Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = periplasmic proteome

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2802 KiB  
Communication
Preliminary Investigation Towards a Safety Tool for Swine Brucellosis Diagnosis by a Proteomic Approach Within the One-Health Framework
by Simona Sagona, Fabrizio Bertelloni, Barbara Turchi, Paola Roncada, Elena Tafi, Filippo Fratini, Antonio Felicioli and Domenico Cerri
Int. J. Mol. Sci. 2025, 26(4), 1517; https://doi.org/10.3390/ijms26041517 - 11 Feb 2025
Cited by 1 | Viewed by 833
Abstract
Brucellosis is a zoonosis that affects domestic and wild animals, causing reproductive disorders and significant economic losses in livestock. Brucella melitensis, B. abortus, and B. suis are the main agents of brucellosis in livestock and humans, thereby their control and eradication [...] Read more.
Brucellosis is a zoonosis that affects domestic and wild animals, causing reproductive disorders and significant economic losses in livestock. Brucella melitensis, B. abortus, and B. suis are the main agents of brucellosis in livestock and humans, thereby their control and eradication are crucial. Serological tests based on identification of antibodies against Brucella smooth lipopolysaccharides (sLPS) in the serum of infected animals are traditionally used. This approach shows two main limits: (i) tests can give false positives due to the similarity of Brucella sLPS with the LPS of other Gram-negative bacteria; (ii) antigen production represents a possible risk of zoonoses. In this work, a proteomic approach, starting from B. melitensis Brucellergene, was employed to identify possible Brucella antigenic proteins useful for a more specific and safe serological diagnosis. Four proteins binding to the infected swine serum were identified: (i) “probable sugar-binding periplasmic protein B. abortus str 2308A”; (ii) “peptide ABC transporter substrate-binding protein B. melitensis”; (iii) “GntR family transcriptional regulator B. melitensis”; (iv) “conserved hypothetical protein B. melitensis M28”. These proteins could be promising specific antigens for serological investigations in swine. In the near future, these antigenic proteins could be synthesized in vitro and used to produce a safer and more specific diagnostic kit. Full article
Show Figures

Figure 1

16 pages, 2791 KiB  
Article
Outer-Membrane Vesicles of Fusobacterium necrophorum: A Proteomic, Lipidomic, and Functional Characterization
by Prabha K. Bista, Deepti Pillai and Sanjeev K. Narayanan
Microorganisms 2023, 11(8), 2082; https://doi.org/10.3390/microorganisms11082082 - 14 Aug 2023
Cited by 10 | Viewed by 2858
Abstract
Outer-membrane vesicles (OMVs) are extruded nanostructures shed by Gram-negative bacteria, containing periplasmic contents, and often including virulence factors with immunogenic properties. To assess their potential for use in vaccine development, we purified OMVs from the Fusobacterium necrophorum subspecies necrophorum, an opportunistic necrotic [...] Read more.
Outer-membrane vesicles (OMVs) are extruded nanostructures shed by Gram-negative bacteria, containing periplasmic contents, and often including virulence factors with immunogenic properties. To assess their potential for use in vaccine development, we purified OMVs from the Fusobacterium necrophorum subspecies necrophorum, an opportunistic necrotic infection-causing pathogen, and characterized these structures using proteomics, lipid-profiling analyses, and cytotoxicity assays. A proteomic analysis of density-gradient-purified F. necrophorum OMVs identified 342 proteins, a large proportion of which were outer-membrane proteins (OMPs), followed by cytoplasmic proteins, based on a subcellular-localization-prediction analysis. The OMPs and toxins were among the proteins with the highest intensity identified, including the 43-kDa-OMP-, OmpA-, and OmpH-family proteins, the cell-surface protein, the FadA adhesin protein, the leukotoxin-LktA-family filamentous adhesin, the N-terminal domain of hemagglutinin, and the OMP transport protein and assembly factor. A Western blot analysis confirmed the presence of several OMPs and toxins in the F. necrophorum OMVs. The lipid-profiling analysis revealed phospholipids, sphingolipids, and acetylcarnitine as the main lipid contents of OMVs. The lactate-dehydrogenase-cytotoxicity assays showed that the OMVs had a high degree of cytotoxicity against a bovine B-lymphocyte cell line (BL-3 cells). Thus, our data suggest the need for further studies to evaluate the ability of OMVs to induce immune responses and assess their vaccine potential in vivo. Full article
(This article belongs to the Section Systems Microbiology)
Show Figures

