomes of fecal output, water content, colonic fecal retention, and gastrointestinal transit ratio were measured. The fermented product significantly improved stool frequency and moisture content, reduced colonic fecal retention, and restored gastrointestinal transit in a dose-dependent manner. Notably, the 300 mg/kg group demonstrated nearly complete recovery of fecal parameters without affecting body weight. Statistical analysis was performed using one-way ANOVA followed by Tukey’s post hoc test. These findings suggest that Bacillus subtilis-fermented soybean powder exerts synergistic laxative effects through the combined action of probiotic viability and fermentation-enhanced bioactive compounds such as aglycone isoflavones. This study supports the potential use of fermented soybean-based nutraceuticals as a natural and safe intervention for constipation and gastrointestinal dysregulation. Full article
(This article belongs to the Special Issue Functions and Applications of Natural Products)
Show Figures

Figure 1

20 pages, 1388 KiB  
Article
Beyond Bone Mineral Density: Real-World Fracture Risk Profiles and Therapeutic Gaps in Postmenopausal Osteoporosis
by Anamaria Ardelean, Delia Mirela Tit, Roxana Furau, Oana Todut, Gabriela S. Bungau, Roxana Maria Sânziana Pavel, Bogdan Uivaraseanu, Diana Alina Bei and Cristian Furau
Diagnostics 2025, 15(15), 1972; https://doi.org/10.3390/diagnostics15151972 - 6 Aug 2025
Abstract
Background/Objectives: Osteoporosis remains a leading cause of morbidity in postmenopausal women, yet many high-risk individuals remain undiagnosed or untreated. This study aimed to assess the prevalence of osteoporosis and osteopenia, treatment patterns, and skeletal fragility indicators in a large cohort of postmenopausal [...] Read more.
Background/Objectives: Osteoporosis remains a leading cause of morbidity in postmenopausal women, yet many high-risk individuals remain undiagnosed or untreated. This study aimed to assess the prevalence of osteoporosis and osteopenia, treatment patterns, and skeletal fragility indicators in a large cohort of postmenopausal women undergoing DXA screening. Methods: We analyzed data from 1669 postmenopausal women aged 40–89 years who underwent DXA evaluation. BMD status was categorized as normal, osteopenia, or osteoporosis. Treatment status was classified based on active antiosteoporotic therapy, calcium/vitamin D supplementation, hormonal therapy (historical use), or no treatment. Logistic regression models were used to explore independent predictors of osteoporosis and treatment uptake. Results: A total of 45.0% of women had osteoporosis and 43.5% had osteopenia. Despite this, 58.5% of the population, over half of women with osteoporosis, were not receiving any active pharmacologic treatment. Bisphosphonates were the most prescribed therapy (17.9%), followed by calcium/vitamin D supplements (20.6%). A prior history of fragility fractures and radiological bone lesions were significantly associated with lower BMD (p < 0.05). Historical hormone replacement therapy (HRT) use was not associated with current BMD (p = 0.699), but women with HRT use reported significantly fewer fractures (p < 0.001). In multivariate analysis, later menopause age and low BMD status predicted higher odds of receiving active treatment. Conclusions: Our findings highlight a substantial care gap in osteoporosis management, with treatment primarily initiated reactively in more severe cases. Improved screening and earlier intervention strategies are urgently needed to prevent fractures and reduce the long-term burden of osteoporosis. Full article
(This article belongs to the Special Issue Diagnosis and Management of Osteoporosis)
Show Figures

