Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,170)

Search Parameters:
Keywords = pesticides residues

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1730 KiB  
Article
Prioritization and Sensitivity of Pesticide Risks from Root and Tuber Vegetables
by Milica Lučić and Antonije Onjia
J. Xenobiot. 2025, 15(4), 125; https://doi.org/10.3390/jox15040125 - 3 Aug 2025
Viewed by 378
Abstract
This study investigated pesticide residues in 580 vegetable samples collected from markets in Serbia, encompassing potatoes, carrots, celery, radishes, horseradish, ginger, onions, and leeks. In total, 33 distinct pesticides were detected using validated HPLC-MS/MS and GC-MS/MS analytical methods. Multiple residues were identified in [...] Read more.
This study investigated pesticide residues in 580 vegetable samples collected from markets in Serbia, encompassing potatoes, carrots, celery, radishes, horseradish, ginger, onions, and leeks. In total, 33 distinct pesticides were detected using validated HPLC-MS/MS and GC-MS/MS analytical methods. Multiple residues were identified in 19 samples, while 29 samples exceeded established maximum residue levels (MRLs). Acute and chronic dietary risks were assessed for both adults and children. Although individual hazard quotients (HQs) for adults and children remained below the threshold of concern (HQ < 1), the cumulative acute risk reached up to 63.1% of the Acute Reference Dose (ARfD) for children and 51.1% ARfD for adults, with ginger and celery posing the highest risks. Similarly, cumulative chronic risks remained below the safety threshold, with the Acceptable Daily Intake (ADI) percentages reaching a maximum of 5.9% ADI for adults and increased vulnerability of 11.0% ADI among children. Monte Carlo simulations were applied to account for variability and uncertainty in chronic exposure estimates. The hazard index (HI) results showed that adverse health effects for both population groups remained within acceptable safety limits (HI < 1), although higher susceptibility was observed in children. Sensitivity analysis identified body weight and vegetable consumption rates as the most influential factors affecting chronic risk variability. Full article
Show Figures

Figure 1

30 pages, 1511 KiB  
Review
Environmental and Health Impacts of Pesticides and Nanotechnology as an Alternative in Agriculture
by Jesús Martín Muñoz-Bautista, Ariadna Thalía Bernal-Mercado, Oliviert Martínez-Cruz, Armando Burgos-Hernández, Alonso Alexis López-Zavala, Saul Ruiz-Cruz, José de Jesús Ornelas-Paz, Jesús Borboa-Flores, José Rogelio Ramos-Enríquez and Carmen Lizette Del-Toro-Sánchez
Agronomy 2025, 15(8), 1878; https://doi.org/10.3390/agronomy15081878 - 3 Aug 2025
Viewed by 213
Abstract
The extensive use of conventional pesticides has been a fundamental strategy in modern agriculture for controlling pests and increasing crop productivity; however, their improper application poses significant risks to human health and environmental sustainability. This review compiles scientific evidence linking pesticide exposure to [...] Read more.
The extensive use of conventional pesticides has been a fundamental strategy in modern agriculture for controlling pests and increasing crop productivity; however, their improper application poses significant risks to human health and environmental sustainability. This review compiles scientific evidence linking pesticide exposure to oxidative stress and genotoxic damage, particularly affecting rural populations and commonly consumed foods, even at levels exceeding the maximum permissible limits in fruits, vegetables, and animal products. Additionally, excessive pesticide use has been shown to alter soil microbiota, negatively compromising long-term agricultural fertility. In response to these challenges, recent advances in nanotechnology offer promising alternatives. This review highlights the development of nanopesticides designed for controlled release, improved stability, and targeted delivery of active ingredients, thereby reducing environmental contamination and increasing efficacy. Moreover, emerging nanobiosensor technologies, such as e-nose and e-tongue systems, have shown potential for real-time monitoring of pesticide residues and soil health. Although pesticides are still necessary, it is crucial to implement stricter laws and promote sustainable solutions that ensure safe and responsible agricultural practices. The need for evidence-based public policy is emphasized to regulate pesticide use and protect both human health and agricultural resources. Full article
Show Figures