Figure 1

15 pages, 1903 KiB  
Article
Comparative Analysis of Prokaryotic Extracellular Vesicle Proteins and Their Targeting Signals
by Ilias Stathatos and Vassiliki Lila Koumandou
Microorganisms 2023, 11(8), 1977; https://doi.org/10.3390/microorganisms11081977 - 31 Jul 2023
Cited by 10 | Viewed by 2366
Abstract
Prokaryotic extracellular vesicles (EVs) are vesicles that bud from the cell membrane and are secreted by bacteria and archaea. EV cargo in Gram-negative bacteria includes mostly periplasmic and outer membrane proteins. EVs are clinically important as their cargo can include toxins associated with [...] Read more.
Prokaryotic extracellular vesicles (EVs) are vesicles that bud from the cell membrane and are secreted by bacteria and archaea. EV cargo in Gram-negative bacteria includes mostly periplasmic and outer membrane proteins. EVs are clinically important as their cargo can include toxins associated with bacterial virulence and toxicity; additionally, they have been proposed as efficient vaccine agents and as the ancestors of the eukaryotic endomembrane system. However, the mechanistic details behind EV cargo selection and release are still poorly understood. In this study, we have performed bioinformatics analysis of published data on EV proteomes from 38 species of bacteria and 4 archaea. Focusing on clusters of orthologous genes (COGs) and using the EggNOG mapper function, we have identified cargo proteins that are commonly found in EVs across species. We discuss the putative role of these prominent proteins in EV biogenesis and function. We also analyzed the published EV proteomes for conserved signal sequences and discuss the potential role of these signal sequences for EV cargo selection. Full article
(This article belongs to the Special Issue Extracellular Vesicles in Pathogens)
Show Figures

Figure 1

14 pages, 642 KiB  
Article
Computational Guided Drug Targets Identification against Extended-Spectrum Beta-Lactamase-Producing Multi-Drug Resistant Uropathogenic Escherichia coli
by Harpreet Kaur, Vinay Modgil, Naveen Chaudhary, Balvinder Mohan and Neelam Taneja
Biomedicines 2023, 11(7), 2028; https://doi.org/10.3390/biomedicines11072028 - 19 Jul 2023
Cited by 5 | Viewed by 2841
Abstract
Urinary tract infections (UTIs) are one of the most frequent bacterial infections in the world, both in the hospital and community settings. Uropathogenic Escherichia coli (UPEC) are the predominant etiological agents causing UTIs. Extended-spectrum beta-lactamase (ESBL) production is a prominent mechanism of resistance [...] Read more.
Urinary tract infections (UTIs) are one of the most frequent bacterial infections in the world, both in the hospital and community settings. Uropathogenic Escherichia coli (UPEC) are the predominant etiological agents causing UTIs. Extended-spectrum beta-lactamase (ESBL) production is a prominent mechanism of resistance that hinders the antimicrobial treatment of UTIs caused by UPEC and poses a substantial danger to the arsenal of antibiotics now in use. As bacteria have several methods to counteract the effects of antibiotics, identifying new potential drug targets may help in the design of new antimicrobial agents, and in the control of the rising trend of antimicrobial resistance (AMR). The public availability of the entire genome sequences of humans and many disease-causing organisms has accelerated the hunt for viable therapeutic targets. Using a unique, hierarchical, in silico technique using computational tools, we discovered and described potential therapeutic drug targets against the ESBL-producing UPEC strain NA114. Three different sets of proteins (chokepoint, virulence, and resistance genes) were explored in phase 1. In phase 2, proteins shortlisted from phase 1 were analyzed for their essentiality, non-homology to the human genome, and gut flora. In phase 3, the further shortlisted putative drug targets were qualitatively characterized, including their subcellular location, broad-spectrum potential, and druggability evaluations. We found seven distinct targets for the pathogen that showed no similarity to the human proteome. Thus, possibilities for cross-reactivity between a target-specific antibacterial and human proteins were minimized. The subcellular locations of two targets, ECNA114_0085 and ECNA114_1060, were predicted as cytoplasmic and periplasmic, respectively. These proteins play an important role in bacterial peptidoglycan biosynthesis and inositol phosphate metabolism, and can be used in the design of drugs against these bacteria. Inhibition of these proteins will be helpful to combat infections caused by MDR UPEC. Full article
Show Figures

