Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (106)

Search Parameters:
Keywords = petroleum substances

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5409 KiB  
Article
Sustainable Rubber Solutions: A Study on Bio-Based Oil and Resin Blends
by Frances van Elburg, Fabian Grunert, Claudia Aurisicchio, Micol di Consiglio, Auke Talma, Pilar Bernal-Ortega and Anke Blume
Polymers 2025, 17(15), 2111; https://doi.org/10.3390/polym17152111 - 31 Jul 2025
Viewed by 309
Abstract
One of the most important challenges the tire industry faces is becoming carbon-neutral and using 100% sustainable materials by 2050. Utilizing materials from renewable sources and recycled substances is a key aspect of achieving this goal. Petroleum-based oils, such as Treated Distillate Aromatic [...] Read more.
One of the most important challenges the tire industry faces is becoming carbon-neutral and using 100% sustainable materials by 2050. Utilizing materials from renewable sources and recycled substances is a key aspect of achieving this goal. Petroleum-based oils, such as Treated Distillate Aromatic Extract (TDAE), are frequently used in rubber compounds, and a promising strategy to enhance sustainability is to use bio-based plasticizer alternatives. However, research has shown that the replacement of TDAE oil with bio-based oils or resins can significantly alter the glass transition temperature (Tg) of the final compound, influencing the tire properties. In this study, the theory was proposed that using a plasticizer blend, comprising oil and resin, in a rubber compound would result in similar Tg values as the reference compound containing TDAE. To test this, the cycloaliphatic di-ester oil Hexamoll DINCH, which can be made out of bio-based feedstock by the BioMass Balance approach, was selected and blended with the cycloaliphatic hydrocarbon resin Escorez 5300. Various oil-to-resin ratios were investigated, and a linear increase in the Tg of the vulcanizate was obtained when increasing the resin content and decreasing the oil content. Additionally, a 50/50 blend, consisting of 18.75 phr Hexamoll DINCH and 18.75 phr Escorez 5300, resulted in the same Tg of −19 °C as a compound containing 37.5 phr TDAE. Furthermore, this blend resulted in similar curing characteristics and cured Payne effect as the reference with TDAE. Moreover, a similar rolling resistance indicator (tan δ at 60 °C = 0.115), a slight deterioration in wear resistance (ARI = 83%), but an improvement in the stress–strain behavior (M300 = 9.18 ± 0.20 MPa and Ts = 16.3 ± 0.6 MPa) and wet grip indicator (tan δ at 0 °C = 0.427) were observed. The results in this work show the potential of finding a balance between optimal performance and sustainability by using plasticizer blends. Full article
(This article belongs to the Special Issue Exploration and Innovation in Sustainable Rubber Performance)
Show Figures

Figure 1

17 pages, 1066 KiB  
Article
Comparative Study of the Microalgae-Based Wastewater Treatment, in an Oil Refining Industry Cogeneration Concept
by Ena Pritišanac, Maja Fafanđel, Ines Haberle, Sunčana Geček, Marinko Markić, Nenad Bolf, Jela Vukadin, Goranka Crnković, Tin Klanjšček, Luka Žilić and Maria Blažina
Water 2025, 17(15), 2217; https://doi.org/10.3390/w17152217 - 24 Jul 2025
Viewed by 352
Abstract
Microalage are broadly recognized as promising agents for sustainable wastewater treatment and biomass generation. However, industrial effluents such as petroleum refinery wastewater (WW) present challenges due to toxic growth inhibiting substances. Three marine microalgae species: Pseudochloris wilhelmii, Nannochloropsis gaditana and Synechococcus sp. [...] Read more.
Microalage are broadly recognized as promising agents for sustainable wastewater treatment and biomass generation. However, industrial effluents such as petroleum refinery wastewater (WW) present challenges due to toxic growth inhibiting substances. Three marine microalgae species: Pseudochloris wilhelmii, Nannochloropsis gaditana and Synechococcus sp. MK568070 were examined for cultivation potential in oil refinery WW. Their performance was evaluated in terms of growth dynamics, lipid productivity, and toxicity reduction, with a focus on their suitability for largescale industrial use. N. gaditana demonstrated the highest growth rate and lipid content (37% d.w.) as well as lipid productivity (29.45 mg/(Lday)) with the N-uptake rate of 0.698 mmol/(gday). The highest specific DIN uptake rate was observed inn P. wilhelmii (0.895 mmol/(gday) along with the highest volumetric productivity (93.9 mg/L/day) and WW toxicity removal (76.5%), while Synechococcus sp. MK568070 demonstrated lower performance metrics. A simple numerical model was applied to calculate continuous operation based on empirical results of batch experiments. Sustainability of the microalgae-based WW remediation under the conditions of optimized lipid biomass production was estimated, regarding 2019–2022–2025 cost dynamics. Parameters for optimum open raceway pond cultivation were calculated, and the biomass production accumulation was estimated, with the highest biomass production noted in P. wilhelmii (171.38 t/year). Comparison of treatment costs, production costs and revenue showed that the best candidate for WW remediation is N. gaditana. Full article
Show Figures