Figure 1

24 pages, 1117 KiB  
Article
Comparative Analysis of Pesticide Residues in Hive Products from Rapeseed (Brassica napus subsp. napus) and Sunflower (Helianthus annuus) Crops Under Varying Agricultural Practices in Romania During the 2020–2021 Beekeeping Seasons
by Dan Bodescu, Viorel Fătu, Agripina Şapcaliu, Elena Luiza Bădic, Roxana Zaharia, Dana Tăpăloagă, Alexandru-Dragoș Robu and Radu-Adrian Moraru
Agriculture 2025, 15(15), 1648; https://doi.org/10.3390/agriculture15151648 - 31 Jul 2025
Viewed by 211
Abstract
Over the past years, increasing attention has been drawn to the adverse effects of agricultural pesticide use on pollinators, with honeybees being especially vulnerable. The aim of this study was to evaluate the levels of residues detectable and/or quantifiable of neonicotinoid pesticides and [...] Read more.
Over the past years, increasing attention has been drawn to the adverse effects of agricultural pesticide use on pollinators, with honeybees being especially vulnerable. The aim of this study was to evaluate the levels of residues detectable and/or quantifiable of neonicotinoid pesticides and other pesticides in biological materials (bees, bee brood, etc.) and beehive products (honey, pollen, etc.) applied as seed dressings in rapeseed and sunflower plants in two growing seasons (2020–2021) in fields located in three agro-climatic regions in Romania. The study involved the comparative sampling of hive products (honey, pollen, adult bees, and brood) from experimental and control apiaries, followed by pesticide residue analysis in an accredited laboratory (Primoris) using validated chromatographic techniques (LC-MS/MS and GC-MS). Toxicological analyses of 96 samples, including bees, bee brood, honey, and pollen, confirmed the presence of residues in 46 samples, including 10 bee samples, 10 bee brood samples, 18 honey samples, and 8 pollen bread samples. The mean pesticide residue concentrations detected in hive products were 0.032 mg/kg in honey, 0.061 mg/kg in pollen, 0.167 mg/kg in bees, and 0.371 mg/kg in bee brood. The results highlight the exposure of honeybee colonies to multiple sources of pesticide residue contamination, under conditions where legal recommendations for the controlled application of agricultural treatments are not followed. The study provides relevant evidence for strengthening the risk assessment framework and underscores the need for adopting stricter monitoring and regulatory measures to ensure the protection of honeybee colony health. Full article
(This article belongs to the Section Agricultural Product Quality and Safety)
Show Figures

Figure 1

15 pages, 857 KiB  
Article
A Pilot Study on the Use of Pumpkin Waste as Cattle Feed
by Minori Nizuka, Hironobu Ishihara, Jun Nakahigashi, Daisaku Matsumoto and Eiji Kobayashi
Metabolites 2025, 15(8), 511; https://doi.org/10.3390/metabo15080511 - 31 Jul 2025
Viewed by 268
Abstract
Background/Objectives: Pumpkin seed pulp from processing plants offers high nutritional value due to its rich β-carotene content, making it a potential functional feed ingredient. This study investigated the effects of pumpkin seed pulp, which has already been administered as livestock feed, on [...] Read more.
Background/Objectives: Pumpkin seed pulp from processing plants offers high nutritional value due to its rich β-carotene content, making it a potential functional feed ingredient. This study investigated the effects of pumpkin seed pulp, which has already been administered as livestock feed, on key physiological parameters in cattle, including the concentration of β-carotene in the blood measured during routine health monitoring. Methods: Here, pumpkin waste cultivated in various fields was processed into cattle feed (pumpkin seed pulp flakes, PSPFs) by grinding and drying, and residual pesticide (heptachlor) and β-carotene contents were measured. A pilot feeding trial was conducted with 13 cattle (7 in the treatment group and 6 in the control group) and blood component analysis was performed, and findings were contextualized with a literature review. Results: Heptachlor concentrations varied depending on the cultivation site of raw pumpkins. Among the six lots produced using raw materials sourced from fields not contracted by the Air Water Group—a collective of companies in which Air Water Inc. holds more than 51% ownership—three exceeded the regulatory limits for animal feed established in Japan. PSPFs contained high levels of β-carotene, as expected. Blood tests before and after the feeding trial indicated absorption of β-carotene in the cattle. Maintaining high plasma β-carotene concentrations in cattle has been associated with improved immune function and reproductive performance. Conclusions: Our study demonstrates that PSPFs are a promising, environmentally friendly, and natural β-carotene-rich feed ingredient. Tracing the cultivation fields of raw pumpkins can help ensure feed safety. Full article
Show Figures