Graphical abstract

13 pages, 2451 KiB  
Article
Fluorescence Microscopy Study of the Intracellular Sulfur Globule Protein SgpD in the Purple Sulfur Bacterium Allochromatium vinosum
by Carolin Kümpel, Fabian Grein and Christiane Dahl
Microorganisms 2023, 11(7), 1792; https://doi.org/10.3390/microorganisms11071792 - 12 Jul 2023
Cited by 3 | Viewed by 2346
Abstract
When oxidizing reduced sulfur compounds, the phototrophic sulfur bacterium Allochromatium vinosum forms spectacular sulfur globules as obligatory intracellular–but extracytoplasmic–intermediates. The globule envelope consists of three extremely hydrophobic proteins: SgpA and SgpB, which are very similar and can functionally replace each other, and SgpC [...] Read more.
When oxidizing reduced sulfur compounds, the phototrophic sulfur bacterium Allochromatium vinosum forms spectacular sulfur globules as obligatory intracellular–but extracytoplasmic–intermediates. The globule envelope consists of three extremely hydrophobic proteins: SgpA and SgpB, which are very similar and can functionally replace each other, and SgpC which is involved in the expansion of the sulfur globules. The presence of a fourth protein, SgpD, was suggested by comparative transcriptomics and proteomics of purified sulfur globules. Here, we investigated the in vivo function of SgpD by coupling its carboxy-terminus to mCherry. This fluorescent protein requires oxygen for chromophore maturation, but we were able to use it in anaerobically growing A. vinosum provided the cells were exposed to oxygen for one hour prior to imaging. While mCherry lacking a signal peptide resulted in low fluorescence evenly distributed throughout the cell, fusion with SgpD carrying its original Sec-dependent signal peptide targeted mCherry to the periplasm and co-localized it exactly with the highly light-refractive sulfur deposits seen in sulfide-fed A. vinosum cells. Insertional inactivation of the sgpD gene showed that the protein is not essential for the formation and degradation of sulfur globules. Full article
(This article belongs to the Special Issue Phototrophic Bacteria 2.0)
Show Figures

Figure 1

18 pages, 2418 KiB  
Article
GlnH, a Novel Antigen That Offers Partial Protection against Verocytotoxigenic Escherichia coli Infection
by Conor Quinn, Julen Tomás-Cortázar, Oritsejolomi Ofioritse, Joanne Cosgrave, Claire Purcell, Catherine McAloon, Susanna Frost and Siobhán McClean
Vaccines 2023, 11(1), 175; https://doi.org/10.3390/vaccines11010175 - 13 Jan 2023
Cited by 5 | Viewed by 3223 | Correction
Abstract
Verotoxin-producing Escherichia coli (VTEC) causes zoonotic infections, with potentially devastating complications, and children under 5 years old are particularly susceptible. Antibiotic treatment is contraindicated, and due to the high proportion of infected children that suffer from severe and life-changing complications, there is an [...] Read more.
Verotoxin-producing Escherichia coli (VTEC) causes zoonotic infections, with potentially devastating complications, and children under 5 years old are particularly susceptible. Antibiotic treatment is contraindicated, and due to the high proportion of infected children that suffer from severe and life-changing complications, there is an unmet need for a vaccine to prevent VTEC infections. Bacterial adhesins represent promising candidates for the successful development of a vaccine against VTEC. Using a proteomic approach to identify bacterial proteins interacting with human gastrointestinal epithelial Caco-2 and HT-29 cells, we identified eleven proteins by mass spectrometry. These included a glutamine-binding periplasmic protein, GlnH, a member of the ABC transporter family. The glnH gene was identified in 13 of the 15 bovine and all 5 human patient samples tested, suggesting that it is prevalent. We confirmed that GlnH is involved in the host cell attachment of an O157:H7 prototype E. coli strain to gastrointestinal cells in vitro. Recombinant GlnH was expressed and purified prior to the immunisation of mice. When alum was used as an adjuvant, GlnH was highly immunogenic, stimulating strong serological responses in immunised mice, and it resulted in a modest reduction in faecal shedding but did not reduce colonisation. GlnH immunisation with a T-cell-inducing adjuvant (SAS) also showed comparable antibody responses and an IgG1/IgG2a ratio suggestive of a mixed Th1/Th2 response but was partially protective, with a 1.25-log reduction in colonisation of the colon and caecum at 7 days relative to the adjuvant only (p = 0.0280). It is clear that future VTEC vaccine developments should consider the contribution of adjuvants in addition to antigens. Moreover, it is likely that a combined cellular and humoral response may prove more beneficial in providing protective interventions against VTEC. Full article
(This article belongs to the Special Issue Immunological Aspect Regarding Vaccine Development and Uses)
Show Figures