Figure 1

29 pages, 897 KiB  
Article
Identification of Potential Migrants in Food Contact Materials Labeled as Bio-Based and/or Biodegradable by GC-MS
by Emma López Sanvicente, Letricia Barbosa-Pereira, Raquel Sendón, Ana Rodríguez Bernaldo de Quirós and Antía Lestido-Cardama
Coatings 2025, 15(7), 751; https://doi.org/10.3390/coatings15070751 - 25 Jun 2025
Viewed by 662
Abstract
Bio-based and/or biodegradable food contact materials are being developed as alternatives to conventional petroleum-based materials. Like other food contact materials, these are subject to regulatory requirements. The characterization of these biomaterials enables the identification of chemical substances that could potentially migrate from these [...] Read more.
Bio-based and/or biodegradable food contact materials are being developed as alternatives to conventional petroleum-based materials. Like other food contact materials, these are subject to regulatory requirements. The characterization of these biomaterials enables the identification of chemical substances that could potentially migrate from these materials into food and may pose a risk to consumer health. In this work, commercial samples of food contact materials labeled as bio-based and/or biodegradable were analyzed. To tentatively identify compounds, two analytical methods were optimized: purge and trap (P&T) for volatile compounds and methanolic extract injection for the determination of semi-volatile compounds, both using gas chromatography coupled with mass spectrometry (GC-MS). Compound toxicity was estimated using an in silico methodology, namely Cramer’s rules. More than 200 compounds of different natures were tentatively identified, but only 29 are included in Regulation (EU) 10/2011 on plastic materials intended to come into contact with food, and 38 of them were classified as high-toxicity compounds. Full article
(This article belongs to the Special Issue Bio-Based and Biodegradable Packaging Materials for Food Contact)
Show Figures

Graphical abstract

18 pages, 5429 KiB  
Article
Different Emergency Response Strategies to Oil Spills in Rivers Lead to Divergent Contamination Compositions and Microbial Community Response Characteristics
by Xinyu Wen, An Fan, Jinsong Wang, Yulin Xia, Sili Chen and Yuyin Yang
Microorganisms 2025, 13(6), 1193; https://doi.org/10.3390/microorganisms13061193 - 23 May 2025
Viewed by 448
Abstract
Oil spills in inland rivers pose a significant threat to the surrounding environment, and the emergency response differs greatly from that in ocean or coastal areas. In this study, we focused on several commonly used emergency water treatment strategies in China’s inland oil [...] Read more.
Oil spills in inland rivers pose a significant threat to the surrounding environment, and the emergency response differs greatly from that in ocean or coastal areas. In this study, we focused on several commonly used emergency water treatment strategies in China’s inland oil spills, as well as the spilled washing oil in a serious accident case. We investigated the changes in oil-related chemical components before and after water treatment using GCxGC-TOF MS (Comprehensive Two-dimensional Gas Chromatography Time of Flight Mass Spectrometer). We tracked the shifts of microbial communities in the microcosms incubated with clean river water, simulated oil-contaminated water, and the treatment effluent. The results revealed that typical components, especially nitrogen-containing heterocyclic compounds, had different removal efficiencies among treatments. The diversity, composition, and potential functions of microbial communities responded differently to the treatments, and could be related to various substances, including PAHs (polycyclic aromatic hydrocarbons) and heterocyclic compounds. A few genera, such as SC-I-84, exhibited a high correlation with washing oil-related components and could serve as an indicator in such an oil spill emergency response. Our findings indicated that simply using petroleum oil or PAHs to evaluate oil spills was likely to underestimate the ecological impact, especially when the spilled substances were coal chemical products widely used in China. This will provide an important scientific basis for decision-making and strategy evaluation in emergency responses to inland oil spills. Full article
(This article belongs to the Special Issue Microorganisms: A Way Forward for Sustainable Development?)
Show Figures

