Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,814)

Search Parameters:
Keywords = periodic waves

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 7923 KiB  
Technical Note
Recent Active Wildland Fires Related to Rossby Wave Breaking (RWB) in Alaska
by Hiroshi Hayasaka
Remote Sens. 2025, 17(15), 2719; https://doi.org/10.3390/rs17152719 - 6 Aug 2025
Abstract
Wildland fires are a common and destructive natural disaster in Alaska. Recent active fires in Alaska were assessed and analysed for their associated synoptic-scale climatic conditions in this study. Hotspot (HS) data from satellite observations over the past 20 years since 2004 (total [...] Read more.
Wildland fires are a common and destructive natural disaster in Alaska. Recent active fires in Alaska were assessed and analysed for their associated synoptic-scale climatic conditions in this study. Hotspot (HS) data from satellite observations over the past 20 years since 2004 (total number of HS = 300,988) were used to identify active fire-periods, and the occurrence of Rossby wave breaking (RWB) was examined using various weather maps. Analysis results show that there are 13 active fire-periods of which 7 active fire-periods are related to RWB. The total number of HSs during the seven RWB-related fire-periods was 164,422, indicating that about half (54.6%) of the recent fires in Alaska occurred under fire weather conditions related to RWB. During the RWB-related fire-periods, two hotspot peaks with different wind directions occurred. At the first hotspot peak, southwesterly wind blew from high-pressure systems in the Gulf of Alaska. In the second hotspot peak, the Beaufort Sea High (BSH) supplied strong easterly wind into Interior Alaska. It was suggested that changes in wind direction during active fire-period and continuously blowing winds from BSH may affect fire propagation. It is hoped that this study will stimulate further research into active fires related to RWBs in Alaska. Full article
Show Figures

Figure 1

20 pages, 6555 KiB  
Article
Statistical Study of Whistler-Mode Waves in the Magnetospheric Magnetic Ducts
by Salman A. Nejad and Anatoly V. Streltsov
Universe 2025, 11(8), 260; https://doi.org/10.3390/universe11080260 - 6 Aug 2025
Abstract
This paper presents a comprehensive statistical analysis of extremely/very low-frequency (ELF/VLF) whistler-mode waves observed within magnetic ducts (B-ducts) using data from NASA’s Magnetospheric Multiscale (MMS) mission. A total of 687 events were analyzed, comprising 504 occurrences on the dawn-side flank of [...] Read more.
This paper presents a comprehensive statistical analysis of extremely/very low-frequency (ELF/VLF) whistler-mode waves observed within magnetic ducts (B-ducts) using data from NASA’s Magnetospheric Multiscale (MMS) mission. A total of 687 events were analyzed, comprising 504 occurrences on the dawn-side flank of the magnetosphere and 183 in the nightside magnetotail, to investigate the spatial distribution and underlying mechanisms of wave–particle interactions. We identify distinct differences between these regions by examining key parameters such as event width, frequency, plasma density, and magnetic field extrema within B-ducts. Using an independent two-sample t-test, we assess the statistical significance of variations in these parameters between different observation periods. This study provides valuable insights into the magnetospheric conditions influencing B-duct formation and wave propagation, offering a framework for understanding ELF/VLF wave dynamics in Earth’s space environment. Full article
(This article belongs to the Section Space Science)
Show Figures