Figure 1

20 pages, 5731 KiB  
Article
Computational Design of a Chimeric Vaccine against Plesiomonas shigelloides Using Pan-Genome and Reverse Vaccinology
by Mahnoor Mushtaq, Saifullah Khan, Muhammad Hassan, Alhanouf I. Al-Harbi, Alaa R. Hameed, Khadeeja Khan, Saba Ismail, Muhammad Irfan and Sajjad Ahmad
Vaccines 2022, 10(11), 1886; https://doi.org/10.3390/vaccines10111886 - 8 Nov 2022
Cited by 12 | Viewed by 2620
Abstract
The swift emergence of antibiotic resistance (AR) in bacterial pathogens to make themselves adaptable to changing environments has become an alarming health issue. To prevent AR infection, many ways can be accomplished such as by decreasing the misuse of antibiotics in human and [...] Read more.
The swift emergence of antibiotic resistance (AR) in bacterial pathogens to make themselves adaptable to changing environments has become an alarming health issue. To prevent AR infection, many ways can be accomplished such as by decreasing the misuse of antibiotics in human and animal medicine. Among these AR bacterial species, Plesiomonas shigelloides is one of the etiological agents of intestinal infection in humans. It is a gram-negative rod-shaped bacterium that is highly resistant to several classes of antibiotics, and no licensed vaccine against the aforementioned pathogen is available. Hence, substantial efforts are required to screen protective antigens from the pathogen whole genome that can be subjected easily to experimental evaluations. Here, we employed a reverse vaccinology (RV) approach to design a multi-antigenic epitopes based vaccine against P. shigelloides. The complete genomes of P. shigelloides were retrieved from the National Center for Biotechnological Information (NCBI) that on average consist of 5226 proteins. The complete proteomes were subjected to different subtractive proteomics filters, and in the results of that analysis, out of total proteins, 2399 were revealed as non-redundant and 2827 as redundant proteins. The non-redundant proteins were further checked for subcellular localization analysis, in which three were localized in the extracellular matrix, eight were outer membrane, and 13 were found in the periplasmic membrane. All surface localized proteins were found to be virulent. Out of a total of 24 virulent proteins, three proteins (flagellar hook protein (FlgE), hypothetical protein, and TonB-dependent hemoglobin/transferrin/lactoferrin family receptor protein) were considered as potential vaccine targets and subjected to epitopes prediction. The predicted epitopes were further examined for antigenicity, toxicity, and solubility. A total of 10 epitopes were selected (GFKESRAEF, VQVPTEAGQ, KINENGVVV, ENKALSQET, QGYASANDE, RLNPTDSRW, TLDYRLNPT, RVTKKQSDK, GEREGKNRP, RDKKTNQPL). The selected epitopes were linked with each other via specific GPGPG linkers in order to design a multi-epitopes vaccine construct, and linked with cholera toxin B subunit adjuvant to make the designed vaccine construct more efficient in terms of antigenicity. The 3D structure of the vaccine construct was modeled ab initio as no appropriate template was available. Furthermore, molecular docking was carried out to check the interaction affinity of the designed vaccine with major histocompatibility complex (MHC-)I (PDB ID: 1L1Y), MHC-II (1KG0), and toll-like receptor 4 ((TLR-4) (PDB: 4G8A). Molecular dynamic simulation was applied to evaluate the dynamic behavior of vaccine-receptor complexes. Lastly, the binding free energies of the vaccine with receptors were estimated by using MMPB/GBSA methods. All of the aforementioned analyses concluded that the designed vaccine molecule as a good candidate to be used in experimental studies to disclose its immune protective efficacy in animal models. Full article
(This article belongs to the Section Vaccine Design, Development, and Delivery)
Show Figures

Figure 1

20 pages, 3703 KiB  
Article
Computational Based Designing of a Multi-Epitopes Vaccine against Burkholderia mallei
by Muhammad Irfan, Saifullah Khan, Alaa R. Hameed, Alhanouf I. Al-Harbi, Syed Ainul Abideen, Saba Ismail, Asad Ullah, Sumra Wajid Abbasi and Sajjad Ahmad
Vaccines 2022, 10(10), 1580; https://doi.org/10.3390/vaccines10101580 - 21 Sep 2022
Cited by 12 | Viewed by 2972
Abstract
The emergence of antibiotic resistance in bacterial species is a major threat to public health and has resulted in high mortality as well as high health care costs. Burkholderia mallei is one of the etiological agents of health care-associated infections. As no licensed [...] Read more.
The emergence of antibiotic resistance in bacterial species is a major threat to public health and has resulted in high mortality as well as high health care costs. Burkholderia mallei is one of the etiological agents of health care-associated infections. As no licensed vaccine is available against the pathogen herein, using reverse vaccinology, bioinformatics, and immunoinformatics approaches, a multi-epitope-based vaccine against B. mallei was designed. In completely sequenced proteomes of B. mallei, 18,405 core, 3671 non-redundant, and 14,734 redundant proteins were predicted. Among the 3671 non-redundant proteins, 3 proteins were predicted in the extracellular matrix, 11 were predicted as outer membrane proteins, and 11 proteins were predicted in the periplasmic membrane. Only two proteins, type VI secretion system tube protein (Hcp) and type IV pilus secretin proteins, were selected for epitope prediction. Six epitopes, EAMPERMPAA, RSSPPAAGA, DNRPISINL, RQRFDAHAR, AERERQRFDA, and HARAAQLEPL, were shortlisted for multi-epitopes vaccine design. The predicted epitopes were linked to each other via a specific GPGPG linker and the epitopes peptide was then linked to an adjuvant molecule through an EAAAK linker to make the designed vaccine more immunologically potent. The designed vaccine was also found to have favorable physicochemical properties with a low molecular weight and fewer transmembrane helices. Molecular docking studies revealed vaccine construct stable binding with MHC-I, MHC-II, and TLR-4 with energy scores of −944.1 kcal/mol, −975.5 kcal/mol, and −1067.3 kcal/mol, respectively. Molecular dynamic simulation assay noticed stable dynamics of the docked vaccine-receptors complexes and no drastic changes were observed. Binding free energies estimation revealed a net value of −283.74 kcal/mol for the vaccine-MHC-I complex, −296.88 kcal/mol for the vaccine-MHC-II complex, and −586.38 kcal/mol for the vaccine-TLR-4 complex. These findings validate that the designed vaccine construct showed promising ability in terms of binding to immune receptors and may be capable of eliciting strong immune responses once administered to the host. Further evidence from experimentations in mice models is required to validate real immune protection of the designed vaccine construct against B. mallei. Full article
(This article belongs to the Special Issue Vaccines Targeting Bacterial Infections)
Show Figures

