Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (167)

Search Parameters:
Keywords = perfluorooctane-sulfonic acid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2980 KB  
Article
Pharmaceuticals, Pesticides, and Poly- and Perfluoroalkyl Substances at Surface Water Occurrence Levels—Impact of Compound Specific Physicochemical Properties on Nanofiltration and Reverse Osmosis Processes
by Jelena Šurlan, Claudia F. Galinha, Nikola Maravić, Carla Brazinha, Igor Antić, Jelena Živančev, Nataša Đurišić-Mladenović, Zita Šereš and João G. Crespo
Membranes 2025, 15(12), 358; https://doi.org/10.3390/membranes15120358 - 27 Nov 2025
Viewed by 170
Abstract
Pharmaceutically active compounds (PhACs), pesticides, and poly- and perfluoroalkyl substances (PFAS) are increasingly detected in surface waters at trace concentrations, raising concerns for both aquatic systems and, consequently, human health. Conventional solutions are insufficient to achieve complete removal at trace compound concentrations, highlighting [...] Read more.
Pharmaceutically active compounds (PhACs), pesticides, and poly- and perfluoroalkyl substances (PFAS) are increasingly detected in surface waters at trace concentrations, raising concerns for both aquatic systems and, consequently, human health. Conventional solutions are insufficient to achieve complete removal at trace compound concentrations, highlighting the need for advanced separation technologies. This study aims to comprehensively analyze rejection and removal mechanisms of selected PhACs, pesticides, and PFAS present in water solutions at reported environmentally relevant concentrations (300 ng L−1), using two nanofiltration (NF) and one reverse osmosis (RO) polyamide membrane. PhACs, pesticides, and PFAS were selected to cover a broad range of physicochemical properties, specifically molecular mass (MM), dissociation constant (pKa), and octanol–water partition coefficient (logKo/w). Rejection values ranged from 42.1% (acetaminophen) to apparent 100% (for multiple compounds), depending on water pH, solute properties, and membrane characteristics. Size exclusion and electrostatic interactions were identified as the primary removal mechanisms, with hydrophobic interactions having a lower impact, particularly for carbamazepine, bezafibrate, and perfluorooctane sulfonic acid (PFOS). Addition of sodium chloride (3 g L−1) decreased rejection of most negatively charged compounds due to suppression of membrane surface charge, although clarithromycin and ofloxacin exhibited improved rejection. Presented results provide fundamental insight into compound-specific membrane rejection and highlight the importance of membrane–solute interactions under environmentally realistic conditions. The results support further optimization of NF and RO for targeted compound rejection and provide a baseline for data-driven membrane process modeling. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

19 pages, 681 KB  
Article
Ecotoxicological Assessment of Perfluorooctane Sulfonate and Perfluorooctanoic Acid Following Biodegradation: Insights from Daphnia magna Toxicity and Yeast Estrogen Screen Assays
by Muyasu Grace Kibambe and Maggy Ndombo Benteke Momba
Water 2025, 17(23), 3368; https://doi.org/10.3390/w17233368 - 26 Nov 2025
Viewed by 119
Abstract
Perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) pose significant health risks through various exposure pathways, including ingestion of contaminated food and water, as well as dermal absorption. Aquatic organisms are especially at risk, as water bodies serve as primary pathways for the transport [...] Read more.
Perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) pose significant health risks through various exposure pathways, including ingestion of contaminated food and water, as well as dermal absorption. Aquatic organisms are especially at risk, as water bodies serve as primary pathways for the transport and transformation of these chemicals. While the biodegradation study was previously performed using a bacterial consortium from the activated sludge compartment at Zeekoegat WWTP, the ecotoxicological implications of the treated effluents remained unclear, particularly given the potential presence of degradation products. To address this gap, the present study used bioassays to evaluate the acute toxicity and endocrine-disrupting potential of PFOS and PFOA. For this purpose, PFOS and PFOA concentrations ranged from 58 ng/L to 1050 ng/L, and two types of bioassays were used: the Daphnia magna acute toxicity test, which examined the short-term lethal effects of the samples on a small freshwater organism (Daphnia magna), and the Yeast Estrogen Screen (YES), which measured estrogenic activity, an important indicator of potential endocrine disruption. Results revealed detectable estrogenic activity at environmentally relevant concentrations, with PFOS showing higher activity than PFOA. The estradiol equivalency (EEQ) values in samples containing PFOA ranged from 0.23 ± 0.029 ng/L to 3.15 ± 0.056 ng/L and from 0.43 ± 0.036 ng/L to 1.96 ± 0.086 ng/L in samples containing PFOS. Daphnia magna bioassays showed 100% mortality in samples containing PFOS at concentrations ≥ 62 ng/L and in samples containing PFOA at concentrations ≥ 142 ng/L, classifying them as ‘Very High Acute Hazard’ falling into Hazard Class V (100% mortality) according to the classification system proposed in 2003 by Persoone and co-workers. These bioassays helped to determine whether the degradation products were more toxic compared to the parent compounds, thereby supporting the objective of this study to assess environmental safety post-treatment. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