Graphical abstract

33 pages, 5098 KiB  
Review
Medicinal Plants for Skin Disorders: Phytochemistry and Pharmacological Insights
by Nazerke Bolatkyzy, Daniil Shepilov, Rakhymzhan Turmanov, Dmitriy Berillo, Tursunay Vassilina, Nailya Ibragimova, Gulzat Berganayeva and Moldyr Dyusebaeva
Molecules 2025, 30(15), 3281; https://doi.org/10.3390/molecules30153281 - 6 Aug 2025
Abstract
Skin disorders are common and often chronic conditions with significant therapeutic challenges. Limitations of conventional treatments, such as adverse effects and antimicrobial resistance, have increased interest in plant-based alternatives. This article presents the phytochemical composition and pharmacological potential of several medicinal plants traditionally [...] Read more.
Skin disorders are common and often chronic conditions with significant therapeutic challenges. Limitations of conventional treatments, such as adverse effects and antimicrobial resistance, have increased interest in plant-based alternatives. This article presents the phytochemical composition and pharmacological potential of several medicinal plants traditionally used in the treatment of skin diseases, including Rubus vulgaris, Plantago major, Artemisia terrae-albae, and Eryngium planum. Based on an analysis of scientific literature, the presence of bioactive compounds—including flavonoids, anthocyanins, phenolic acids, tannins, and sesquiterpenes—is summarized, along with their antioxidant, anti-inflammatory, and antimicrobial effects. Emphasis is placed on the correlation between traditional ethnomedicinal applications and pharmacological mechanisms. The findings support the potential of these species as sources for dermatological phytotherapeutics. Further research is needed to standardize active constituents, assess safety, and conduct clinical validation. Full article
(This article belongs to the Special Issue Bioactive Molecules in Medicinal Plants)
Show Figures

Figure 1

24 pages, 4193 KiB  
Article
Evaluation of Bioactive Compounds, Antioxidant Activity, and Anticancer Potential of Wild Ganoderma lucidum Extracts from High-Altitude Regions of Nepal
by Ishor Thapa, Ashmita Pandey, Sunil Tiwari and Suvash Chandra Awal
Curr. Issues Mol. Biol. 2025, 47(8), 624; https://doi.org/10.3390/cimb47080624 - 5 Aug 2025
Abstract
Wild Ganoderma lucidum from Nepal’s high-altitude regions was studied to identify key bioactive compounds and assess the influence of solvent type—water, ethanol, methanol, and acetone—on extraction efficiency and biological activity. Extracts were evaluated for antioxidant potential, cytotoxicity against HeLa cells, and phytochemical composition [...] Read more.
Wild Ganoderma lucidum from Nepal’s high-altitude regions was studied to identify key bioactive compounds and assess the influence of solvent type—water, ethanol, methanol, and acetone—on extraction efficiency and biological activity. Extracts were evaluated for antioxidant potential, cytotoxicity against HeLa cells, and phytochemical composition via gas chromatography–mass spectrometry (GC-MS). Solvent type significantly affected both yield and bioactivity. Acetone yielded the highest crude extract (5.01%), while ethanol extract exhibited the highest total phenolic (376.5 ± 9.3 mg PG/g) and flavonoid content (30.3 ± 0.5 mg QE/g). Methanol extract was richest in lycopene (0.07 ± 0.00 mg/g) and β-carotene (0.45 ± 0.02 mg/g). Ethanol extract demonstrated consistently strong DPPH, superoxide, hydroxyl, and nitric oxide radical scavenging activity, along with high reducing power. All extracts showed dose-dependent cytotoxicity against HeLa cells, with ethanol and water extracts showing the greatest inhibition (>65% at 1000 µg/mL). GC-MS profiling identified solvent-specific bioactive compounds including sterols, terpenoids, polyphenols, and fatty acids. Notably, pharmacologically relevant compounds such as hinokione, ferruginol, ergosterol, and geranylgeraniol were detected. These findings demonstrate the therapeutic potential of G. lucidum, underscore the importance of solvent selection, and suggest that high-altitude ecological conditions may influence its bioactive metabolite profile. Full article
Show Figures