Graphical abstract

18 pages, 2433 KiB  
Article
Effect of Preharvest Aluminum-Coated Paper Bagging on Postharvest Quality, Storability, and Browning Behavior of ‘Afrata Volou’ Quince
by Triantafyllia Georgoudaki, Persefoni Maletsika and George D. Nanos
Horticulturae 2025, 11(8), 881; https://doi.org/10.3390/horticulturae11080881 - 30 Jul 2025
Viewed by 295
Abstract
As consumer preferences tend toward safer, chemical residue-free, and nutritionally rich fruits, preharvest bagging has gained attention as a sustainable method for improving fruit quality and protecting produce from environmental and biological stressors and pesticide residues. This study assessed the impact of preharvest [...] Read more.
As consumer preferences tend toward safer, chemical residue-free, and nutritionally rich fruits, preharvest bagging has gained attention as a sustainable method for improving fruit quality and protecting produce from environmental and biological stressors and pesticide residues. This study assessed the impact of preharvest bagging using paper bags with inner aluminum coating on the physicochemical traits, storability, and browning susceptibility after cutting or bruising of ‘Afrata Volou’ quince (Cydonia oblonga Mill.) fruit grown in central Greece. Fruits were either bagged or left unbagged approximately 60 days before harvest, and evaluations were conducted at harvest and after three months of cold storage, plus two days of shelf-life. Fruit bagging reduced the quince’s flesh temperature on the tree crown. Bagging had minor effects on fruit and nutritional quality, except for more yellow skin and higher titratable acidity (TA). Also, at harvest, bagging did not significantly affect fruit flesh browning after cutting or bruising. After three months of storage, unbagged and bagged quince fruit developed more yellow skin color, without significant alterations in most quality characteristics and nutritional value, but increased total tannin content (TTC). After three months of storage, the quince flesh color determined immediately after cutting or bruising was brighter and more yellowish compared to that at harvest, due to continuation of fruit ripening, but it darkened faster with time after cutting or skin removal. Therefore, fruit bagging appears to be a sustainable practice for improving the aesthetic and some chemical quality characteristics of quince, particularly after storage, without negative impacts on other characteristics such as texture and phenolic content. Full article
(This article belongs to the Special Issue Advances in Tree Crop Cultivation and Fruit Quality Assessment)
Show Figures

Figure 1

22 pages, 3506 KiB  
Review
Spectroscopic and Imaging Technologies Combined with Machine Learning for Intelligent Perception of Pesticide Residues in Fruits and Vegetables
by Haiyan He, Zhoutao Li, Qian Qin, Yue Yu, Yuanxin Guo, Sheng Cai and Zhanming Li
Foods 2025, 14(15), 2679; https://doi.org/10.3390/foods14152679 - 30 Jul 2025
Viewed by 336
Abstract
Pesticide residues in fruits and vegetables pose a serious threat to food safety. Traditional detection methods have defects such as complex operation, high cost, and long detection time. Therefore, it is of great significance to develop rapid, non-destructive, and efficient detection technologies and [...] Read more.
Pesticide residues in fruits and vegetables pose a serious threat to food safety. Traditional detection methods have defects such as complex operation, high cost, and long detection time. Therefore, it is of great significance to develop rapid, non-destructive, and efficient detection technologies and equipment. In recent years, the combination of spectroscopic techniques and imaging technologies with machine learning algorithms has developed rapidly, providing a new attempt to solve this problem. This review focuses on the research progress of the combination of spectroscopic techniques (near-infrared spectroscopy (NIRS), hyperspectral imaging technology (HSI), surface-enhanced Raman scattering (SERS), laser-induced breakdown spectroscopy (LIBS), and imaging techniques (visible light (VIS) imaging, NIRS imaging, HSI technology, terahertz imaging) with machine learning algorithms in the detection of pesticide residues in fruits and vegetables. It also explores the huge challenges faced by the application of spectroscopic and imaging technologies combined with machine learning algorithms in the intelligent perception of pesticide residues in fruits and vegetables: the performance of machine learning models requires further enhancement, the fusion of imaging and spectral data presents technical difficulties, and the commercialization of hardware devices remains underdeveloped. This review has proposed an innovative method that integrates spectral and image data, enhancing the accuracy of pesticide residue detection through the construction of interpretable machine learning algorithms, and providing support for the intelligent sensing and analysis of agricultural and food products. Full article
Show Figures