Figure 1

31 pages, 18126 KiB  
Article
Eco-Friendly Conversion of Waste Zeolite Dust into Dual Oil/Water Affinity Sorbents via HPGR-Based Agglomeration–Deagglomeration
by Ewelina Pabiś-Mazgaj, Agata Stempkowska and Tomasz Gawenda
Sustainability 2025, 17(10), 4359; https://doi.org/10.3390/su17104359 - 12 May 2025
Viewed by 531
Abstract
This study presents an innovative, eco-friendly approach for converting waste zeolite dust into efficient petroleum sorbents through an integrated agglomeration–deagglomeration process using high-pressure grinding rolls (HPGRs). This method generates secondary porosity without calcination, enhancing sorption while reducing greenhouse gas emissions and supporting sustainable [...] Read more.
This study presents an innovative, eco-friendly approach for converting waste zeolite dust into efficient petroleum sorbents through an integrated agglomeration–deagglomeration process using high-pressure grinding rolls (HPGRs). This method generates secondary porosity without calcination, enhancing sorption while reducing greenhouse gas emissions and supporting sustainable development by valorizing industrial by-products for environmental remediation. The study aimed to assess the influence of binder and water content on petroleum sorption performance, textural properties, and mechanical strength of the produced sorbents, and to identify correlations between these parameters. Sorbents were characterized using mercury porosimetry (MIP), sorption measurements, mechanical resistance tests, scanning electron microscopy (SEM), and digital microscopy. Produced zeolite sorbents (0.5–1 mm) exceeded the 50 wt.% sorption threshold required for oil spill cleanup in Poland, outperforming diatomite sorbents by 15–50% for diesel and 40% for used engine oil. The most effective sample, 3/w/22.5, reached capacities of 0.4 g/g for petrol, 0.8 g/g for diesel, and 0.3 g/g for used oil. The sorption mechanism was governed by physical processes, mainly diffusion of nonpolar molecules into meso- and macropores via van der Waals forces. Sorbents with dominant pores (~4.8 µm) showed ~15% higher efficiency than those with smaller pores (~0.035 µm). The sorbents demonstrated amphiphilic behavior, enabling simultaneous uptake of polar (water) and nonpolar (petrochemical) substances. Full article
Show Figures

Figure 1

36 pages, 11511 KiB  
Review
Recent Advances in Functional Biopolymer Films with Antimicrobial and Antioxidant Properties for Enhanced Food Packaging
by Thirukumaran Periyasamy, Shakila Parveen Asrafali and Jaewoong Lee
Polymers 2025, 17(9), 1257; https://doi.org/10.3390/polym17091257 - 5 May 2025
Cited by 10 | Viewed by 2513
Abstract
Food packaging plays a crucial role in preserving freshness and prolonging shelf life worldwide. However, traditional packaging primarily acts as a passive barrier, providing limited protection against spoilage. Packaged food often deteriorates due to oxidation and microbial growth, reducing its quality over time. [...] Read more.
Food packaging plays a crucial role in preserving freshness and prolonging shelf life worldwide. However, traditional packaging primarily acts as a passive barrier, providing limited protection against spoilage. Packaged food often deteriorates due to oxidation and microbial growth, reducing its quality over time. Moreover, the majority of commercial packaging relies on petroleum-derived polymers, which add to environmental pollution since they are not biodegradable. Growing concerns over sustainability have driven research into eco-friendly alternatives, particularly natural-based active packaging solutions. Among the various biopolymers, cellulose is the most abundant natural polysaccharide and has gained attention for its biodegradability, non-toxicity, and compatibility with biological systems. These qualities make it a strong candidate for developing sustainable packaging materials. However, pure cellulose films have limitations, as they lack antimicrobial and antioxidant properties, reducing their ability to actively preserve food. To tackle this issue, researchers have created cellulose-based active packaging films by integrating bioactive agents with antimicrobial and antioxidant properties. Recent innovations emphasize improving these films through the incorporation of natural extracts, polyphenols, nanoparticles, and microparticles. These enhancements strengthen their protective functions, leading to more effective food preservation. The films are generally classified into two types: (i) blend films, where soluble antimicrobial and antioxidant substances like plant extracts and polyphenols are incorporated into the cellulose solution, and (ii) composite films, which embed nano- or micro-sized bioactive fillers within the cellulose structure. The addition of these functional components enhances the antimicrobial and antioxidant efficiency of the films while also affecting properties like water resistance, vapor permeability, and mechanical strength. The continuous progress in cellulose-based active packaging highlights its potential as a viable alternative to conventional materials. These innovative films not only extend food shelf life but also contribute to environmental sustainability by reducing reliance on synthetic polymers. This review deals with the development of functional biopolymer films with antimicrobial and antioxidant properties towards sustainable food packaging. Full article
(This article belongs to the Special Issue Application of Polymers in Food Sciences (2nd Edition))
Show Figures