Graphical abstract

16 pages, 1899 KiB  
Systematic Review
Enhancing Cardiovascular Autonomic Regulation in Parkinson’s Disease Through Non-Invasive Interventions
by Aastha Suthar, Ajmal Zemmar, Andrei Krassioukov and Alexander Ovechkin
Life 2025, 15(8), 1244; https://doi.org/10.3390/life15081244 - 5 Aug 2025
Abstract
Background: Parkinson’s disease (PD) often involves autonomic dysfunction, most notably impaired baroreflex sensitivity (BRS), which disrupts cardiovascular homeostasis and contributes to orthostatic hypotension (OH). Pharmacological and invasive treatments, including deep brain stimulation, have yielded inconsistent benefits and carry procedural risks, highlighting the need [...] Read more.
Background: Parkinson’s disease (PD) often involves autonomic dysfunction, most notably impaired baroreflex sensitivity (BRS), which disrupts cardiovascular homeostasis and contributes to orthostatic hypotension (OH). Pharmacological and invasive treatments, including deep brain stimulation, have yielded inconsistent benefits and carry procedural risks, highlighting the need for safer, more accessible alternatives. In this systematic review, we evaluated non-invasive interventions—spanning somatosensory stimulation, exercise modalities, thermal therapies, and positional strategies—aimed at improving cardiovascular autonomic function in PD. Methods: We searched PubMed, Embase, MEDLINE (Ovid), Google Scholar, ScienceDirect, and Web of Science for studies published between January 2014 and December 2024. Eight original studies (n = 8) including 205 participants met the inclusion criteria for analyzing cardiac sympathovagal balance. Results: Five studies demonstrated significant post-intervention increases in BRS. Most reported favorable shifts in heart rate variability (HRV) and favorable changes in the low-frequency/high-frequency (LF/HF) ratio. Across modalities, systolic blood pressure (SBP) decreased by an average of 5%, and some interventions produced benefits that persisted up to 24 h. Conclusion: Although sample sizes were small and protocols heterogeneous, the collective findings support the potential of non-invasive neuromodulation to enhance BRS and overall cardiovascular regulation in PD. Future research should focus on standardized, higher-intensity or combined protocols with longer follow-up periods to establish durable, clinically meaningful improvements in autonomic function and quality of life for people living with PD. Full article
Show Figures

Figure 1

28 pages, 4137 KiB  
Review
The Genus Anisosciadium: A Comprehensive Review of Taxonomic Aspects, Traditional Uses, Phytochemistry, and Biological Activities
by Malek Besbes, Assia Hamdi, Hassiba Chahdoura, Abeer Ayed Alshammari, Wasimah B. Al-Shammari, Dalal AlArdan and Hichem Ben Jannet
Processes 2025, 13(8), 2475; https://doi.org/10.3390/pr13082475 - 5 Aug 2025
Abstract
The genus Anisosciadium, belonging to the Apiaceae family, has been traditionally recognized for its anti-inflammatory, antioxidant, and antimicrobial properties. However, scientific research on this genus is still limited, highlighting the need for a comprehensive review of its chemical composition and pharmacological characteristics. [...] Read more.
The genus Anisosciadium, belonging to the Apiaceae family, has been traditionally recognized for its anti-inflammatory, antioxidant, and antimicrobial properties. However, scientific research on this genus is still limited, highlighting the need for a comprehensive review of its chemical composition and pharmacological characteristics. A comprehensive compilation of data was conducted using major databases such as Google Scholar, Research Gate, Web of Science, Scopus, and ScienceDirect. In this review, we collected and organized the available information of identified compounds from different species of the genus Anisosciadium, covering the literature from 2003 to 2024. In total, 64 phytoconstituents were detected. The findings suggest that the traditional therapeutic properties of Anisosciadium are well supported by the reported pharmacological activities from previous studies. Notably, these studies highlight its antioxidant, antibacterial, and cytotoxic effects, emphasizing the potential of this genus in the development of new therapeutic agents. Nonetheless, the lack of comparative studies among Anisosciadium species and the scarcity of in vivo studies and clinical trials limit the full realization of its therapeutic potential. Specifically, comparative studies could be crucial in identifying species with unique chemical profiles and understanding how variations in secondary metabolite compositions may influence their pharmacological activities. Full article
(This article belongs to the Special Issue Analysis and Processes of Bioactive Components in Natural Products)
Show Figures