Figure 1

25 pages, 1903 KiB  
Article
Pesticide Residues in Fruits and Vegetables from Cape Verde: A Multi-Year Monitoring and Dietary Risk Assessment Study
by Andrea Acosta-Dacal, Ricardo Díaz-Díaz, Pablo Alonso-González, María del Mar Bernal-Suárez, Eva Parga-Dans, Lluis Serra-Majem, Adriana Ortiz-Andrellucchi, Manuel Zumbado, Edson Santos, Verena Furtado, Miriam Livramento, Dalila Silva and Octavio P. Luzardo
Foods 2025, 14(15), 2639; https://doi.org/10.3390/foods14152639 - 28 Jul 2025
Viewed by 318
Abstract
Food safety concerns related to pesticide residues in fruits and vegetables have increased globally, particularly in regions where monitoring programs are scarce or inconsistent. This study provides the first multi-year evaluation of pesticide contamination and associated dietary risks in Cape Verde, an African [...] Read more.
Food safety concerns related to pesticide residues in fruits and vegetables have increased globally, particularly in regions where monitoring programs are scarce or inconsistent. This study provides the first multi-year evaluation of pesticide contamination and associated dietary risks in Cape Verde, an African island nation increasingly reliant on imported produce. A total of 570 samples of fruits and vegetables—both locally produced and imported—were collected from major markets across the country between 2017 and 2020 and analyzed using validated multiresidue methods based on gas chromatography coupled to Ion Trap mass spectrometry (GC-IT-MS/MS), and both gas and liquid chromatography coupled to triple quadrupole tandem mass spectrometry (GC-QqQ-MS/MS and LC-QqQ-MS/MS). Residues were detected in 63.9% of fruits and 13.2% of vegetables, with imported fruits showing the highest contamination levels and diversity of compounds. Although only one sample exceeded the maximum residue limits (MRLs) set by the European Union, 80 different active substances were quantified—many of them not authorized under the current EU pesticide residue legislation. Dietary exposure was estimated using median residue levels and real consumption data from the national nutrition survey (ENCAVE 2019), enabling a refined risk assessment based on actual consumption patterns. The cumulative hazard index for the adult population was 0.416, below the toxicological threshold of concern. However, when adjusted for children aged 6–11 years—taking into account body weight and relative consumption—the cumulative index approached 1.0, suggesting a potential health risk for this vulnerable group. A limited number of compounds, including omethoate, oxamyl, imazalil, and dithiocarbamates, accounted for most of the risk. Many are banned or heavily restricted in the EU, highlighting regulatory asymmetries in global food trade. These findings underscore the urgent need for strengthened residue monitoring in Cape Verde, particularly for imported products, and support the adoption of risk-based food safety policies that consider population-specific vulnerabilities and mixture effects. The methodological framework used here can serve as a model for other low-resource countries seeking to integrate analytical data with dietary exposure in a One Health context. Full article
(This article belongs to the Special Issue Risk Assessment of Hazardous Pollutants in Foods)
Show Figures