36 pages, 2391 KB  
Article
Oncotransformation in Bhas 42 Cell Transformation Assay by Typical Non-Genotoxic Carcinogens, PFOA and PFOS, and Time-Course Transcriptome Analysis
by Kiyomi Ohmori
Biomolecules 2025, 15(10), 1431; https://doi.org/10.3390/biom15101431 - 9 Oct 2025
Viewed by 705
Abstract
Perfluorinated alkyl substances and polyfluorinated alkyl substances (PFASs) are long-chain compounds, with perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) being the most well-known examples. Both are considered typical non-genotoxic carcinogens (NGTxCs). In this study, we verified whether the Bhas 42 cell transformation assay [...] Read more.
Perfluorinated alkyl substances and polyfluorinated alkyl substances (PFASs) are long-chain compounds, with perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) being the most well-known examples. Both are considered typical non-genotoxic carcinogens (NGTxCs). In this study, we verified whether the Bhas 42 cell transformation assay (Bhas 42 CTA) can be used as an effective in vitro method to predict carcinogenicity of NGTxCs using both PFOA and PFOS as typical representatives. Transcriptome analysis during the PFOA-induced transformation process showed that many factors related to the effects of PFOA on the immune system and cancer hallmarks increased or decreased. Thus, we demonstrated that mechanistic analyses such as transcriptome analyses in combination with the transformation focus formation results from the Bhas 42 CTA may be useful tools when assessing the carcinogenicity and other biological effects of NGTxCs such as PFOA. We propose that the Bhas 42 CTA is a simple in vitro test for the detection of NGTxCs, that it has in vitro oncotransformation as an endpoint, and that it can also detect the activation of factors involved in malignant progression, such as invasion and metastasis. It allows for the comprehensive detection of subtle mechanisms in parallel with focus formation throughout the transformation process, from the early stages to malignancy. Full article
(This article belongs to the Section Cellular Biochemistry)
Show Figures

Figure 1

20 pages, 991 KB  
Review
Linking Analysis to Atmospheric PFAS: An Integrated Framework for Exposure Assessment, Health Risks, and Future Management Strategies
by Myoungki Song, Hajeong Jeon and Min-Suk Bae
Appl. Sci. 2025, 15(19), 10540; https://doi.org/10.3390/app151910540 - 29 Sep 2025
Viewed by 1038
Abstract
Per- and polyfluoroalkyl substances (PFASs) are highly chemically stable synthetic compounds. They are widely used in industrial and commercial sectors due to their ability to repel water and oil, thermal stability, and surfactant properties. However, this stability results in environmental persistence and bioaccumulation, [...] Read more.
Per- and polyfluoroalkyl substances (PFASs) are highly chemically stable synthetic compounds. They are widely used in industrial and commercial sectors due to their ability to repel water and oil, thermal stability, and surfactant properties. However, this stability results in environmental persistence and bioaccumulation, posing significant health risks as PFASs eventually find their way into environmental media. Key PFAS compounds, including PerFluoroOctanoic Acid (PFOA), PerFluoroOctane Sulfonic acid (PFOS), and PerFluoroHexane Sulfonic acid (PFHxS), have been linked to hepatotoxicity, immunotoxicity, neurotoxicity, and endocrine disruption. In response to the health threats these substances pose, global regulatory measures, such as the Stockholm Convention restrictions and national drinking water standards, have been implemented to reduce PFAS exposure. Despite these efforts, a lack of universally accepted definitions or comprehensive inventories of PFAS compounds hampers the effective management of these substances. As definitions differ across regulatory bodies, research and policy integration have become complicated. PFASs are broadly categorized as either perfluoroalkyl acids (PFAAs), precursors, or other fluorinated substances; however, PFASs encompass over 5000 distinct compounds, many of which are poorly characterized. PFAS contamination arises from direct industrial emissions and indirect environmental formation, these substances have been detected in water, soil, and even air samples from all over the globe, including from remote regions like Antarctica. Analytical methods, such as primarily liquid and gas chromatography coupled with tandem mass spectrometry, have advanced PFAS detection. However, standardized monitoring protocols remain inadequate. Future management requires unified definitions, expanded monitoring efforts, and standardized methodologies to address the persistent environmental and health impacts of PFAS. This review underscores the need for improved regulatory frameworks and further research. Full article
(This article belongs to the Special Issue Air Quality Monitoring, Analysis and Modeling)
Show Figures