Figure 1

21 pages, 3058 KiB  
Article
Proteome and Physiological Characterization of Halotolerant Nodule Endophytes: The Case of Rahnella aquatilis and Serratia plymuthica
by Giorgia Novello, Elisa Gamalero, Nadia Massa, Patrizia Cesaro, Guido Lingua, Valeria Todeschini, Alice Caramaschi, Francesco Favero, Davide Corà, Marcello Manfredi, Emilio Marengo, Micaela Pelagi, Loredana Pangaro, Giuseppina Caffiero, Fulvia Milano and Elisa Bona
Microorganisms 2022, 10(5), 890; https://doi.org/10.3390/microorganisms10050890 - 24 Apr 2022
Cited by 8 | Viewed by 2675
Abstract
Bacterial endophytes were isolated from nodules of pea and fava bean. The strains were identified and characterized for plant beneficial activities (phosphate solubilization, synthesis of indole acetic acid and siderophores) and salt tolerance. Based on these data, four strains of Rahnella aquatilis and [...] Read more.
Bacterial endophytes were isolated from nodules of pea and fava bean. The strains were identified and characterized for plant beneficial activities (phosphate solubilization, synthesis of indole acetic acid and siderophores) and salt tolerance. Based on these data, four strains of Rahnella aquatilis and three strains of Serratia plymuthica were selected. To shed light on the mechanisms underlying salt tolerance, the proteome of the two most performant strains (Ra4 and Sp2) grown in the presence or not of salt was characterized. The number of proteins expressed by the endophytes was higher in the presence of salt. The modulated proteome consisted of 302 (100 up-regulated, 202 down-regulated) and 323 (206 up-regulated, 117 down-regulated) proteins in Ra4 and Sp2, respectively. Overall, proteins involved in abiotic stress responses were up-regulated, while those involved in metabolism and flagellum structure were down-regulated. The main up-regulated proteins in Sp2 were thiol: disulfide interchange protein DsbA, required for the sulfur binding formation in periplasmic proteins, while in Ra4 corresponded to the soluble fraction of ABC transporters, having a role in compatible solute uptake. Our results demonstrated a conserved response to salt stress in the two taxonomically related species. Full article
(This article belongs to the Special Issue Feature Collection in Environmental Microbiology Section 2021-2022)
Show Figures