Figure 1

20 pages, 7039 KiB  
Article
Development of a Rapid and Sensitive Visual Pesticide Detection Card Using Crosslinked and Surface-Decorated Electrospun Nanofiber Mat
by Yunshan Wei, Huange Zhou, Jingxuan Kang, Yongmei Wu and Kun Feng
Foods 2025, 14(15), 2628; https://doi.org/10.3390/foods14152628 - 26 Jul 2025
Viewed by 446
Abstract
Increased consumer awareness on food safety has spurred the development of detection techniques for pesticide residues. In this study, a rapid detection card on the basis of enzyme action was developed for the visual detection of pesticides, in which the thermally crosslinked and [...] Read more.
Increased consumer awareness on food safety has spurred the development of detection techniques for pesticide residues. In this study, a rapid detection card on the basis of enzyme action was developed for the visual detection of pesticides, in which the thermally crosslinked and surface-decorated polyvinyl alcohol/citric acid nanofiber mat (PCNM) was employed as a novel immobilization matrix for acetylcholinesterase (AChE). The PCNM, crosslinked at 130 °C for 50 min, exhibited appropriate microstructure and water stability, making it suitable for AChE immobilization. The activation of carboxyl groups by surface decoration resulted in a 2.5-fold increase in enzyme loading capacity. Through parameter optimization, the detection limits for phoxim and methomyl were determined to be 0.007 mg/L and 0.10 mg/L, respectively. The detection card exhibited superior sensitivity and a reduced detection time (11 min) when compared to a commercially available pesticide detection card. Furthermore, the detection results of pesticide residues in fruit and vegetable samples confirmed its feasibility and superiority over commercial alternatives, suggesting its great potential for practical application in the on-site detection of pesticide residues. Full article
(This article belongs to the Section Food Toxicology)
Show Figures

Figure 1

23 pages, 2437 KiB  
Article
From Farmworkers to Urban Residents: Mapping Multi-Class Pesticide Exposure Gradients in Morocco via Urinary Biomonitoring
by Zineb Ben Khadda, Andrei-Flavius Radu, Souleiman El Balkhi, Fagroud Mustapha, Yahya El Karmoudi, Gabriela Bungau, Pierre Marquet, Tarik Sqalli Houssaini and Sanae Achour
J. Xenobiot. 2025, 15(4), 120; https://doi.org/10.3390/jox15040120 - 23 Jul 2025
Viewed by 334
Abstract
Pesticide exposure gradients between occupational, para-occupational, and general populations remain poorly characterized in North African agricultural contexts. This study evaluates urinary pesticide levels among farmers, indirectly exposed individuals, and a control group in Morocco’s Fez-Meknes region. A cross-sectional survey measured pesticide concentrations using [...] Read more.
Pesticide exposure gradients between occupational, para-occupational, and general populations remain poorly characterized in North African agricultural contexts. This study evaluates urinary pesticide levels among farmers, indirectly exposed individuals, and a control group in Morocco’s Fez-Meknes region. A cross-sectional survey measured pesticide concentrations using LC-MS/MS in urine samples collected from 154 adults residing in both rural and urban areas. A questionnaire was used to gather information from participants regarding factors that may elevate the risk of pesticide exposure. The results revealed that farmers exhibited the highest concentrations of pesticides in their urine, including compounds classified as Ia/Ib by the World Health Organization. Indirectly exposed individuals showed moderate levels of contamination, with notable detections such as dichlofluanid (22.13 µg/L), while the control group had residual traces of neonicotinoids, notably imidacloprid (2.05 µg/L). Multivariate analyses revealed several sociodemographic factors significantly associated with increased pesticide exposure. The main risk factors identified included low education, residence in an agricultural area, and the consumption of untreated water (wells/rivers). Conversely, wearing personal protective equipment was associated with reduced urinary concentrations. This study highlights intense occupational exposure among farmers, secondary environmental contamination among residents living near treated areas, and the widespread dispersion of pesticide residues into urban areas. Full article
Show Figures