Figure 1

19 pages, 2069 KiB  
Review
Progress in Research on the Preparation of 2, 5-Furandicarboxylic Acid by Hydroxymethylfurfural Oxidation
by Liang Qu, Fanzhuo Kong, Xueshan Chen, Yuyang Zhang, Zhiyuan Lin, Xing Ni, Xue Zhang, Qiongya Lu, Yani Zhao and Bin Zou
Catalysts 2025, 15(4), 373; https://doi.org/10.3390/catal15040373 - 11 Apr 2025
Viewed by 939
Abstract
Hydroxymethylfurfural (HMF) is a substance produced in sugar-rich foods through the Maillard reaction or thermal degradation. It has been shown that when HMF content reaches a certain dose, it causes harm to human health. In many food quality tests, the content of HMF [...] Read more.
Hydroxymethylfurfural (HMF) is a substance produced in sugar-rich foods through the Maillard reaction or thermal degradation. It has been shown that when HMF content reaches a certain dose, it causes harm to human health. In many food quality tests, the content of HMF can be used as an important indicator. Therefore, when the content of hydroxymethylfurfural in food is too high, it will cause damage to the human body. But to conserve resources, hydroxymethylfurfural in food can be converted into valuable chemicals, so as to achieve the effective use of resources. It has been shown that foods rich in fructose and glucose can be easily transformed into HMF. Therefore, it is necessary and important to study the conversion pathway of hydroxymethylfurfural in foods. 2, 5 furandicarboxylic acid (FDCA) can be obtained through the HMF oxidation reaction. Due to the similarity of its structure to the polymer monomer terephthalic acid, it can be used as a renewable substitute monomer of petroleum-based terephthalic acid in the process of synthesizing food-contact materials. Therefore, it is very significant to explore the oxidation process of HMF to FDCA. Full article
(This article belongs to the Special Issue Catalytic Conversion and Utilization of Biomass)
Show Figures

Figure 1

35 pages, 1831 KiB  
Article
Determinants Driving the Uptake of Biodegradable Plastics: A Sequential Exploratory Mixed-Methods Research Approach
by Taofeeq Durojaye Moshood, Fatimah Mahmud, Gusman Nawanir, Mohd Hanafiah Ahmad, Fazeeda Mohamad and Airin AbdulGhani
Microplastics 2025, 4(1), 7; https://doi.org/10.3390/microplastics4010007 - 5 Feb 2025
Viewed by 1332
Abstract
Biodegradable materials are emerging as a sustainable alternative to conventional petroleum-based plastics across packaging, sanitation, and agriculture sectors. These materials naturally decompose into harmless substances within a specified period, completing an eco-friendly lifecycle. However, the widespread adoption of biodegradable plastics depends on building [...] Read more.
Biodegradable materials are emerging as a sustainable alternative to conventional petroleum-based plastics across packaging, sanitation, and agriculture sectors. These materials naturally decompose into harmless substances within a specified period, completing an eco-friendly lifecycle. However, the widespread adoption of biodegradable plastics depends on building confidence among consumers, manufacturers, and regulators regarding their effectiveness. This study employed a mixed-methods approach to investigate the key factors influencing biodegradable plastics’ sustainability, integrating theoretical frameworks with survey data collected from Malaysian plastic users aged 15 and above. Results revealed that individual characteristics, particularly environmental self-identity, significantly influence behavioural intentions toward sustainable practices, such as choosing eco-friendly packaging. The findings contribute to the theoretical understanding of biodegradable plastics adoption in developing markets while providing actionable insights for government and corporate stakeholders. This study recommends targeted awareness campaigns emphasising environmental self-identity to reduce conventional packaging use and promote biodegradable alternatives. By incorporating these identity-focused messages into marketing communications, organisations can enhance public awareness and market perception of biodegradable products. Full article
Show Figures