Figure 1

25 pages, 4865 KiB  
Article
Mathematical Modeling, Bifurcation Theory, and Chaos in a Dusty Plasma System with Generalized (r, q) Distributions
by Beenish, Maria Samreen and Fehaid Salem Alshammari
Axioms 2025, 14(8), 610; https://doi.org/10.3390/axioms14080610 - 5 Aug 2025
Abstract
This study investigates the dynamics of dust acoustic periodic waves in a three-component, unmagnetized dusty plasma system using generalized (r,q) distributions. First, boundary conditions are applied to reduce the model to a second-order nonlinear ordinary differential equation. [...] Read more.
This study investigates the dynamics of dust acoustic periodic waves in a three-component, unmagnetized dusty plasma system using generalized (r,q) distributions. First, boundary conditions are applied to reduce the model to a second-order nonlinear ordinary differential equation. The Galilean transformation is subsequently applied to reformulate the second-order ordinary differential equation into an unperturbed dynamical system. Next, phase portraits of the system are examined under all possible conditions of the discriminant of the associated cubic polynomial, identifying regions of stability and instability. The Runge–Kutta method is employed to construct the phase portraits of the system. The Hamiltonian function of the unperturbed system is subsequently derived and used to analyze energy levels and verify the phase portraits. Under the influence of an external periodic perturbation, the quasi-periodic and chaotic dynamics of dust ion acoustic waves are explored. Chaos detection tools confirm the presence of quasi-periodic and chaotic patterns using Basin of attraction, Lyapunov exponents, Fractal Dimension, Bifurcation diagram, Poincaré map, Time analysis, Multi-stability analysis, Chaotic attractor, Return map, Power spectrum, and 3D and 2D phase portraits. In addition, the model’s response to different initial conditions was examined through sensitivity analysis. Full article
(This article belongs to the Special Issue Trends in Dynamical Systems and Applied Mathematics)
Show Figures

Figure 1

20 pages, 3248 KiB  
Article
Experimental Study on the Hydrodynamic Analysis of a Floating Offshore Wind Turbine Under Focused Wave Conditions
by Hanbo Zhai, Chaojun Yan, Wei Shi, Lixian Zhang, Xinmeng Zeng, Xu Han and Constantine Michailides
Energies 2025, 18(15), 4140; https://doi.org/10.3390/en18154140 - 5 Aug 2025
Abstract
The strong nonlinearity of shallow-water waves significantly affects the dynamic response of floating offshore wind turbines (FOWTs), introducing additional complexity in motion behavior. This study presents a series of 1:80-scale experiments conducted on a 5 MW FOWT at a 50 m water depth, [...] Read more.
The strong nonlinearity of shallow-water waves significantly affects the dynamic response of floating offshore wind turbines (FOWTs), introducing additional complexity in motion behavior. This study presents a series of 1:80-scale experiments conducted on a 5 MW FOWT at a 50 m water depth, under regular, irregular, and focused wave conditions. The tests were conducted under regular, irregular, and focused wave conditions. The results show that, under both regular and irregular wave conditions, the platform’s motion and mooring tension increased as the wave period became longer, indicating a greater energy transfer and stronger coupling effects at lower wave frequencies. Specifically, in irregular seas, mooring tension increased by 16% between moderate and high sea states, with pronounced surge–pitch coupling near the natural frequency. Under focused wave conditions, the platform experienced significant surge displacement due to the impact of large wave crests, followed by free-decay behavior. Meanwhile, the pitch amplitude increased by up to 27%, and mooring line tension rose by 16% as the wave steepness intensified. These findings provide valuable insights for the design and optimization of FOWTs in complex marine environments, particularly under extreme wave conditions. Additionally, they contribute to the refinement of relevant numerical simulation methods. Full article
(This article belongs to the Topic Wind, Wave and Tidal Energy Technologies in China)
Show Figures