Figure 1

35 pages, 13218 KiB  
Review
Research Advances in Nanosensor for Pesticide Detection in Agricultural Products
by Li Feng, Xiaofei Yue, Junhao Li, Fangyao Zhao, Xiaoping Yu and Ke Yang
Nanomaterials 2025, 15(14), 1132; https://doi.org/10.3390/nano15141132 - 21 Jul 2025
Viewed by 448
Abstract
Over the past few decades, pesticide application has increased significantly, driven by population growth and associated urbanization. To date, pesticide use remains crucial for sustaining global food security by enhancing crop yields and preserving quality. However, extensive pesticide application raises serious environmental and [...] Read more.
Over the past few decades, pesticide application has increased significantly, driven by population growth and associated urbanization. To date, pesticide use remains crucial for sustaining global food security by enhancing crop yields and preserving quality. However, extensive pesticide application raises serious environmental and health concerns worldwide due to its chemical persistence and high toxicity to organisms, including humans. Therefore, there is an urgent need to develop rapid and reliable analytical procedures for the quantification of trace pesticide residues to support public health management. Traditional methods, such as chromatography-based detection techniques, cannot simultaneously achieve high sensitivity, selectivity, cost-effectiveness, and portability, which limits their practical application. Nanomaterial-based sensing techniques are increasingly being adopted due to their rapid, efficient, user-friendly, and on-site detection capabilities. In this review, we summarize recent advances and emerging trends in commonly used nanosensing technologies, such as optical and electrochemical sensing, with a focus on recognition elements including enzymes, antibodies, aptamers, and molecularly imprinted polymers (MIPs). We discuss the types of nanomaterials used, preparation methods, performance, characteristics, advantages and limitations, and applications of these nanosensors in detecting pesticide residues in agricultural products. Furthermore, we highlight current challenges, ongoing efforts, and future directions in the development of pesticide detection nanosensors. Full article
(This article belongs to the Special Issue Nanosensors for the Rapid Detection of Agricultural Products)
Show Figures

Figure 1

22 pages, 2108 KiB  
Article
Evaluation of Broad-Spectrum Pesticides Based on Unified Multi-Analytical Procedure in Fruits and Vegetables for Acute Health Risk Assessment
by Bożena Łozowicka, Piotr Kaczyński, Magdalena Jankowska, Ewa Rutkowska, Piotr Iwaniuk, Rafał Konecki, Weronika Rogowska, Aida Zhagyparova, Damira Absatarova, Stanisław Łuniewski, Marcin Pietkun and Izabela Hrynko
Foods 2025, 14(14), 2528; https://doi.org/10.3390/foods14142528 - 18 Jul 2025
Viewed by 415
Abstract
Fruits and vegetables are crucial components of a healthy diet, which are susceptible to pests. Therefore, the application of pesticides is a basic manner of crop chemical protection. The aim of this study was a comprehensive analysis of pesticide occurrence in 1114 samples [...] Read more.
Fruits and vegetables are crucial components of a healthy diet, which are susceptible to pests. Therefore, the application of pesticides is a basic manner of crop chemical protection. The aim of this study was a comprehensive analysis of pesticide occurrence in 1114 samples of fruits and vegetables. A unified multi-analytical protocol was used composed of primary–secondary amine/graphitized carbon black/magnesium sulfate to purify samples with diversified profile of interfering substances. Moreover, the obtained analytical data were used to evaluate the critical acute health risk in subpopulations of children and adults within European limits criteria. Out of 550 pesticides analyzed, 38 and 69 compounds were noted in 58.6% of fruits and 44.2% of vegetables, respectively. Acetamiprid (14.1% of all detections) and captan (11.3%) occurred the most frequently in fruits, while pendimethalin (10.6%) and azoxystrobin (8.6%) occurred the most frequently in vegetables. A total of 28% of vegetable and 43% of fruit samples were multiresidues with up to 13 pesticides in dill, reaching a final concentration of 0.562 mg kg−1. Maximum residue level (MRL) was exceeded in 7.9% of fruits and 7.3% of vegetables, up to 7900% MRL for chlorpyrifos in dill (0.79 mg kg−1). Notably, 8 out of 38 pesticides found in fruits (21%; 1.2% for carbendazim) and 24 out of 69 compounds in vegetables (35%, 7.4% for chlorpyrifos) were not approved in the EU. Concentrations of pesticides exceeding MRL were used to assess acute health risk for children and adults. Moreover, the incidence of acute health risk was proved for children consuming parsnip with linuron (156%). In other cases, it was below 100%, indicating that Polish food is safe. The work provides reliable and representative scientific data on the contamination of fruits and vegetables with pesticides. It highlights the importance of legislative changes to avoid the occurrence of not approved pesticides in the EU, increasing food and health safety. Full article
(This article belongs to the Section Food Toxicology)
Show Figures