Figure 1

22 pages, 2267 KB  
Article
Contamination Characteristics of 21 PFAS in Shellfish and Crustaceans of Zhejiang Province and Exposure Risk Assessment for Adult Dietary Consumers
by Hexiang Zhang, Haoyi Zhang, Ronghua Zhang, Dong Zhao, Bing Zhu, Xiaojuan Qi, Lili Chen, Jiang Chen, Jikai Wang, Yibin Zheng and Zhewei Feng
Mar. Drugs 2025, 23(9), 359; https://doi.org/10.3390/md23090359 - 15 Sep 2025
Viewed by 1425
Abstract
This study investigated the occurrence, sources, and health risks of 21 per- and polyfluoroalkyl substances (PFAS) in commercially available shellfish and crustaceans from Zhejiang Province, China. Among the 306 samples analyzed, 87.9% contained at least one detectable PFAS. Perfluorooctanoic acid (PFOA) was the [...] Read more.
This study investigated the occurrence, sources, and health risks of 21 per- and polyfluoroalkyl substances (PFAS) in commercially available shellfish and crustaceans from Zhejiang Province, China. Among the 306 samples analyzed, 87.9% contained at least one detectable PFAS. Perfluorooctanoic acid (PFOA) was the most frequently detected PFAS (64.7%), followed by perfluorooctanesulfonic acid (PFOS) (53.8%), perfluorononanoic acid (PFNA) (52.9%), and perfluorodecanoic acid (PFDA) (50.0%). The total PFAS in shellfish and crustaceans ranged from ND to 0.86 to 173 ng/g wet weight, with a median of 4.11 ng/g ww; the median concentration of total PFAS followed this order: marine crustaceans > fresh-water crustaceans > bivalves. Estimation of the human intake of adult consumers, the estimated daily intake (EDI) of Σ21 PFAS ranged from 0.01 to 15.7 ng/kg bw/day; 0.31% of the adult study population had Σ4PFAS exposure levels resulting in Hazard Quotient (HQ) values > 1, which may represent a potential public health concern for these individuals. Long-term exposure risks for specific PFCAs such as perfluoroundecanoic acid (PFUdA) and perfluorotridecanoic acid (PFTrDA) merit concern. Full article
(This article belongs to the Section Marine Toxins)
Show Figures