Figure 1

17 pages, 3138 KiB  
Article
Seasonal and Interannual Variations (2019–2023) in the Zooplankton Community and Its Size Composition in Funka Bay, Southwestern Hokkaido
by Haochen Zhang, Atsushi Ooki, Tetsuya Takatsu and Atsushi Yamaguchi
Oceans 2025, 6(3), 49; https://doi.org/10.3390/oceans6030049 - 4 Aug 2025
Abstract
Funka Bay, located in southwest Hokkaido, is a vital fishing area with a shallow depth of less than 100 m. Seasonal flows of the Oyashio and Tsugaru Warm Current affect the marine environment, leading to significant changes in zooplankton communities, yet limited information [...] Read more.
Funka Bay, located in southwest Hokkaido, is a vital fishing area with a shallow depth of less than 100 m. Seasonal flows of the Oyashio and Tsugaru Warm Current affect the marine environment, leading to significant changes in zooplankton communities, yet limited information is available on these variations. This study used ZooScan imaging to analyze seasonal and interannual changes in zooplankton abundance, biovolume, community structure, and size composition from 2019 to 2023. Water temperature was low in March–April and high in September–November, with chlorophyll a peaks occurring from February to April. Notable taxa such as Thaliacea, Noctiluca, and cladocerans were more common in the latter half of the year. Interannual variations included a decline in large cold-water copepods, Eucalanus bungii and Neocalanus spp., which were abundant in 2019 but decreased by 2023. Zooplankton abundance and biovolume showed synchronized seasonal changes, correlating with shifts in the Normalized Biovolume Size Spectra (NBSS) index, which measures size composition. Cluster analysis identified eight zooplankton communities, with Community A dominant from July to December across all years, while Community D was prevalent in early 2019 but was replaced in subsequent years. Community E emerged from March to April in 2021–2023. In 2019, large cold-water copepods were dominant, but from 2020 to 2023, appendicularians became the dominant group during the March–April period. The decline in large copepods is likely linked to marine heat waves, influencing yearly zooplankton community changes. Full article
Show Figures

Figure 1

23 pages, 4658 KiB  
Article
Experimental Research on Ship Wave-Induced Motions of Tidal Turbine Catamaran
by Tinghui Liu, Xiwu Gong, Zijian Yu and Yonghe Xie
Fluids 2025, 10(8), 205; https://doi.org/10.3390/fluids10080205 - 4 Aug 2025
Abstract
In this research, the effect of ship navigation on the mooring system of a deep-sea floating tidal energy platform is experimentally investigated. Hydrodynamic experiments were conducted on a figure-of-eight mooring system with a KCS ship (KRISO Container Ship) as the sailing ship model [...] Read more.
In this research, the effect of ship navigation on the mooring system of a deep-sea floating tidal energy platform is experimentally investigated. Hydrodynamic experiments were conducted on a figure-of-eight mooring system with a KCS ship (KRISO Container Ship) as the sailing ship model and a catamaran as the carrier model of the tidal current energy generator under the combined effect of waves and ocean currents. The experimental results show that the increase in ship speed increases the amplitude of the carrier motion re-response. When the ship speed increases from 1.2 m/s to 1.478 m/s, the roll amplitude increases by 220%. At the same time, a decrease in the distance and draft of the navigating vessel also increases the amplitude of the motion response. Then, the actual sea conditions are simulated by the combined effect of ship waves and regular waves. As the wave period decreases and the height increases, the platform motion response is gradually reduced by the ship-generated waves. These findings provide important insights for optimizing the mooring system design in wave-dominated marine environments. Full article
(This article belongs to the Section Geophysical and Environmental Fluid Mechanics)
Show Figures