Figure 1

21 pages, 3536 KiB  
Article
Gold(III) Complexes with Aromatic Cyano-Substituted Bisdithiolate Ligands as Potential Anticancer and Antimicrobial Agents
by Dulce Belo, Sandra Rabaça, Sara G. Fava, Sílvia A. Sousa, Diogo Coelho, Jorge H. Leitão, Teresa Pinheiro, Célia Fernandes and Fernanda Marques
Molecules 2025, 30(15), 3270; https://doi.org/10.3390/molecules30153270 - 4 Aug 2025
Abstract
Cancer and infectious diseases are major causes of global morbidity and mortality stressing the need to find novel drugs with promising dual anticancer and antimicrobial efficacy. Gold complexes have been studied for the past years due to their anticancer properties, with a few [...] Read more.
Cancer and infectious diseases are major causes of global morbidity and mortality stressing the need to find novel drugs with promising dual anticancer and antimicrobial efficacy. Gold complexes have been studied for the past years due to their anticancer properties, with a few of them displaying antimicrobial properties, which support their pharmacological interest. Within this scope, we investigated six gold bisdithiolate complexes [Au (bdt)2] (1), [Au (dcbdt)2] (2), [Au (3-cbdt)2] (3), [Au (4-cbdt)2] (4), [Au (pdt)2] (5) and [Au (dcdmp)2] (6), and) against the ovarian cancer cell lines A2780 and A2780cisR, the Gram-positive bacteria Staphylococcus aureus Newman, the Gram-negative bacteria Escherichia coli ATCC25922 and Burkholderia contaminans IST408, and the pathogenic yeasts Candida glabrata CBS138 and Candida albicans SC5134. Complexes 2 and 6, with ligands containing aromatic pyrazine or phenyl rings, substituted with two cyanonitrile groups, showed after 24 h of incubation high anticancer activities against A2780 ovarian cancer cells (IC50~5 µM), being also able to overcome cisplatin resistance in A2780cisR cells. Both complexes induced the formation of ROS, activated caspase-3/7, and induced necrosis (LDH release) in a dose-dependent way, in a greater extent in the case of 6. Among the bacterial and fungal strains tested, only complex 6 presented antimicrobial activity against S. aureus Newman, indicating that this complex is a potential novel anticancer and antibacterial agent. These results delve into the structure-activity relationship of the complexes, considering molecular alterations such as replacing a phenyl group for a pyrazine group, and the inclusion of one or two cyanonitrile appendage groups, and their effects on biological activity. Overall, both complexes were found to be promising leads for the development of future anticancer drugs against low sensitive or cisplatin resistant tumors. Full article
(This article belongs to the Special Issue 10th Anniversary of the Bioorganic Chemistry Section of Molecules)
Show Figures