Figure 1

18 pages, 3018 KiB  
Article
Application of a Strong Base Anion Exchange Resin for the Removal of Thiophenol from Aqueous Solution
by Katarzyna Chruszcz-Lipska, Bogumiła Winid and Urszula Solecka
Molecules 2025, 30(3), 525; https://doi.org/10.3390/molecules30030525 - 24 Jan 2025
Cited by 1 | Viewed by 1412
Abstract
Thiophenol (synonyms: phenyl mercaptan, benzenethiol) may appear in the aquatic environment as a result of human activity. It is used as a raw material in organic synthesis in various industries for the production of dyes, pesticides, pharmaceuticals and polymers, such as polyphenylene sulfide [...] Read more.
Thiophenol (synonyms: phenyl mercaptan, benzenethiol) may appear in the aquatic environment as a result of human activity. It is used as a raw material in organic synthesis in various industries for the production of dyes, pesticides, pharmaceuticals and polymers, such as polyphenylene sulfide (PPS). It may also enter water through contamination with petroleum substances (thiophenol may be present in crude oil). Due to the fact that thiophenol is toxic to living organisms, its removal from water can be a very important task. For the first time, this paper presents experimental studies of the sorption and desorption process of thiophenol on an ion exchange resin. Thiophenol sorption experiments on AmbeLite®IRA402 (Cl form) were tested at different pH levels (4, 7, and 9) and different ionic strengths of the aqueous solution. Its detection in water was carried out using UV spectroscopy. At pH 4, the thiophenol sorption process is basically independent of the ionic strength of the solution, but also the least effective. The sorption capacity of a thiophenol solution in distilled water is about 0.37–0.46 mg/g, for a solution with an ionic strength of 0.1 M 0.42 mg/g. At pH 7 and 9, the sorption of thiophenol from an aqueous solution is similar and definitely more effective. The sorption capacity of the thiophenol solution in distilled water is about 13.83–14.67 mg/g, and for a solution with an ionic strength of 0.1 M, it is 2.83–2.10 mg/g. The desorption efficiency of thiophenol from AmbeLite®IRA402 resin (washing with 4% HCl) at pH 7 is 90%, which is promising for the resin reuse process. Kinetic studies were performed and a pseudo-first-order and second-order kinetic model was fitted to the obtained experimental sorption data. In most cases, the simulation showed that the pseudo-second-order model gives a better fit, especially for the sorption of thiophenol from the solution with an ionic strength of 0.1 M. The fit of the Freundlich and Langmuir isotherm models to the experimental results indicates that the latter model provides better agreement. Analysis of the infrared spectra supported by quantum chemical calculations (DFT/PCM/B3LYP/6-31g**) confirms the experimental results observed during the sorption process. At pH 7 and 9, the thiophenol is sorbed in anionic form and—together with the ion exchange processes that occur between the dissociated thiol group and the quaternary ammonium group—an interaction between the aromatic structures of thiophenolate anions and IRA402 also takes place. Full article
(This article belongs to the Section Applied Chemistry)
Show Figures