Graphical abstract

38 pages, 4420 KB  
Article
Uncovering the Tumorigenic Blueprint of PFOS and PFOA Through Multi-Organ Transcriptomic Analysis of Biomarkers, Mechanisms, and Therapeutic Targets
by Krisha Mathur, Aleezah Khaliq, Stephanie Park, Nathan Chu, Vaishnavi M. Burra, Norah Kanukolanu, Ellen Costello and Sivanesan Dakshanamurthy
Curr. Issues Mol. Biol. 2025, 47(9), 763; https://doi.org/10.3390/cimb47090763 - 15 Sep 2025
Cited by 1 | Viewed by 1859
Abstract
Per- and polyfluoroalkyl substances (PFASs), called forever chemicals, persist in the environment and bioaccumulate, posing significant health risks. While epidemiological studies have linked exposure to specific PFAS types, perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS), to an increased incidence of various cancers, [...] Read more.
Per- and polyfluoroalkyl substances (PFASs), called forever chemicals, persist in the environment and bioaccumulate, posing significant health risks. While epidemiological studies have linked exposure to specific PFAS types, perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS), to an increased incidence of various cancers, specific tumorigenesis mechanisms are unknown. Here, we investigated the potential molecular markers and signatures of perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) tumorigenesis. We performed a comprehensive transcriptomic analysis across multiple species and tissue types (N = 529) using PFOS and PFOA-exposed RNA-Seq samples. Conserved signatures demonstrate significant disruptions in seven key carcinogenic characteristics including metabolic reprogramming, epigenetic modifications, immune suppression, oxidative stress, and genomic instability. Tumorigenic markers such as SERPINE1, FN1, PLIN2, ALDOA, TRIB3, and TSC22D3 and their associated pathways may act independently or synergistically to promote a pro-tumorigenic environment. Additionally, PPARα, LARP1, ACOX1, MYC, and MYCN were identified as key upstream regulators supporting disruptions in lipid metabolism, oxidative stress, and uncontrolled cell proliferation. In liver samples, low concentrations of PFOS and PFOA were sufficient to exhibit tumorigenic signatures associated with tumorigenesis initiation and development. Inferred mechanisms of ccRCC initiation and development were linked to lipid metabolism dysregulation and immunosuppressive signaling. In prostate and testicular xenograft tumor models, carcinogenic mechanisms for tumor progression and promotion were hypothesized. Receptor-mediated signaling and protein synthesis was disrupted in prostate cancer and epigenetic alterations and ECM remodeling observed in testicular cancer. We also explored potential therapeutic rescue strategies, including chemopreventive agents for early intervention. All our findings provide hypotheses for PFOS/PFOA-induced tumorigenesis; however, experimental studies are required to establish translational relevance. All the R codes developed in this study are publicly available. Full article
(This article belongs to the Special Issue Genomic Analysis of Common Disease, 2nd Edition)
Show Figures

Graphical abstract

17 pages, 6376 KB  
Article
Sex-Specific Metabolic, Immunologic, and Behavioral Effects of Perfluorooctane Sulfonic Acid (PFOS) in BTBR-mtB6 Mice
by Danielle Qiu Yun Jiang, Fatma Eldefrawy, Jarissa Isabel Navarro and Tai L. Guo
Sci 2025, 7(3), 118; https://doi.org/10.3390/sci7030118 - 1 Sep 2025
Viewed by 863
Abstract
Perfluorooctane sulfonate (PFOS), a member of the per- and polyfluoroalkyl substance (PFAS) family, has been associated with adverse health effects, including potential links to autism spectrum disorder (ASD). This study investigates the impact of PFOS on metabolic, immunologic and behavioral profiles in BTBR-mt [...] Read more.
Perfluorooctane sulfonate (PFOS), a member of the per- and polyfluoroalkyl substance (PFAS) family, has been associated with adverse health effects, including potential links to autism spectrum disorder (ASD). This study investigates the impact of PFOS on metabolic, immunologic and behavioral profiles in BTBR-mtB6 mice, a mouse strain that models ASD, to provide insights into the role of PFOS in ASD development and related health concerns. Three-month-old male and female BTBR-mtB6 mice were divided into two groups (n = 6) and received daily administration of either 1 mg/kg PFOS or vehicle over a three-month period by gavage. Metabolic assessments included measurements of body weight and weekly blood glucose levels, glucose and insulin tolerance tests, organ weights, and body compositions (free fluid, fat and lean tissue). Immune profiling was conducted via flow cytometric analysis of splenic leukocytes, while behavioral evaluations included grooming, sniffing, and three-chamber social interaction tests. PFOS exposure disrupted glucose homeostasis, with both sexes exhibiting elevated blood glucose levels. Male mice showed impaired glucose tolerance, delayed glucose level recovery, and increased insulin resistance, while females displayed decreased insulin resistance. Additionally, PFOS exposure led to liver enlargement in both sexes. Behavioral assessments revealed heightened grooming in PFOS-treated males, commonly interpreted as stress- or ASD-related repetitive behaviors, whereas females exhibited reduced grooming, reflecting altered behavioral responses to exposure. Immune alterations were also sex specific. PFOS-treated males exhibited decreased granulocytes, increased macrophages, and enhanced surface expressions of B220 and CD40L. PFOS-treated females showed increased macrophages, B-cells, cytotoxic T-cells and CD25+ T-cell subsets, with enhanced surface expression of B220 and CD8, and reduced surface expression of Mac-3. In addition, PFOS exposure reduced spleen weight in females. Taken together, PFOS exposure induced significant physiological and behavioral changes in BTBR-mtB6 mice, with sex-specific differences observed. These results raise concern that PFASs may contribute to the development or exacerbation of metabolic, immune and neurodevelopmental disorders, highlighting the need for sex-specific human risk assessment in environmental toxicology. Full article
Show Figures