Figure 1

21 pages, 12507 KiB  
Article
Soil Amplification and Code Compliance: A Case Study of the 2023 Kahramanmaraş Earthquakes in Hayrullah Neighborhood
by Eyübhan Avcı, Kamil Bekir Afacan, Emre Deveci, Melih Uysal, Suna Altundaş and Mehmet Can Balcı
Buildings 2025, 15(15), 2746; https://doi.org/10.3390/buildings15152746 - 4 Aug 2025
Viewed by 60
Abstract
In the earthquakes that occurred in the Pazarcık (Mw = 7.7) and Elbistan (Mw = 7.6) districts of Kahramanmaraş Province on 6 February 2023, many buildings collapsed in the Hayrullah neighborhood of the Onikişubat district. In this study, we investigated whether there was [...] Read more.
In the earthquakes that occurred in the Pazarcık (Mw = 7.7) and Elbistan (Mw = 7.6) districts of Kahramanmaraş Province on 6 February 2023, many buildings collapsed in the Hayrullah neighborhood of the Onikişubat district. In this study, we investigated whether there was a soil amplification effect on the damage occurring in the Hayrullah neighborhood of the Onikişubat district of Kahramanmaraş Province. Firstly, borehole, SPT, MASW (multi-channel surface wave analysis), microtremor, electrical resistivity tomography (ERT), and vertical electrical sounding (VES) tests were carried out in the field to determine the engineering properties and behavior of soil. Laboratory tests were also conducted using samples obtained from bore holes and field tests. Then, an idealized soil profile was created using the laboratory and field test results, and site dynamic soil behavior analyses were performed on the extracted profile. According to The Turkish Building Code (TBC 2018), the earthquake level DD-2 design spectra of the project site were determined and the average design spectrum was created. Considering the seismicity of the project site and TBC (2018) criteria (according to site-specific faulting, distance, and average shear wave velocity), 11 earthquake ground motion sets were selected and harmonized with DD-2 spectra in short, medium, and long periods. Using scaled motions, the soil profile was excited with 22 different earthquake scenarios and the results were obtained for the equivalent and non-linear models. The analysis showed that the soft soil conditions in the area amplified ground shaking by up to 2.8 times, especially for longer periods (1.0–2.5 s). This level of amplification was consistent with the damage observed in mid- to high-rise buildings, highlighting the important role of local site effects in the structural losses seen during the Kahramanmaraş earthquakes. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

21 pages, 11558 KiB  
Article
First Steps Towards Site Characterization Activities at the CSTH Broad-Band Station of the Campi Flegrei’s Seismic Monitoring Network (Italy)
by Lucia Nardone, Rebecca Sveva Morelli, Guido Gaudiosi, Francesco Liguoro, Danilo Galluzzo and Massimo Orazi
Sensors 2025, 25(15), 4787; https://doi.org/10.3390/s25154787 - 3 Aug 2025
Viewed by 269
Abstract
Local site conditions can significantly influence the amplitude, duration, and frequency content of seismic recordings, making the characterization of subsoil properties a critical component in seismic hazard assessment. However, despite extensive research, standardized methodologies for assessing site effects are still lacking. This study [...] Read more.
Local site conditions can significantly influence the amplitude, duration, and frequency content of seismic recordings, making the characterization of subsoil properties a critical component in seismic hazard assessment. However, despite extensive research, standardized methodologies for assessing site effects are still lacking. This study presents preliminary steps in the site characterization of a small area of Campi Flegrei caldera (Italy), with the aim of enhancing understanding of local lithology and seismic wave propagation. The analysis focuses on the broad-band seismic station CSTH, installed in 2021, and incorporates data from a temporary 2D array of five short-period sensors deployed around the station. These sensors recorded both ambient noise and seismic events associated with caldera dynamics. To improve the robustness of the characterization, data from two additional permanent broad-band stations (CPIS and CSOB) of the Istituto Nazionale di Geofisica e Vulcanologia—Osservatorio Vesuviano’s monitoring network, also located nearby a hydrothermal field, were included. Spectral analyses such as Power Spectral Density (PSD), Horizontal-to-Vertical (H/V) spectral ratios, and f-k array technique were performed to evaluate the frequency-dependent response of the site and to support the development of a comprehensive seismic site model. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