Figure 1

43 pages, 1241 KiB  
Review
A Comprehensive Review of Agricultural Residue-Derived Bioadsorbents for Emerging Contaminant Removal
by Janaína Oliveira Gonçalves, André Rodríguez Leones, Bruna Silva de Farias, Mariele Dalmolin da Silva, Débora Pez Jaeschke, Sibele Santos Fernandes, Anelise Christ Ribeiro, Tito Roberto Santanna Cadaval and Luiz Antonio de Almeida Pinto
Water 2025, 17(14), 2141; https://doi.org/10.3390/w17142141 - 18 Jul 2025
Viewed by 519
Abstract
The increasing presence of ECs in aquatic environments has drawn significant attention to the need for innovative, accessible, and sustainable solutions in wastewater treatment. This review provides a comprehensive overview of the use of agricultural residues—often discarded and undervalued—as raw materials for the [...] Read more.
The increasing presence of ECs in aquatic environments has drawn significant attention to the need for innovative, accessible, and sustainable solutions in wastewater treatment. This review provides a comprehensive overview of the use of agricultural residues—often discarded and undervalued—as raw materials for the development of efficient bioadsorbents. Based on a wide range of recent studies, this work presents various types of materials, such as rice husks, sugarcane bagasse, and açaí seeds, that can be transformed through thermal and chemical treatments into advanced bioadsorbents capable of removing pharmaceuticals, pesticides, dyes, and in some cases, even addressing highly persistent pollutants such as PFASs. The main objectives of this review are to (1) assess agricultural-residue-derived bioadsorbents for the removal of ECs; (2) examine physical and chemical modification techniques that enhance adsorption performance; (3) evaluate their scalability and applicability in real-world treatment systems. The review also highlights key adsorption mechanisms—such as π–π interactions, hydrogen bonding, and ion exchange—alongside the influence of parameters like pH and ionic strength. The review also explores the kinetic, isothermal, and thermodynamic aspects of the adsorption processes, highlighting both the efficiency and reusability potential of these materials. This work uniquely integrates microwave-assisted pyrolysis, magnetic functionalization, and hybrid systems, offering a roadmap for sustainable water remediation. Finally, comparative performance analyses, applications using real wastewater, regeneration strategies, and the integration of these bioadsorbents into continuous treatment systems are presented, reinforcing their promising role in advancing sustainable water remediation technologies. Full article
Show Figures

Figure 1

19 pages, 2337 KiB  
Article
Gas–Particle Partitioning and Temporal Dynamics of Pesticides in Urban Atmosphere Adjacent to Agriculture
by Dani Khoury, Supansa Chimjarn, Olivier Delhomme and Maurice Millet
Atmosphere 2025, 16(7), 873; https://doi.org/10.3390/atmos16070873 - 17 Jul 2025
Viewed by 223
Abstract
Air pollution caused by pesticide residues is an emerging concern in urban environments influenced by nearby agricultural activities. In this study, weekly air samples were collected between May 2018 and March 2020 in Strasbourg, France, to quantify 104 pesticides in both gas and [...] Read more.
Air pollution caused by pesticide residues is an emerging concern in urban environments influenced by nearby agricultural activities. In this study, weekly air samples were collected between May 2018 and March 2020 in Strasbourg, France, to quantify 104 pesticides in both gas and particle phases using GC-MS/MS and LC-MS/MS. Herbicides and fungicides were the most frequently detected classes, appearing in 98% of both phases followed by insecticides. Key compounds such as metalaxyl-M, diphenylamine, and bifenthrin were present in over 90% of samples. Concentrations ranged from 2.5 to 63 ng m−3 weekly, with cumulative annual loads exceeding 1200 ng m−3. Gas–particle partitioning revealed that highly volatile compounds like azinphos-ethyl favored the gas phase, while less volatile ones like bifenthrin and tebuconazole partitioned >95% into particles. A third-degree polynomial regression (R2 of 0.74) revealed a nonlinear relationship between Kₚ and particle-phase concentrations, highlighting a threshold above Kₚ of 0.025 beyond which compounds accumulate disproportionately in the particulate phase. Seasonal variability showed that 36% of the annual pesticide load occurred in autumn, with total airborne levels peaking near 400 ng m−3, while the lowest load occurred during summer. Principal component analysis identified rainfall and total suspended particles as major drivers of pesticide phase distribution. The inhalation health risk assessed yielded hazard index values < 1 × 10−7 for all population groups, suggesting negligible non-cancer risk. This study highlights the prevalence, seasonal dynamics, and partition behavior of airborne pesticides in urban air and underscores the need for regulatory attention to this overlooked exposure route. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