Graphical abstract

35 pages, 1705 KiB  
Review
Mitigation of Asphaltene Deposit Formation via Chemical Additives: A Review
by Dicho Stratiev, Radoslava Nikolova, Anife Veli, Ivelina Shishkova, Vesislava Toteva and Georgi Georgiev
Processes 2025, 13(1), 141; https://doi.org/10.3390/pr13010141 - 7 Jan 2025
Cited by 7 | Viewed by 2589
Abstract
The deposition of asphaltenes in the petroleum industry has been found to be a significant factor affecting the profitability of petroleum production and refining. For this reason, many efforts have been made to clarify the mechanism of deposition formation and to find measures [...] Read more.
The deposition of asphaltenes in the petroleum industry has been found to be a significant factor affecting the profitability of petroleum production and refining. For this reason, many efforts have been made to clarify the mechanism of deposition formation and to find measures to reduce its harmful impact on the efficiency of oil production and refining. Recent reports on the mechanism of deposit formation by asphaltenes suggest that it is a phase transition phenomenon. Many studies have shown that this process can be slowed by using chemical inhibitors. Different classes of chemical substances (non-polymeric, organic compounds, polymers, ionic liquids and nanomaterials) have been found to be capable of inhibiting asphaltene precipitation. This paper presents a comprehensive review of asphaltene deposition research and makes an attempt to decipher the convoluted asphaltene deposition phenomena and relate the chemistry of asphaltene inhibitors to the nature of treated petroleum oils. The choice of appropriate additives to mitigate asphaltene deposition in commercial oil and gas facilities requires comprehensive knowledge of chemistry of oils, asphaltenes, and the chemical substances, along with the appropriate laboratory techniques that best mimic the commercial operation conditions. Full article
Show Figures

Figure 1

28 pages, 8760 KiB  
Article
Revitalization of Soil Contaminated by Petroleum Products Using Materials That Improve the Physicochemical and Biochemical Properties of the Soil
by Jadwiga Wyszkowska, Agata Borowik, Magdalena Zaborowska and Jan Kucharski
Molecules 2024, 29(24), 5838; https://doi.org/10.3390/molecules29245838 - 11 Dec 2024
Cited by 1 | Viewed by 1105
Abstract
One of the key challenges in environmental protection is the reclamation of soils degraded by organic pollutants. Effective revitalization of such soils can contribute to improving the climate and the quality of feed and food, mainly by eliminating harmful substances from the food [...] Read more.
One of the key challenges in environmental protection is the reclamation of soils degraded by organic pollutants. Effective revitalization of such soils can contribute to improving the climate and the quality of feed and food, mainly by eliminating harmful substances from the food chain and by cultivating plants for energy purposes. To this end, research was carried out using two sorbents, vermiculite and agrobasalt, to detoxify soils contaminated with diesel oil and unleaded gasoline, using maize as an energy crop. The research was carried out in a pot experiment. The level of soil contamination with petroleum products was set at 8 cm3 and 16 cm3 kg−1 d.m. of soil, and the dose of the revitalizing substances, i.e., vermiculite and agrobasalt, was set at 10 g kg−1 of soil. Their effect was compared with uncontaminated soil and soil without sorbents. The obtained research results prove that both diesel oil and gasoline disrupt the growth and development of Zea mays. Diesel oil destabilized plant development more than gasoline. Both products distorted the activity of soil oxidoreductases and hydrolases, with diesel oil stimulating and gasoline inhibiting. The applied sorbents proved to be useful in the soil revitalization process, as they reduced the negative effects of pollutants on Zea mays, increased the activity of soil enzymes, enhanced the value of the biochemical soil quality indicator (BA), and improved the cation exchange capacity (CEC), the sum of exchangeable base cations (EBC), pH, and the Corg content. Agrobasalt demonstrated a greater potential for improving soil physicochemical properties, inducing an average increase in CEC and EBC values of 12% and 23%, respectively, in soil under G pressure, and by 16% and 25% in DO-contaminated soil. Full article
Show Figures