Graphical abstract

49 pages, 2713 KiB  
Article
Anti-Inflammatory and Antiplatelet Interactions on PAF and ADP Pathways of NSAIDs, Analgesic and Antihypertensive Drugs for Cardioprotection—In Vitro Assessment in Human Platelets
by Makrina Katsanopoulou, Zisis Zannas, Anna Ofrydopoulou, Chatzikamari Maria, Xenophon Krokidis, Dimitra A. Lambropoulou and Alexandros Tsoupras
Medicina 2025, 61(8), 1413; https://doi.org/10.3390/medicina61081413 - 4 Aug 2025
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide, with pathophysiological mechanisms often involving platelet activation and chronic inflammation. While antiplatelet agents targeting adenosine diphosphate (ADP)-mediated pathways are well established in CVD management, less is known about drug interactions with the platelet-activating [...] Read more.
Cardiovascular disease (CVD) is the leading cause of death worldwide, with pathophysiological mechanisms often involving platelet activation and chronic inflammation. While antiplatelet agents targeting adenosine diphosphate (ADP)-mediated pathways are well established in CVD management, less is known about drug interactions with the platelet-activating factor (PAF) pathway, a key mediator of inflammation. This study aimed to evaluate the effects of several commonly used cardiovascular and anti-inflammatory drug classes—including clopidogrel, non-steroidal anti-inflammatory drugs (NSAIDs), angiotensin II receptor blockers (ARBs), β-blockers, and analgesics—on platelet function via both the ADP and PAF pathways. Using human platelet-rich plasma (hPRP) from healthy donors, we assessed platelet aggregation in response to these two agonists in the absence and presence of graded concentrations of each of these drugs or of their usually prescribed combinations. The study identified differential drug effects on platelet aggregation, with some agents showing pathway-specific activity. Clopidogrel and NSAIDs demonstrated expected antiplatelet effects, while some (not all) antihypertensives exhibited additional anti-inflammatory potential. These findings highlight the relevance of evaluating pharmacological activity beyond traditional targets, particularly in relation to PAF-mediated inflammation and thrombosis. This dual-pathway analysis may contribute to a broader understanding of drug mechanisms and inform the development of more comprehensive therapeutic strategies for the prevention and treatment of cardiovascular, hypertension, and inflammation-driven diseases. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

9 pages, 557 KiB  
Article
Is Combined PhacoAhmed Less Effective than Ahmed Surgery Alone? A 5-Year Retrospective Study of Long-Term Effects
by Maria Vivas, José Charréu, Bruno Pombo, Tomás Costa, Ana Sofia Lopes, Fernando Trancoso Vaz, Maria João Santos and Isabel Prieto
Vision 2025, 9(3), 68; https://doi.org/10.3390/vision9030068 - 4 Aug 2025
Abstract
Combined trabeculectomy–phacoemulsification is known to provoke more inflammation and yield a poorer long-term efficacy than trabeculectomy alone. This study evaluates whether a similar trend exists for Ahmed glaucoma valve implantation when performed with or without concurrent phacoemulsification. We retrospectively analyzed 51 eyes from [...] Read more.
Combined trabeculectomy–phacoemulsification is known to provoke more inflammation and yield a poorer long-term efficacy than trabeculectomy alone. This study evaluates whether a similar trend exists for Ahmed glaucoma valve implantation when performed with or without concurrent phacoemulsification. We retrospectively analyzed 51 eyes from patients who underwent either Ahmed-Alone (n = 25) or PhacoAhmed (n = 26) surgery over a 5-year period. The primary outcomes included intraocular pressure (IOP), the use of IOP-lowering medications, and the need for further surgical intervention. Absolute success was defined as IOP reduction > 20% and IOP < 21 mmHg without medication; relative success allowed for continued pharmacologic therapy. Both groups showed a significant IOP reduction, with similar final mean IOP values (Ahmed-Alone: 14.02 ± 4.76 mmHg; PhacoAhmed: 13.89 ± 4.17 mmHg; p = 0.99) and comparable reductions in medication use (p = 0.52). Reinterventions occurred less frequently and later in the PhacoAhmed group (12% vs. 27.3%; median time: 27.1 vs. 12 months). Absolute success was not achieved in any PhacoAhmed case but occurred in 9.3% of Ahmed-Alone cases; relative success rates were similar (83.3% vs. 81.4%; p = 0.291). These findings suggest that combining phacoemulsification with Ahmed valve implantation does not significantly alter efficacy or safety profiles. Additional prospective studies are warranted to assess long-term outcomes. Full article
Show Figures