19 pages, 18533 KiB  
Article
Modeling of Marine Assembly Logistics for an Offshore Floating Photovoltaic Plant Subject to Weather Dependencies
by Lu-Jan Huang, Simone Mancini and Minne de Jong
J. Mar. Sci. Eng. 2025, 13(8), 1493; https://doi.org/10.3390/jmse13081493 - 2 Aug 2025
Viewed by 111
Abstract
Floating solar technology has gained significant attention as part of the global expansion of renewable energy due to its potential for installation in underutilized water bodies. Several countries, including the Netherlands, have initiated efforts to extend this technology from inland freshwater applications to [...] Read more.
Floating solar technology has gained significant attention as part of the global expansion of renewable energy due to its potential for installation in underutilized water bodies. Several countries, including the Netherlands, have initiated efforts to extend this technology from inland freshwater applications to open offshore environments, particularly within offshore wind farm areas. This development is motivated by the synergistic benefits of increasing site energy density and leveraging the existing offshore grid infrastructure. The deployment of offshore floating photovoltaic (OFPV) systems involves assembling multiple modular units in a marine environment, introducing operational risks that may give rise to safety concerns. To mitigate these risks, weather windows must be considered prior to the task execution to ensure continuity between weather-sensitive activities, which can also lead to additional time delays and increased costs. Consequently, optimizing marine logistics becomes crucial to achieving the cost reductions necessary for making OFPV technology economically viable. This study employs a simulation-based approach to estimate the installation duration of a 5 MWp OFPV plant at a Dutch offshore wind farm site, started in different months and under three distinct risk management scenarios. Based on 20 years of hindcast wave data, the results reveal the impacts of campaign start months and risk management policies on installation duration. Across all the scenarios, the installation duration during the autumn and winter period is 160% longer than the one in the spring and summer period. The average installation durations, based on results from 12 campaign start months, are 70, 80, and 130 days for the three risk management policies analyzed. The result variation highlights the additional time required to mitigate operational risks arising from potential discontinuity between highly interdependent tasks (e.g., offshore platform assembly and mooring). Additionally, it is found that the weather-induced delays are mainly associated with the campaigns of pre-laying anchors and platform and mooring line installation compared with the other campaigns. In conclusion, this study presents a logistics modeling methodology for OFPV systems, demonstrated through a representative case study based on a state-of-the-art truss-type design. The primary contribution lies in providing a framework to quantify the performance of OFPV installation strategies at an early design stage. The findings of this case study further highlight that marine installation logistics are highly sensitive to local marine conditions and the chosen installation strategy, and should be integrated early in the OFPV design process to help reduce the levelized cost of electricity. Full article
(This article belongs to the Special Issue Design, Modeling, and Development of Marine Renewable Energy Devices)
Show Figures

Figure 1

13 pages, 647 KiB  
Article
Reference Values for Liver Stiffness in Newborns by Gestational Age, Sex, and Weight Using Three Different Elastography Methods
by Ángel Lancharro Zapata, Alejandra Aguado del Hoyo, María del Carmen Sánchez Gómez de Orgaz, Maria del Pilar Pintado Recarte, Pablo González Navarro, Perceval Velosillo González, Carlos Marín Rodríguez, Yolanda Ruíz Martín, Manuel Sanchez-Luna, Miguel A. Ortega, Coral Bravo Arribas and Juan Antonio León Luís
J. Clin. Med. 2025, 14(15), 5418; https://doi.org/10.3390/jcm14155418 - 1 Aug 2025
Viewed by 173
Abstract
Objective: To determine reference values of liver stiffness during the first week of extrauterine life in healthy newborns, according to gestational age, sex, and birth weight, using three elastography techniques: point shear wave elastography (pSWE) and two-dimensional shear wave elastography (2D-SWE) with convex [...] Read more.
Objective: To determine reference values of liver stiffness during the first week of extrauterine life in healthy newborns, according to gestational age, sex, and birth weight, using three elastography techniques: point shear wave elastography (pSWE) and two-dimensional shear wave elastography (2D-SWE) with convex and linear probes. Materials and Methods: This was a cross-sectional observational study conducted at a single center on a hospital-based cohort of 287 newborns between 24 and 42 weeks of gestation, admitted between January 2023 and May 2024. Cases with liver disease, significant neonatal morbidity, or technically invalid studies were excluded. Hepatic elastography was performed during the first week of life using pSWE and 2D-SWE with both convex and linear probes. Clinical and technical neonatal variables were recorded. Liver stiffness values were analyzed in relation to gestational age, birth weight, and sex. Linear regression models were applied to assess associations, considering p-values < 0.05 as statistically significant. Results: After applying exclusion criteria, valid liver stiffness measurements were obtained in 208 cases with pSWE, 224 with 2D-SWE (convex probe), and 222 with 2D-SWE (linear probe). A statistically significant inverse association between liver stiffness and gestational age (p < 0.03) was observed across all techniques except for 2D-SWE with the linear probe. Only 2D-SWE with the convex probe showed a significant association with birth weight. No significant differences were observed based on neonatal sex. The 2D-SWE technique with the convex probe demonstrated significantly shorter examination times compared to pSWE (p < 0.001). Conclusions: Neonatal liver stiffness measured by pSWE and 2D-SWE with a convex probe shows an inverse correlation with gestational age, potentially reflecting the structural and functional maturation of the liver. These techniques are safe, reliable, and provide useful information for distinguishing normal findings in preterm neonates from early hepatic pathology. The values obtained represent a valuable reference for clinical hepatic assessment in the neonatal period. Full article
(This article belongs to the Special Issue Multiparametric Ultrasound Techniques for Liver Disease Assessments)
Show Figures