Figure 1

24 pages, 2083 KB  
Article
Distribution of Legacy and Emerging PFASs in a Terrestrial Ecosystem Located near a Fluorochemical Manufacturing Facility
by Jodie Buytaert, Marcel Eens, Lieven Bervoets and Thimo Groffen
Toxics 2025, 13(8), 689; https://doi.org/10.3390/toxics13080689 - 19 Aug 2025
Viewed by 1149
Abstract
This study investigated the distribution of 29 legacy and emerging per- and polyfluoroalkyl substances (PFASs) in soil, nettles, invertebrates, and plasma and feathers of great tits (Parus major) of a terrestrial ecosystem near a fluorochemical plant. Additionally, the vertical distribution of [...] Read more.
This study investigated the distribution of 29 legacy and emerging per- and polyfluoroalkyl substances (PFASs) in soil, nettles, invertebrates, and plasma and feathers of great tits (Parus major) of a terrestrial ecosystem near a fluorochemical plant. Additionally, the vertical distribution of PFASs in soil was assessed, as well as taxon-specific differences among terrestrial invertebrate species. Finally, associations between soil and biota, and among biological matrices, were assessed. Most accumulation profiles were dominated by long-chained PFASs, mainly perfluorooctane sulfonic acid (PFOS), while short-chained PFASs were less detected. Long-chained perfluoroalkyl carboxylic acids (PFCAs) adsorbed in the upper soil layers, while short-chained PFAS and perfluoroalkyl sulfonic acids (PFSAs) tended to migrate deeper. The several taxon-specific differences were likely due to dietary differences. Significant associations, especially for long-chained PFCAs and PFOS, were found among most matrices. This indicates that (1) these PFASs found in these matrices are most likely originating from the same pollution source, (2) there is a possible transfer of these PFASs between matrices, (3) there is bioaccumulation from one to another matrix, and (4) some matrices might be used as proxies to estimate PFAS concentrations in other terrestrial matrices. Finally, feathers accumulated more PFASs than plasma, as they were most likely exposed through different routes of exposure and PFAS affinity. Therefore, they are not suitable for internal PFAS monitoring but can provide complementary information about the exposure and about the presence/absence of PFASs in certain habitats. Full article
Show Figures

Figure 1

15 pages, 828 KB  
Article
Association Between Serum per- and Polyfluoroalkyl Substances and Iron Status Biomarkers in a Representative Sample of U.S. Adults: NHANES 2013–2018
by Wei-Jie Wang, Yu-Ling Lin, Ta-Chen Su, Chikang Wang and Chien-Yu Lin
Life 2025, 15(8), 1274; https://doi.org/10.3390/life15081274 - 12 Aug 2025
Viewed by 1021
Abstract
Purpose: Per- and polyfluoroalkyl substances (PFAS) comprise a class of man-made compounds widely utilized in manufacturing everyday consumer products. Experimental studies indicate that PFAS may interfere with iron regulation by hindering absorption or inducing oxidative stress. Nonetheless, epidemiological studies examining the association between [...] Read more.
Purpose: Per- and polyfluoroalkyl substances (PFAS) comprise a class of man-made compounds widely utilized in manufacturing everyday consumer products. Experimental studies indicate that PFAS may interfere with iron regulation by hindering absorption or inducing oxidative stress. Nonetheless, epidemiological studies examining the association between PFAS exposure and a broad spectrum of iron-related biomarkers remain scarce. Approach and Results: In this study, data from the 2013–2018 National Health and Nutrition Examination Survey (NHANES) were analyzed, which included 5050 adults aged 18 and older. The relationships between six PFAS compounds, oral iron intake, and a comprehensive set of markers of iron homeostasis, including serum iron, unsaturated iron-binding capacity (UIBC), total iron-binding capacity (TIBC), transferrin saturation, ferritin, and transferrin receptor levels, were examined. Our findings revealed a negative association between both individual and total PFAS (sum of six PFAS) levels and oral iron intake. Additionally, serum iron and transferrin saturation levels exhibited significant positive correlations with all PFAS compounds, whereas ferritin was positively correlated with all PFAS compounds except n-perfluorooctanoic acid (n-PFOA). UIBC and transferrin receptor showed significant negative correlations with all PFAS compounds, while TIBC was significantly negatively correlated with n-perfluorooctane sulfonic acid (n-PFOS), perfluoromethylheptane sulfonic acid isomers (sm-PFOS), perfluorohexane sulfonic acid (PFHxS), and the total PFAS. Conclusions: Higher PFAS exposure was associated with altered iron status biomarkers While this cross-sectional study cannot establish causality, the observed associations raise the possibility that PFAS exposure may influence iron absorption. These findings emphasize the need for additional research into the potential impact of PFAS exposure on iron homeostasis. Full article
(This article belongs to the Section Medical Research)
Show Figures