Figure 1

24 pages, 2279 KiB  
Article
Dual Oxytocin Signals in Striatal Astrocytes
by Elisa Farsetti, Sarah Amato, Monica Averna, Diego Guidolin, Marco Pedrazzi, Guido Maura, Luigi Francesco Agnati, Chiara Cervetto and Manuela Marcoli
Biomolecules 2025, 15(8), 1122; https://doi.org/10.3390/biom15081122 - 4 Aug 2025
Viewed by 42
Abstract
The ability of the neuropeptide oxytocin to affect glial cell function is receiving increasing attention. We previously reported that oxytocin at a low nanomolar concentration could inhibit both astrocytic Ca2+ signals and glutamate release. Here, we investigate the ability of oxytocin receptors [...] Read more.
The ability of the neuropeptide oxytocin to affect glial cell function is receiving increasing attention. We previously reported that oxytocin at a low nanomolar concentration could inhibit both astrocytic Ca2+ signals and glutamate release. Here, we investigate the ability of oxytocin receptors to couple both inhibitory and stimulatory pathways in astrocytes, as already reported in neurons. We assessed the effects of oxytocin at concentrations ranging from low to high in the nanomolar range on intracellular Ca2+ signals and on the glutamate release in astrocyte processes freshly prepared from the striatum of adult rats. Our main findings are as follows: oxytocin could induce dual responses in astrocyte processes, namely the inhibition and facilitation of both Ca2+ signals and glutamate release; the inhibitory and the facilitatory response appeared dependent on activation of the Gi and the Gq pathway, respectively; both inhibitory and facilitatory responses were evoked at the same nanomolar oxytocin concentrations; and the biased agonists atosiban and carbetocin could duplicate oxytocin’s inhibitory and facilitatory response, respectively. In conclusion, due to the coupling of striatal astrocytic oxytocin receptors to different transduction pathways and the dual effects on Ca2+ signals and glutamate release, oxytocin could also play a crucial role in neuron–astrocyte bi-directional communication through a subtle regulation of striatal glutamatergic synapses. Therefore, astrocytic oxytocin receptors may offer pharmacological targets to regulate glutamatergic striatal transmission, which is potentially useful in neuropsychiatric disorders and in neurodegenerative diseases. Full article
(This article belongs to the Special Issue Neuron–Astrocyte Interactions in Neurological Function and Disease)
Show Figures

Figure 1

23 pages, 2059 KiB  
Systematic Review
Comparative Effectiveness of Nutritional Supplements in the Treatment of Knee Osteoarthritis: A Network Meta-Analysis
by Yuntong Zhang, Yunfei Gui, Roger Adams, Joshua Farragher, Catherine Itsiopoulos, Keegan Bow, Ming Cai and Jia Han
Nutrients 2025, 17(15), 2547; https://doi.org/10.3390/nu17152547 - 3 Aug 2025
Viewed by 277
Abstract
Background: Knee osteoarthritis (KOA) is a prevalent degenerative joint disease that can greatly affect quality of life in middle-aged and elderly individuals. Nutritional supplements are increasingly used for KOA due to their low risk, but direct comparative evidence on their efficacy and [...] Read more.
Background: Knee osteoarthritis (KOA) is a prevalent degenerative joint disease that can greatly affect quality of life in middle-aged and elderly individuals. Nutritional supplements are increasingly used for KOA due to their low risk, but direct comparative evidence on their efficacy and safety remains scarce. This study aimed to systematically compare the effectiveness and safety of seven common nutritional supplements for KOA. Methods: A systematic review and network meta-analysis were conducted following PRISMA guidelines. Embase, PubMed, and the Cochrane Library were searched through December 2024 for randomized controlled trials (RCTs) evaluating use of eggshell membrane, vitamin D, Boswellia, curcumin, ginger, krill oil, or collagen, versus placebo, in adults with KOA. Primary outcomes included changes in scores for WOMAC pain, stiffness and function, and pain visual analog scale (VAS). Adverse events were also assessed. Bayesian network meta-analyses estimated ranking probabilities for each intervention. Results: In total, 39 RCTs (42 studies; 4599 patients) were included. Compared with placebo, Boswellia showed significant improvements in WOMAC pain (mean difference [MD] = 10.58, 95% CI: 6.45 to 14.78, p < 0.05), stiffness (MD = 9.47, 95% CI: 6.39 254 to 12.74, p < 0.05), function (MD = 14.00, 95% CI: 7.74 to 20.21, p < 0.05), and VAS pain (MD = 17.26, 95% CI: 8.06 to 26.52, p < 0.05). Curcumin, collagen, ginger, and krill oil also demonstrated benefits in some outcomes. No supplement was associated with increased adverse events compared to placebo. Bayesian rankings indicated Boswellia had the highest probability of being most effective for pain and stiffness, with krill oil and curcumin showing potential for function improvement. Conclusions: Nutritional supplements, particularly Boswellia, appear to be effective and well-tolerated for improving KOA symptoms and function. These results suggest that certain supplements may be useful as part of non-pharmacological KOA management. However, further large-scale, well-designed randomized controlled trials (RCTs) are needed to confirm these findings, particularly those that include more standardized dosages and formulations, as well as to evaluate their long-term efficacy. Full article
(This article belongs to the Section Nutrition Methodology & Assessment)
Show Figures