Figure 1

20 pages, 753 KiB  
Article
Has the Free Trade Zone Enhanced the Regional Economic Resilience? Evidence from China
by Henglong Zhang and Congying Tian
Sustainability 2025, 17(15), 6951; https://doi.org/10.3390/su17156951 - 31 Jul 2025
Viewed by 233
Abstract
This study examines the impact of free trade zone (FTZ) establishment on regional economic resilience (RER) in China, using provincial-level panel data spanning from 2010 to 2022 and a multi-period difference-in-differences (DID) approach. The empirical results indicate that FTZ implementation significantly enhances regional [...] Read more.
This study examines the impact of free trade zone (FTZ) establishment on regional economic resilience (RER) in China, using provincial-level panel data spanning from 2010 to 2022 and a multi-period difference-in-differences (DID) approach. The empirical results indicate that FTZ implementation significantly enhances regional economic resilience by 3.46%, with the development of green finance acting as a key moderating mechanism that amplifies this positive effect. Heterogeneity analysis uncovers notable disparities across policy cohorts and geographical regions: the first wave of FTZs demonstrates the most pronounced resilience-enhancing impact, whereas later cohorts exhibit weaker or even adverse effects. Coastal regions experience substantial benefits from FTZ policies, in contrast to statistically insignificant outcomes observed in inland areas. These findings suggest that strategically expanding the FTZ network, when paired with tailored implementation mechanisms and the integration of green finance, could serve as a powerful policy tool for post-COVID economic recovery. Importantly, by strengthening economic resilience through institutional openness and green investment, this study offers valuable insights into balancing economic growth with environmental sustainability. It provides empirical evidence to support the optimization of FTZ spatial governance and institutional innovation pathways, thereby contributing to the pursuit of sustainable regional development. Full article
Show Figures

Figure 1

22 pages, 6820 KiB  
Article
Bathymetric Profile and Sediment Composition of a Dynamic Subtidal Bedform Habitat for Pacific Sand Lance
by Matthew R. Baker, H. G. Greene, John Aschoff, Michelle Hoge, Elisa Aitoro, Shaila Childers, Junzhe Liu and Jan A. Newton
J. Mar. Sci. Eng. 2025, 13(8), 1469; https://doi.org/10.3390/jmse13081469 - 31 Jul 2025
Viewed by 332
Abstract
The eastern North Pacific Ocean coastline (from the Salish Sea to the western Aleutian Islands) is highly glaciated with relic sediment deposits scattered throughout a highly contoured and variable bathymetry. Oceanographic conditions feature strong currents and tidal exchange. Sand wave fields are prominent [...] Read more.
The eastern North Pacific Ocean coastline (from the Salish Sea to the western Aleutian Islands) is highly glaciated with relic sediment deposits scattered throughout a highly contoured and variable bathymetry. Oceanographic conditions feature strong currents and tidal exchange. Sand wave fields are prominent features within these glaciated shorelines and provide critical habitat to sand lance (Ammodytes spp.). Despite an awareness of the importance of these benthic habitats, attributes related to their structure and characteristics remain undocumented. We explored the micro-bathymetric morphology of a subtidal sand wave field known to be a consistent habitat for sand lance. We calculated geomorphic attributes of the bedform habitat, analyzed sediment composition, and measured oceanographic properties of the associated water column. This feature has a streamlined teardrop form, tapered in the direction of the predominant tidal current. Consistent flow paths along the long axis contribute to well-defined and maintained bedform morphology and margin. Distinct patterns in amplitude and period of sand waves were documented. Strong tidal exchange has resulted in well-sorted medium-to-coarse-grained sediments with coarser sediments, including gravel and cobble, within wave troughs. Extensive mixing related to tidal currents results in a highly oxygenated water column, even to depths of 80 m. Our analysis provides unique insights into the physical characteristics that define high-quality habitat for these fish. Further work is needed to identify, enumerate, and map the presence and relative quality of these benthic habitats and to characterize the oceanographic properties that maintain these benthic habitats over time. Full article
(This article belongs to the Special Issue Dynamics of Marine Sedimentary Basin)
Show Figures