Figure 1

17 pages, 4939 KB  
Article
Distinct Effects of PFOS and OBS on Neurotoxicity via PMK-1 Mediated Pathway in Caenorhabditis elegans
by Jiahong Jiang, Qi Liu, Boxiang Zhang, Lei Zhao and Dan Xu
Toxics 2025, 13(8), 662; https://doi.org/10.3390/toxics13080662 - 6 Aug 2025
Viewed by 1020
Abstract
Sodium p-perfluorous nonenoxybenzenesulfonate (OBS) has been proposed as a substitute for perfluorooctanesulfonic acid (PFOS), yet it has garnered increasing attention due to its environmental persistence and potential toxicity. Despite these concerns, the neurotoxic mechanisms of OBS remain unclear. This study investigates and compares [...] Read more.
Sodium p-perfluorous nonenoxybenzenesulfonate (OBS) has been proposed as a substitute for perfluorooctanesulfonic acid (PFOS), yet it has garnered increasing attention due to its environmental persistence and potential toxicity. Despite these concerns, the neurotoxic mechanisms of OBS remain unclear. This study investigates and compares the neurotoxic effects and mechanisms of OBS and PFOS in Caenorhabditis elegans. L4-stage worms were exposed to OBS (0.1–100 μM) or PFOS (100 μM) for 24 h. Neurobehavioral analysis showed that OBS exposure induced concentration-dependent neurobehavioral deficits, with 100 μM OBS significantly reducing pharyngeal pumping rate (29.8%), head swing frequency (23.4%), and body bending frequency (46.6%), surpassing the effects of PFOS. Both compounds decreased the fluorescence intensity of dopaminergic, glutamatergic, and γ-aminobutyric acid neurons and downregulated neurotransmitter-associated genes. They also increased ROS generation and inhibited antioxidant gene expression. Molecular docking revealed that OBS had a stronger binding affinity to p38 MAPK key protein (PMK-1) than PFOS. OBS and PFOS upregulated pmk-1 and skn-1, modulating oxidative stress and neuronal function. pmk-1 mutation differentially affected OBS-induced neurobehavioral changes and gene expression alterations. Our findings indicate that OBS exhibits stronger neurotoxicity than PFOS in Caenorhabditis elegans, mediated through the PMK-1 pathway. These results highlight the need for further investigation into the safety of OBS as a PFOS alternative. Full article
(This article belongs to the Special Issue Molecular Mechanisms of PFAS-Induced Toxicity and Carcinogenicity)
Show Figures