Figure 1

22 pages, 11011 KiB  
Article
Flavonoid Extract of Senecio scandens Buch.-Ham. Ameliorates CTX-Induced Immunosuppression and Intestinal Damage via Activating the MyD88-Mediated Nuclear Factor-κB Signaling Pathway
by Xiaolin Zhu, Lulu Zhang, Xuan Ni, Jian Guo, Yizhuo Fang, Jianghan Xu, Zhuo Chen and Zhihui Hao
Nutrients 2025, 17(15), 2540; https://doi.org/10.3390/nu17152540 - 1 Aug 2025
Viewed by 147
Abstract
Background/Objectives: Senecio scandens Buch.-Ham. is a flavonoid-rich traditional medicinal plant with established immunomodulatory properties. However, the mechanisms underlying the immunoregulatory and intestinal protective effects of its flavonoid extract (Senecio scandens flavonoids—SSF) remain unclear. This study characterized SSF’s bioactive components and evaluated [...] Read more.
Background/Objectives: Senecio scandens Buch.-Ham. is a flavonoid-rich traditional medicinal plant with established immunomodulatory properties. However, the mechanisms underlying the immunoregulatory and intestinal protective effects of its flavonoid extract (Senecio scandens flavonoids—SSF) remain unclear. This study characterized SSF’s bioactive components and evaluated its efficacy against cyclophosphamide (CTX)-induced immunosuppression and intestinal injury. Methods: The constituents of SSF were identified using UHPLC/Q-Orbitrap/HRMS. Mice with CTX-induced immunosuppression were treated with SSF (80, 160, 320 mg/kg) for seven days. Immune parameters (organ indices, lymphocyte proliferation, cytokine, and immunoglobulin levels) and gut barrier integrity markers (ZO-1, Occludin, Claudin-1 protein expression; sIgA secretion; microbiota composition) were assessed. Network pharmacology combined with functional assays elucidated the underlying regulatory mechanisms. Results: Twenty flavonoids were identified in SSF, with six prototype compounds detectable in the blood. The SSF treatment significantly ameliorated CTX-induced weight loss and atrophy of the thymus and spleen. It enhanced splenic T- and B-lymphocyte proliferation by 43.6% and 29.7%, respectively; normalized the CD4+/CD8+ ratio (1.57-fold increase); and elevated levels of IL-2, IL-6, IL-10, TNF-α, IFN-γ, IgM, and IgG. Moreover, SSF reinforced the intestinal barrier by upregulating tight junction protein expression and sIgA levels while modulating the gut microbiota, enriching beneficial taxa (e.g., the Lachnospiraceae_NK4A136_group, Akkermansia) and suppressing pathogenic Alistipes. Mechanistically, SSF activated the TLR/MyD88/NF-κB pathway, with isoquercitrin identified as a pivotal bioactive constituent. Conclusions: SSF effectively mitigates CTX-induced immunosuppression and intestinal damage. These findings highlight SSF’s potential as a dual-functional natural agent for immunomodulation and intestinal protection. Subsequent research should validate isoquercitrin’s molecular targets and assess SSF’s clinical efficacy. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Figure 1

Back to TopTop