Figure 1

22 pages, 1898 KiB  
Review
Cyanoremediation of Polluted Seawater in the Arabian Gulf: Risks and Benefits to Human Health
by R. F. Al-Thani and B. T. Yasseen
Processes 2024, 12(12), 2733; https://doi.org/10.3390/pr12122733 - 2 Dec 2024
Cited by 1 | Viewed by 1420
Abstract
Cyanobacteria play a crucial role in marine ecosystems as primary producers of food and oxygen for various organisms while helping remove waste and toxic substances from the environment. They are essential to the carbon cycle and help regulate the climate. These marine autotrophs [...] Read more.
Cyanobacteria play a crucial role in marine ecosystems as primary producers of food and oxygen for various organisms while helping remove waste and toxic substances from the environment. They are essential to the carbon cycle and help regulate the climate. These marine autotrophs also aid in the absorption of essential elements and support diverse life forms. They help degrade organic compounds, including petroleum hydrocarbons as well as heavy metals. Fluctuations in cyanobacteria populations can indicate ecosystem health, influencing both human well-being and wildlife. Their significance also extends to potential technological advancements, thus providing valuable resources for fields such as pharmacology, medicine, health care, biofuels, cosmetics, and bioremediation. However, some species produce toxins that pose risks to human health and marine organisms. Consequently, cyanobacteria are a major focus of research aimed at preserving and improving marine ecosystems—especially given the environmental damage caused by past and potential future conflicts. This review highlights their roles in cyanoremediation and other industrial and biotechnological applications with a particular focus on the Arabian Gulf region. Full article
(This article belongs to the Section Sustainable Processes)
Show Figures

Graphical abstract

15 pages, 1337 KiB  
Article
Investigations on the Endemic Species Taraxacum mirabile Wagenitz: HPLC–MS and GC–MS Studies, Evaluation of Antioxidant, Anti-Inflammatory, and Antimicrobial Properties, and Isolation of Several Phenolic Compounds
by Seçil Karahüseyin, Nurten Özsoy, Berna Özbek Çelik and Aynur Sarı
Plants 2024, 13(23), 3304; https://doi.org/10.3390/plants13233304 - 25 Nov 2024
Cited by 1 | Viewed by 1027
Abstract
In this study, the aim was to investigate the chemical content and in vitro antioxidant, antimicrobial, and anti-inflammatory activities of petroleum ether (PE), dichloromethane (DCM), ethyl acetate (EA), and n-butanol (n-BuOH) fractions obtained from ethanol extracts of the aerial parts and roots of [...] Read more.
In this study, the aim was to investigate the chemical content and in vitro antioxidant, antimicrobial, and anti-inflammatory activities of petroleum ether (PE), dichloromethane (DCM), ethyl acetate (EA), and n-butanol (n-BuOH) fractions obtained from ethanol extracts of the aerial parts and roots of the endemic Taraxacum mirabile Wagenitz. This plant is found in the Aksaray–Eskil region and has not been studied in phytochemical studies before. In this context, the chemical content of the aerial parts and root PE fractions was analyzed by GC–MS analysis in terms of terpenes and steroid substances. The composition of phenolic compounds in the aerial parts and root DCM and EA fractions was determined by HPLC–MS analysis. Apigenin, luteolin, and caffeic acid were isolated from the EA fraction of aerial parts. The total amounts of phenolic substances and the DPPH, ABTS, and FRAP antioxidant activities of PE, DCM, EA, and n-BuOH fractions were investigated, and it was found that the fractions had the ability to scavenge DPPH and ABTS•+ radicals, as well as to reduce Fe (III) to Fe (II); however, all of the fractions were significantly less effective (p < 0.05) than the reference antioxidant quercetin. Considering that antioxidants can also exert an anti-inflammatory effect, these fractions were evaluated for their ability to inhibit cyclooxygenases (COX-1 and COX-2), the key enzymes of arachidonic acid metabolism that lead to the production of important mediators of inflammation. It was observed that fractions had the ability to inhibit both enzymes, suggesting their possible beneficial effects against inflammation. However, no extract had greater inhibitory activity than the positive control, indomethacin. The antimicrobial activity was determined against different bacterial and fungal strains. It was observed that the aerial parts and root n-BuOH and EA fractions showed weak antibacterial effects. No antifungal activity has been detected against Candida sp. Full article
(This article belongs to the Special Issue Natural Plant Products in Drug Discovery)
Show Figures