Figure 1

28 pages, 5779 KiB  
Article
Regional Wave Spectra Prediction Method Based on Deep Learning
by Yuning Liu, Rui Li, Wei Hu, Peng Ren and Chao Xu
J. Mar. Sci. Eng. 2025, 13(8), 1461; https://doi.org/10.3390/jmse13081461 - 30 Jul 2025
Viewed by 216
Abstract
The wave spectrum, as a key statistical feature describing wave energy distribution, is crucial for understanding wave propagation mechanisms and supporting ocean engineering applications. This study, based on ERA5 reanalysis spectrum data, proposes a model combining CNN and xLSTM for rapid gridded wave [...] Read more.
The wave spectrum, as a key statistical feature describing wave energy distribution, is crucial for understanding wave propagation mechanisms and supporting ocean engineering applications. This study, based on ERA5 reanalysis spectrum data, proposes a model combining CNN and xLSTM for rapid gridded wave spectrum prediction over the Bohai and Yellow Seas domain. It uses 2D gridded spectrum data rather than a spectrum at specific points as input and analyzes the impact of various input factors at different time lags on wave development. The results show that incorporating water depth and mean sea level pressure significantly reduces errors. The model performs well across seasons with the seasonal spatial average root mean square error (SARMSE) of spectral energy remaining below 0.040 m2·s and RMSEs for significant wave height (SWH) and mean wave period (MWP) of 0.138 m and 1.331 s, respectively. At individual points, the spectral density bias is near zero, correlation coefficients range from 0.95 to 0.98, and the peak frequency RMSE is between 0.03 and 0.04 Hz. During a typical cold wave event, the model accurately reproduces the energy evolution and peak frequency shift. Buoy observations confirm that the model effectively tracks significant wave height trends under varying conditions. Moreover, applying a frequency-weighted loss function enhances the model’s ability to capture high-frequency spectral components, further improving prediction accuracy. Overall, the proposed method shows strong performance in spectrum prediction and provides a valuable approach for regional wave spectrum modeling. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