37 pages, 397 KiB  
Article
Food Safety in the European Union: A Comparative Assessment Based on RASFF Notifications, Pesticide Residues, and Food Waste Indicators
by Radosław Wolniak and Wiesław Wes Grebski
Foods 2025, 14(14), 2501; https://doi.org/10.3390/foods14142501 - 17 Jul 2025
Viewed by 573
Abstract
Guaranteeing food safety in the European Union (EU) is a continuing issue affected by diverse national traditions, regulatory power, and consumer culture. Despite the presence of a harmonized regulatory context, there continues to be variability in performance among the 27 member states. This [...] Read more.
Guaranteeing food safety in the European Union (EU) is a continuing issue affected by diverse national traditions, regulatory power, and consumer culture. Despite the presence of a harmonized regulatory context, there continues to be variability in performance among the 27 member states. This study gives an extensive comparative evaluation of EU food safety based on three indicators: Rapid Alert System for Food and Feed (RASFF) alerts, pesticide maximum-residue-limit (MRL) violation, and per capita food loss. Fuzzy TOPSIS, K-means clustering, and scenario-based sensitivity tests are used to give an extensive appraisal of the performance of member states. Alarming differences are quoted as findings of significance. The highest number of RASFF notifications (212) and percentage of pesticide MRL non-compliance (1.5%) were reported in 2022 by Bulgaria, whereas the lowest values were reported by Estonia and Lithuania—15–20 RASFF notifications and less than 0.6% MRL violation rates. A statistically significant correlation (r = 0.72, p < 0.001) between pesticide MRL violation and food safety warnings was confirmed in favor of pesticide regulation as the optimal predictor of food safety warnings. On the other hand, food loss did not significantly affect safety measures but indicated very high variation (from 76 kg/capita per year in Croatia to 142 kg/capita per year in Greece). These findings suggest that while food loss remains an environmental problem, pesticide control is more central to the protection of food safety. Targeted policy is what the research necessitates: intervention and stricter enforcement in low-income countries, and diffusion of best practice from successful states. The composite approach adds to EU food safety policy discourse through the combination of performance indicators and targeted regulatory emphasis. Full article
(This article belongs to the Section Food Quality and Safety)
10 pages, 2690 KiB  
Article
Essential Oils as Active Ingredients in a Plant-Based Fungicide: An In Vitro Study Demonstrating Growth Inhibition of Gray Mold (Botrytis cinerea)
by Tyler M. Wilson, Alma Laney, Zabrina Ruggles and Richard E. Carlson
Agrochemicals 2025, 4(3), 11; https://doi.org/10.3390/agrochemicals4030011 - 15 Jul 2025
Viewed by 1321
Abstract
The conventional agricultural industry largely relies on pesticides to maintain healthy and viable crops. Application of fungicides, both pre- and post-harvest of crops, is the go-to method for avoiding and eliminating Botrytis cinerea, the fungal pathogen responsible for gray mold. However, conventional [...] Read more.
The conventional agricultural industry largely relies on pesticides to maintain healthy and viable crops. Application of fungicides, both pre- and post-harvest of crops, is the go-to method for avoiding and eliminating Botrytis cinerea, the fungal pathogen responsible for gray mold. However, conventional fungicides and their residues have purported negative environmental and health impacts. Natural products, such as essential oils, are viewed as a promising alternative to conventional fungicides. The current research is an in vitro study on the antifungal activity of a natural water-based fungicide (N.F.), which uses a blend of essential oils (ajowan, cassia, clove, eucalyptus, lemongrass, oregano) as the active ingredients against B. cinerea. Compared to conventional fungicides tested at the same concentration (50 μL/mL), those with active ingredients of myclobutanil or propiconazole; the N.F. demonstrated significant (F(3,16) = 54, p = <0.001) and complete fungal growth inhibition. While previous research has largely focused on the antifungal properties of single essential oils and/or isolated compounds from essential oils, this research focuses on the efficacy of using a blend of essential oils in a proprietary delivery system. This research is of importance to the fields of agronomy, ecology, and health sciences. Full article
Show Figures

Figure 1

Back to TopTop