Graphical abstract

20 pages, 1087 KB  
Review
Visceral, Neural, and Immunotoxicity of Per- and Polyfluoroalkyl Substances: A Mini Review
by Pietro Martano, Samira Mahdi, Tong Zhou, Yasmin Barazandegan, Rebecca Iha, Hannah Do, Joel Burken, Paul Nam, Qingbo Yang and Ruipu Mu
Toxics 2025, 13(8), 658; https://doi.org/10.3390/toxics13080658 - 31 Jul 2025
Cited by 1 | Viewed by 2112
Abstract
Per- and polyfluoroalkyl substances (PFASs) have gained significant attention due to their widespread distribution in the environment and potential adverse health effects. While ingestion, especially through contaminated drinking water, is considered the primary route of human exposure, recent research suggests that other pathways, [...] Read more.
Per- and polyfluoroalkyl substances (PFASs) have gained significant attention due to their widespread distribution in the environment and potential adverse health effects. While ingestion, especially through contaminated drinking water, is considered the primary route of human exposure, recent research suggests that other pathways, such as inhalation and dermal absorption, also play a significant role. This review provides a concise overview of the toxicological impacts of both legacy and emerging PFASs, such as GenX and perfluorobutane sulfonic acid (PFBS), with a particular focus on their effects on the liver, kidneys, and immune and nervous systems, based on findings from recent in vivo, in vitro, and epidemiological studies. Despite the transition to PFAS alternatives, much of the existing toxicity data focus on a few legacy compounds, such as perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), which have been linked to adverse immune outcomes, particularly in children. However, evidence for carcinogenic risk remains limited to populations with extremely high exposure levels, and data on neurodevelopmental effects remain underexplored. While epidemiological and experimental animal studies supported these findings, significant knowledge gaps persist, especially regarding emerging PFASs. Therefore, this review examines the visceral, neural, and immunotoxicity data for emerging PFASs and mixtures from recent studies. Given the known risks from well-studied PFASs, a precautionary principle should be adopted to mitigate human health risks posed by this large and diverse group of chemicals. Full article
(This article belongs to the Section Emerging Contaminants)
Show Figures

Graphical abstract

21 pages, 2519 KB  
Review
Distribution and Ecological Risk Assessment of Perfluoroalkyl and Polyfluoroalkyl Substances in Chinese Soils: A Review
by Junyi Wang, Otgontuya Tsogbadrakh, Jichen Tian, Faisal Hai, Chenpeng Lyu, Guangming Jiang and Guoyu Zhu
Water 2025, 17(15), 2246; https://doi.org/10.3390/w17152246 - 28 Jul 2025
Cited by 1 | Viewed by 1932
Abstract
Per- and polyfluoroalkyl substances (PFASs) are emerging pollutants of global concern due to their high environmental persistence and bioaccumulative characteristics. This study investigates PFAS concentrations in soils from China through an extensive literature review, covering soil samples from seventeen provinces and the years [...] Read more.
Per- and polyfluoroalkyl substances (PFASs) are emerging pollutants of global concern due to their high environmental persistence and bioaccumulative characteristics. This study investigates PFAS concentrations in soils from China through an extensive literature review, covering soil samples from seventeen provinces and the years from 2009 to 2024. It was found that the total concentration of PFAS in soil ranged from 0.25 to 6240 ng/g, with the highest contamination levels observed in coastal provinces, particularly Fujian (620 ng/g) and Guangdong (1090 ng/g). Moreover, Fujian Province ranked the highest among multiple regions with a median PFAS concentration of 15.7 ng/g for individual compounds. Ecological risk assessment, focusing on areas where perfluorooctanoic acid (PFOA) or perfluorooctane sulfonate (PFOS) were identified as the primary soil PFAS compounds, showed moderate ecological risk from PFOA in Shanghai (0.24), while PFOS posed a high ecological risk in Fujian and Guangdong, with risk values of 43.3 and 1.4, respectively. Source analysis revealed that anthropogenic activities, including PFAS production, firefighting foam usage, and landfills, were the primary contributors to soil contamination. Moreover, soil PFASs tend to migrate into groundwater via adsorption and seepage, ultimately entering the human body through bioaccumulation or drinking water, posing health risks. These findings enhance our understanding of PFAS distribution and associated risks in Chinese soils, providing crucial insights for pollution management, source identification, and regulation strategies in diverse areas. Full article
(This article belongs to the Section Soil and Water)
Show Figures