26 pages, 8897 KiB  
Article
Numerical Study of Wave-Induced Longshore Current Generation Zones on a Circular Sandy Sloping Topography
by Mohammad Shaiful Islam, Tomoaki Nakamura, Yong-Hwan Cho and Norimi Mizutani
Water 2025, 17(15), 2263; https://doi.org/10.3390/w17152263 - 29 Jul 2025
Viewed by 269
Abstract
Wave deformation and sediment transport nearest the shoreside are among the main reasons for sand erosion and beach profile changes. In particular, identifying the areas of incident-wave breaking and longshore current generation parallel to the shoreline is important for understanding the morphological changes [...] Read more.
Wave deformation and sediment transport nearest the shoreside are among the main reasons for sand erosion and beach profile changes. In particular, identifying the areas of incident-wave breaking and longshore current generation parallel to the shoreline is important for understanding the morphological changes of coastal beaches. In this study, a two-phase incompressible flow model along with a sandy sloping topography was employed to investigate the wave deformation and longshore current generation areas in a circular wave basin model. The finite volume method (FVM) was implemented to discretize the governing equations in cylindrical coordinates, the volume-of-fluid method (VOF) was adopted to differentiate the air–water interfaces in the control cells, and the zonal embedded grid technique was employed for grid generation in the cylindrical computational domain. The water surface elevations and velocity profiles were measured in different wave conditions, and the measurements showed that the maximum water levels per wave were high and varied between cases, as well as between cross-sections in a single case. Additionally, the mean water levels were lower in the adjacent positions of the approximated wave-breaking zones. The wave-breaking positions varied between cross-sections in a single case, with the incident-wave height, mean water level, and wave-breaking position measurements indicating the influence of downstream flow variation in each cross-section on the sloping topography. The cross-shore velocity profiles became relatively stable over time, while the longshore velocity profiles predominantly moved in the alongshore direction, with smaller fluctuations, particularly during the same time period and in measurement positions near the wave-breaking zone. The computed velocity profiles also varied between cross-sections, and for the velocity profiles along the cross-shore and longshore directions nearest the wave-breaking areas where the downstream flow had minimal influence, it was presumed that there was longshore-current generation in the sloping topography nearest the shoreside. The computed results were compared with the experimental results and we observed similar characteristics for wave profiles in the same wave period case in both models. In the future, further investigations can be conducted using the presented circular wave basin model to investigate the oblique wave deformation and longshore current generation in different sloping and wave conditions. Full article
(This article belongs to the Special Issue Numerical Modeling of Hydrodynamics and Sediment Transport)
Show Figures

Figure 1

21 pages, 2926 KiB  
Article
Exact Solutions and Soliton Transmission in Relativistic Wave Phenomena of Klein–Fock–Gordon Equation via Subsequent Sine-Gordon Equation Method
by Muhammad Uzair, Ali H. Tedjani, Irfan Mahmood and Ejaz Hussain
Axioms 2025, 14(8), 590; https://doi.org/10.3390/axioms14080590 - 29 Jul 2025
Viewed by 347
Abstract
This study explores the (1+1)-dimensional Klein–Fock–Gordon equation, a distinct third-order nonlinear differential equation of significant theoretical interest. The Klein–Fock–Gordon equation (KFGE) plays a pivotal role in theoretical physics, modeling high-energy particles and providing a fundamental framework for simulating relativistic wave phenomena. To find [...] Read more.
This study explores the (1+1)-dimensional Klein–Fock–Gordon equation, a distinct third-order nonlinear differential equation of significant theoretical interest. The Klein–Fock–Gordon equation (KFGE) plays a pivotal role in theoretical physics, modeling high-energy particles and providing a fundamental framework for simulating relativistic wave phenomena. To find the exact solution of the proposed model, for this purpose, we utilized two effective techniques, including the sine-Gordon equation method and a new extended direct algebraic method. The novelty of these approaches lies in the form of different solutions such as hyperbolic, trigonometric, and rational functions, and their graphical representations demonstrate the different form of solitons like kink solitons, bright solitons, dark solitons, and periodic waves. To illustrate the characteristics of these solutions, we provide two-dimensional, three-dimensional, and contour plots that visualize the magnitude of the (1+1)-dimensional Klein–Fock–Gordon equation. By selecting suitable values for physical parameters, we demonstrate the diversity of soliton structures and their behaviors. The results highlighted the effectiveness and versatility of the sine-Gordon equation method and a new extended direct algebraic method, providing analytical solutions that deepen our insight into the dynamics of nonlinear models. These results contribute to the advancement of soliton theory in nonlinear optics and mathematical physics. Full article
(This article belongs to the Special Issue Applied Nonlinear Dynamical Systems in Mathematical Physics)
Show Figures

Figure 1

Back to TopTop