Figure 1

19 pages, 4696 KiB  
Article
Designing of a Novel Multi-Antigenic Epitope-Based Vaccine against E. hormaechei: An Intergraded Reverse Vaccinology and Immunoinformatics Approach
by Thamer H. Albekairi, Abdulrahman Alshammari, Metab Alharbi, Amal F. Alshammary, Muhammad Tahir ul Qamar, Asad Ullah, Muhammad Irfan and Sajjad Ahmad
Vaccines 2022, 10(5), 665; https://doi.org/10.3390/vaccines10050665 - 22 Apr 2022
Cited by 31 | Viewed by 4018
Abstract
Enterobacter hormaechei is involved in multiple hospital-associated infections and is resistant to beta-lactam and tetracycline antibiotics. Due to emerging antibiotics resistance in E. hormaechei and lack of licensed vaccine availability, efforts are required to overcome the antibiotics crisis. In the current research study, [...] Read more.
Enterobacter hormaechei is involved in multiple hospital-associated infections and is resistant to beta-lactam and tetracycline antibiotics. Due to emerging antibiotics resistance in E. hormaechei and lack of licensed vaccine availability, efforts are required to overcome the antibiotics crisis. In the current research study, a multi-epitope-based vaccine against E. hormaechei was designed using reverse vaccinology and immunoinformatic approaches. A total number of 50 strains were analyzed from which the core proteome was extracted. One extracellular (curlin minor subunit CsgB) and two periplasmic membrane proteins (flagellar basal-body rod protein (FlgF) and flagellar basal body P-ring protein (FlgI) were prioritized for B and T-cell epitope prediction. Only three filtered TPGKMDYTS, GADMTPGKM and RLSAESQAT epitopes were used when designing the vaccine construct. The epitopes were linked via GPGPG linkers and EAAAK linker-linked cholera toxin B-subunit adjuvant was used to enhance the immune stimulation efficacy of the vaccine. Docking studies of the vaccine construct with immune cell receptors revealed better interactions, vital for generating proper immune reactions. Docked complexes of vaccine with MHC-I, MHC-II and Tool-like receptor 4 (TLR-4) reported the lowest binding energy of −594.1 kcal/mol, −706.7 kcal/mol, −787.2 kcal/mol, respectively, and were further subjected to molecular dynamic simulations. Net binding free energy calculations also confirmed that the designed vaccine has a strong binding affinity for immune receptors and thus could be a good vaccine candidate for future experimental investigations. Full article
(This article belongs to the Special Issue Computer and Technology Supported Development of Vaccines)
Show Figures

Figure 1

20 pages, 4584 KiB  
Article
Brucella abortus Encodes an Active Rhomboid Protease: Proteome Response after Rhomboid Gene Deletion
by María Inés Marchesini, Ansgar Poetsch, Leticia Soledad Guidolín and Diego J. Comerci
Microorganisms 2022, 10(1), 114; https://doi.org/10.3390/microorganisms10010114 - 6 Jan 2022
Cited by 4 | Viewed by 2800
Abstract
Rhomboids are intramembrane serine proteases highly conserved in the three domains of life. Their key roles in eukaryotes are well understood but their contribution to bacterial physiology is still poorly characterized. Here we demonstrate that Brucella abortus, the etiological agent of the [...] Read more.
Rhomboids are intramembrane serine proteases highly conserved in the three domains of life. Their key roles in eukaryotes are well understood but their contribution to bacterial physiology is still poorly characterized. Here we demonstrate that Brucella abortus, the etiological agent of the zoonosis called brucellosis, encodes an active rhomboid protease capable of cleaving model heterologous substrates like Drosophila melanogaster Gurken and Providencia stuartii TatA. To address the impact of rhomboid deletion on B. abortus physiology, the proteomes of mutant and parental strains were compared by shotgun proteomics. About 50% of the B. abortus predicted proteome was identified by quantitative proteomics under two experimental conditions and 108 differentially represented proteins were detected. Membrane associated proteins that showed variations in concentration in the mutant were considered as potential rhomboid targets. This class included nitric oxide reductase subunit C NorC (Q2YJT6) and periplasmic protein LptC involved in LPS transport to the outer membrane (Q2YP16). Differences in secretory proteins were also addressed. Differentially represented proteins included a putative lytic murein transglycosylase (Q2YIT4), nitrous-oxide reductase NosZ (Q2YJW2) and high oxygen affinity Cbb3-type cytochrome c oxidase subunit (Q2YM85). Deletion of rhomboid had no obvious effect in B. abortus virulence. However, rhomboid overexpression had a negative impact on growth under static conditions, suggesting an effect on denitrification enzymes and/or high oxygen affinity cytochrome c oxidase required for growth in low oxygen tension conditions. Full article
(This article belongs to the Special Issue Emerging Themes in Brucella and Brucellosis)
Show Figures