Figure 1

18 pages, 3451 KiB  
Article
Comparative Analysis of Sewage Sludge Characteristics After Natural Deposition, Accelerated Aging, and Composting
by Elena Gogina, Nikolay Makisha and Igor Gulshin
Appl. Sci. 2024, 14(22), 10446; https://doi.org/10.3390/app142210446 - 13 Nov 2024
Cited by 1 | Viewed by 1734
Abstract
This study investigated treatment methods for urban wastewater sludge, specifically examining natural drying over five years, accelerated freeze–thaw–drying cycles, and composting with and without a zeolite additive. The findings reveal that composting effectively stabilized the sludge while retaining essential nutrients crucial for agriculture. [...] Read more.
This study investigated treatment methods for urban wastewater sludge, specifically examining natural drying over five years, accelerated freeze–thaw–drying cycles, and composting with and without a zeolite additive. The findings reveal that composting effectively stabilized the sludge while retaining essential nutrients crucial for agriculture. Notably, with the addition of 2% zeolite by total mass, approximately 40% of the total nitrogen was preserved. Adequate aeration during composting maintained acceptable levels of phosphorus compounds, with the phosphorus content expressed as P2O5 showing significant retention compared with the natural drying methods. Composting also demonstrated a substantial reduction in petroleum hydrocarbon concentrations, which decreased from 30 mg/kg to 3 mg/kg, thereby showcasing its potential for processing contaminated sludge. The inclusion of zeolite enhanced the nitrogen retention by an additional 10–20% compared with the composting without zeolite, aligning with previous studies on its effectiveness. While composting and thermal treatments, like accelerated freeze–thaw cycles, influenced the physical properties of the sludge—such as reducing the moisture content and altering the volatile substance concentrations—they did not significantly affect the heavy metal levels. Natural drying over five years resulted in reduced metal quantities, which possibly reflected changes in the wastewater characteristics over time. Given that the heavy metal concentrations remained largely unchanged, additional treatment methods are recommended when the initial sludge contains high levels of these contaminants to ensure the safe use of the final product as fertilizer. This study underscored the significant role of biochemical and microbiological processes during composting and natural drying in transforming sludge properties. Future research should focus on establishing upper contamination thresholds and exploring microbiological safety measures to enhance the viability of sludge reuse in agriculture, balancing nutrient preservation with environmental safety. Full article
Show Figures

Figure 1

32 pages, 3446 KiB  
Review
Recent Advances in Purple Sweet Potato Anthocyanins: Extraction, Isolation, Functional Properties and Applications in Biopolymer-Based Smart Packaging
by Dawei Yun, Yunlei Wu, Huimin Yong, Chao Tang, Dan Chen, Juan Kan and Jun Liu
Foods 2024, 13(21), 3485; https://doi.org/10.3390/foods13213485 - 30 Oct 2024
Cited by 4 | Viewed by 3025
Abstract
Petroleum-based plastic packaging materials have negative impacts on the environment and food safety. Natural biopolymer-based food packaging materials are the proper substitutes for plastic-based ones, which is because biopolymers are nontoxic, biodegradable and even edible. The incorporation of bioactive and functional substances into [...] Read more.
Petroleum-based plastic packaging materials have negative impacts on the environment and food safety. Natural biopolymer-based food packaging materials are the proper substitutes for plastic-based ones, which is because biopolymers are nontoxic, biodegradable and even edible. The incorporation of bioactive and functional substances into a biopolymer-based film matrix can produce novel smart packaging materials. Anthocyanins, one class of natural colorants with potent antioxidant activity and pH-response color-changing ability, are suitable for producing biopolymer-based smart packaging films. The purple sweet potato is a functional food rich in anthocyanins. In the past decade, numerous studies have reported the extraction of anthocyanins from purple sweet potato and the utilization of purple sweet potato anthocyanins (PSPAs) in biopolymer-based smart packaging film production. However, no specific review has summarized the recent advances on biopolymer-based smart packaging films containing PSPAs. Therefore, in this review, we aim to systematically summarize the progress on the extraction, isolation, characterization, purification and functional properties of PSPAs. Moreover, we thoroughly introduce the preparation methods, physical properties, antioxidant and antimicrobial activity, pH sensitivity, stability and applications of biopolymer-based smart packaging films containing PSPAs. Factors affecting the extraction and functional properties of PSPAs as well as the properties of biopolymer-based films containing PSPAs are discussed. Full article
(This article belongs to the Special Issue Natural Polymer-Based Films and Coatings for Food Packaging)
Show Figures

Figure 1

Back to TopTop