Figure 1

37 pages, 8023 KiB  
Article
Interplay between DsbA1, DsbA2 and C8J_1298 Periplasmic Oxidoreductases of Campylobacter jejuni and Their Impact on Bacterial Physiology and Pathogenesis
by Anna M. Banaś, Katarzyna M. Bocian-Ostrzycka, Stanisław Dunin-Horkawicz, Jan Ludwiczak, Piotr Wilk, Marta Orlikowska, Agnieszka Wyszyńska, Maria Dąbrowska, Maciej Plichta, Marta Spodzieja, Marta A. Polańska, Agata Malinowska and Elżbieta Katarzyna Jagusztyn-Krynicka
Int. J. Mol. Sci. 2021, 22(24), 13451; https://doi.org/10.3390/ijms222413451 - 15 Dec 2021
Cited by 6 | Viewed by 4383
Abstract
The bacterial proteins of the Dsb family catalyze the formation of disulfide bridges between cysteine residues that stabilize protein structures and ensure their proper functioning. Here, we report the detailed analysis of the Dsb pathway of Campylobacter jejuni. The oxidizing Dsb system [...] Read more.
The bacterial proteins of the Dsb family catalyze the formation of disulfide bridges between cysteine residues that stabilize protein structures and ensure their proper functioning. Here, we report the detailed analysis of the Dsb pathway of Campylobacter jejuni. The oxidizing Dsb system of this pathogen is unique because it consists of two monomeric DsbAs (DsbA1 and DsbA2) and one dimeric bifunctional protein (C8J_1298). Previously, we showed that DsbA1 and C8J_1298 are redundant. Here, we unraveled the interaction between the two monomeric DsbAs by in vitro and in vivo experiments and by solving their structures and found that both monomeric DsbAs are dispensable proteins. Their structures confirmed that they are homologs of EcDsbL. The slight differences seen in the surface charge of the proteins do not affect the interaction with their redox partner. Comparative proteomics showed that several respiratory proteins, as well as periplasmic transport proteins, are targets of the Dsb system. Some of these, both donors and electron acceptors, are essential elements of the C. jejuni respiratory process under oxygen-limiting conditions in the host intestine. The data presented provide detailed information on the function of the C. jejuni Dsb system, identifying it as a potential target for novel antibacterial molecules. Full article
(This article belongs to the Section Macromolecules)
Show Figures

Figure 1

18 pages, 2974 KiB  
Article
Membrane Vesicles of Pectobacterium as an Effective Protein Secretion System
by Joanna Jonca, Malgorzata Waleron, Paulina Czaplewska, Aleksandra Bogucka, Aleksandra Steć, Szymon Dziomba, Jacek Jasiecki, Michał Rychłowski and Krzysztof Waleron
Int. J. Mol. Sci. 2021, 22(22), 12574; https://doi.org/10.3390/ijms222212574 - 22 Nov 2021
Cited by 18 | Viewed by 3577
Abstract
Bacteria of genus Pectobacterium are Gram-negative rods of the family Pectobacteriaceae. They are the causative agent of soft rot diseases of crops and ornamental plants. However, their virulence mechanisms are not yet fully elucidated. Membrane vesicles (MVs) are universally released by bacteria [...] Read more.
Bacteria of genus Pectobacterium are Gram-negative rods of the family Pectobacteriaceae. They are the causative agent of soft rot diseases of crops and ornamental plants. However, their virulence mechanisms are not yet fully elucidated. Membrane vesicles (MVs) are universally released by bacteria and are believed to play an important role in the pathogenicity and survival of bacteria in the environment. Our study investigates the role of MVs in the virulence of Pectobacterium. The results indicate that the morphology and MVs production depend on growth medium composition. In polygalacturonic acid (PGA) supplemented media, Pectobacterium produces large MVs (100–300 nm) and small vesicles below 100 nm. Proteomic analyses revealed the presence of pectate degrading enzymes in the MVs. The pectate plate test and enzymatic assay proved that those enzymes are active and able to degrade pectates. What is more, the pathogenicity test indicated that the MVs derived from Pectobacterium were able to induce maceration of Zantedeschia sp. leaves. We also show that the MVs of β-lactamase producing strains were able to suppress ampicillin activity and permit the growth of susceptible bacteria. Those findings indicate that the MVs of Pectobacterium play an important role in host-pathogen interactions and niche competition with other bacteria. Our research also sheds some light on the mechanism of MVs production. We demonstrate that the MVs production in Pectobacterium strains, which overexpress a green fluorescence protein (GFP), is higher than in wild-type strains. Moreover, proteomic analysis revealed that the GFP was present in the MVs. Therefore, it is possible that protein sequestration into MVs might not be strictly limited to periplasmic proteins. Our research highlights the importance of MVs production as a mechanism of cargo delivery in Pectobacterium and an effective secretion system. Full article
(This article belongs to the Special Issue Extracellular Vesicles in Microbes, Pathogens and Infectious Diseases)
Show Figures

Figure 1

13 pages, 1060 KiB  
Article
Substitutions in SurA and BamA Lead to Reduced Susceptibility to Broad Range Antibiotics in Gonococci
by Ivan Bodoev, Maja Malakhova, Julia Bespyatykh, Dmitry Bespiatykh, Georgij Arapidi, Olga Pobeguts, Victor Zgoda, Egor Shitikov and Elena Ilina
Genes 2021, 12(9), 1312; https://doi.org/10.3390/genes12091312 - 25 Aug 2021
Viewed by 2715
Abstract
There is growing concern about the emergence and spread of multidrug-resistant Neisseria gonorrhoeae. To effectively control antibiotic-resistant bacterial pathogens, it is necessary to develop new antimicrobials and to understand the resistance mechanisms to existing antibiotics. In this study, we discovered the unexpected onset [...] Read more.
There is growing concern about the emergence and spread of multidrug-resistant Neisseria gonorrhoeae. To effectively control antibiotic-resistant bacterial pathogens, it is necessary to develop new antimicrobials and to understand the resistance mechanisms to existing antibiotics. In this study, we discovered the unexpected onset of drug resistance in N. gonorrhoeae caused by amino acid substitutions in the periplasmic chaperone SurA and the β-barrel assembly machinery component BamA. Here, we investigated the i19.05 clinical isolate with mutations in corresponding genes along with reduced susceptibility to penicillin, tetracycline, and azithromycin. The mutant strain NG05 (surAmut bamAmut, and penAmut) was obtained using the pan-susceptible n01.08 clinical isolate as a recipient in the transformation procedure. Comparative proteomic analysis of NG05 and n01.08 strains revealed significantly increased levels of other chaperones, Skp and FkpA, and some transport proteins. Efflux pump inhibition experiments demonstrated that the reduction in sensitivity was achieved due to the activity of efflux pumps. We hypothesize that the described mutations in the surA and bamA genes cause the qualitative and quantitative changes of periplasmic chaperones, which in turn alters the function of synthesized cell envelope proteins. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

19 pages, 3243 KiB  
Article
Systematical Screening of Intracellular Protein Targets of Polyphemusin-I Using Escherichia coli Proteome Microarrays
by Pramod Shah and Chien-Sheng Chen
Int. J. Mol. Sci. 2021, 22(17), 9158; https://doi.org/10.3390/ijms22179158 - 25 Aug 2021
Cited by 7 | Viewed by 2509
Abstract
With their wide repertoire of mechanisms, antimicrobial peptides (AMPs) are promising alternatives to fight against varied pathogenic microorganisms (bacteria, fungi, viruses, parasites, etc.). AMPs, novel components of the innate immune defense system, are secreted by all organisms. The aquatic environment represents a huge [...] Read more.
With their wide repertoire of mechanisms, antimicrobial peptides (AMPs) are promising alternatives to fight against varied pathogenic microorganisms (bacteria, fungi, viruses, parasites, etc.). AMPs, novel components of the innate immune defense system, are secreted by all organisms. The aquatic environment represents a huge population and an enormous source of varied AMPs. Polyphemusin-I, a marine AMP isolated from hemocytes of an American horseshoe crab, possesses high antimicrobial activities. Studies on polyphemusin-I have verified the intracellular mechanisms of action, however, its intracellular targets are not yet explored. In this study, we employed Escherichia coli proteome microarrays to systematically screen the entire intracellular protein targets of polyphemusin-I. A total of 97 protein targets of polyphemusin-I were statistically analyzed from the quadruplicate Escherichia coli proteome microarrays assays. Among these identified protein targets, 56 proteins had cellular location inside the cell (i.e., cytoplasm), one in the plasma membrane, one in the periplasm and the rest 39 proteins had no specified cellular location. The bioinformatics analysis of these identified protein targets of polyphemusin-I in gene ontology (GO) enrichment category of molecular function revealed significant enrichment in nucleic acid related GO terms i.e., “RNA binding”, “nucleotide binding”, “nuclease activities”, “uracil DNA N-glycosylase activities” and others. Moreover, enrichment in GO category of biological process also depicted enrichment in nucleic acid related GO terms, such as “nucleic acid phosphodiester bond hydrolysis”, “deoxyribonucleotide metabolism”, and others. In accordance to GO enrichment analysis, protein families (PFAM) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enrichment analysis also showed significant enrichment in nucleic acid terms. These enrichment results suggest that polyphemusin-I targets nucleic acid-associated proteins. Furthermore, to provide a comprehensive study, we compared the identified protein targets of polyphemusin-I with previously identified protein targets of four AMPs (P-Der, Lfcin B, PR-39, and Bac 7) using Escherichia coli proteome microarrays. The comparison study of five AMPs (polyhemusin-I, P-Der, Lfcin B, PR-39, and Bac 7) showed only nine common protein targets in all the five AMPs, whereas a total of 39 and 43 common protein targets were identified among the two marine AMPs (polyphemusin-I and P-Der) and three terrestrial AMPs (Lfcin B, PR-39 and Bac7), respectively. To further reveal the target pattern of marine and terrestrial AMPs, the enrichment results obtained from common protein targets of marine AMPs with terrestrial AMPs were compared. The comparison result indicated that AMPs have unique mechanism of action among marine or terrestrial AMPs. Hence, in this study, we have not only identified the intracellular protein targets of polyphemusin-I, but also revealed the protein target differences between marine AMPs and terrestrial AMPs. Full article
(This article belongs to the Special Issue Antimicrobial Peptides and Antimicrobial Chemokines)
Show Figures

Graphical abstract

Back to TopTop