Figure 1

25 pages, 3545 KB  
Article
Combined Effects of PFAS, Social, and Behavioral Factors on Liver Health
by Akua Marfo and Emmanuel Obeng-Gyasi
Med. Sci. 2025, 13(3), 99; https://doi.org/10.3390/medsci13030099 - 28 Jul 2025
Cited by 1 | Viewed by 1567
Abstract
Background: Environmental exposures, such as per- and polyfluoroalkyl substances (PFAS), in conjunction with social and behavioral factors, can significantly impact liver health. This research investigates the combined effects of PFAS (perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), alcohol consumption, smoking, income, and education [...] Read more.
Background: Environmental exposures, such as per- and polyfluoroalkyl substances (PFAS), in conjunction with social and behavioral factors, can significantly impact liver health. This research investigates the combined effects of PFAS (perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), alcohol consumption, smoking, income, and education on liver function among the U.S. population, utilizing data from the 2017–2018 National Health and Nutrition Examination Survey (NHANES). Methods: PFAS concentrations in blood samples were analyzed using online solid-phase extraction combined with liquid chromatography–tandem mass spectrometry (LC-MS/MS), a highly sensitive and specific method for detecting levels of PFAS. Liver function was evaluated using biomarkers such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), gamma-glutamyltransferase (GGT), total bilirubin, and the fatty liver index (FLI). Descriptive statistics and multivariable linear regression analyses were employed to assess the associations between exposures and liver outcomes. Bayesian Kernel Machine Regression (BKMR) was utilized to explore the nonlinear and interactive effects of these exposures. To determine the relative influence of each factor on liver health, Posterior Inclusion Probabilities (PIPs) were calculated. Results: Linear regression analyses indicated that income and education were inversely associated with several liver injury biomarkers, while alcohol use and smoking demonstrated stronger and more consistent associations. Bayesian Kernel Machine Regression (BKMR) further highlighted alcohol and smoking as the most influential predictors, particularly for GGT and total bilirubin, with posterior inclusion probabilities (PIPs) close to 1.0. In contrast, PFAS showed weaker associations. Regression coefficients were small and largely non-significant, and PIPs were comparatively lower across most liver outcomes. Notably, education had a higher PIP for ALT and GGT than PFAS, suggesting a more protective role in liver health. People with higher education levels tend to live healthier lifestyles, have better access to healthcare, and are generally more aware of health risks. These factors can all help reduce the risk of liver problems. Overall mixture effects demonstrated nonlinear trends, including U-shaped relationships for ALT and GGT, and inverse associations for AST, FLI, and ALP. Conclusion: These findings underscore the importance of considering both environmental and social–behavioral determinants in liver health. While PFAS exposures remain a long-term concern, modifiable lifestyle and structural factors, particularly alcohol, smoking, income, and education, exert more immediate and pronounced effects on hepatic biomarkers in the general population. Full article
Show Figures

Figure 1

13 pages, 529 KB  
Article
Emerging Pollutants in Chinstrap Penguins and Krill from Deception Island (South Shetland Islands, Antarctica)
by Miguel Motas, Silvia Jerez-Rodríguez, José Manuel Veiga-del-Baño, Juan José Ramos, José Oliva, Miguel Ángel Cámara, Pedro Andreo-Martínez and Simonetta Corsolini
Toxics 2025, 13(7), 549; https://doi.org/10.3390/toxics13070549 - 29 Jun 2025
Cited by 2 | Viewed by 871
Abstract
This study aimed to evaluate the presence of emerging pollutants [perfluorinated compounds, phthalates and bisphenol A (BPA)] in chinstrap penguins (Pygoscelis antarctica) and krill (Euphausia superba) from Deception Island (South Shetland Islands, Antarctica) to provide data on the occurrence [...] Read more.
This study aimed to evaluate the presence of emerging pollutants [perfluorinated compounds, phthalates and bisphenol A (BPA)] in chinstrap penguins (Pygoscelis antarctica) and krill (Euphausia superba) from Deception Island (South Shetland Islands, Antarctica) to provide data on the occurrence of emerging pollutants in Antarctica. For this purpose, thirty-four samples were studied, including four samples of adult tissue and six samples of chick tissue, as well as krill samples from the area. The selected samples were subjected to extraction processes and subsequent analytical determination of perfluorooctane sulfonate, perfluorooctanoic acid, di(2-ethylhexyl) phthalate, mono(2-ethylhexyl) phthalate and BPA using high-performance liquid chromatography coupled with electrospray ionization mass spectrometry. Our results highlight that the analyzed organic pollutants, except for BPA, are clearly present in Pygoscelis antarctica and Euphausia superba from Deception Island. Full article
(This article belongs to the Special Issue Environmental Toxicology and Risk Assessment of Priority Substances)
Show Figures

Graphical abstract

23 pages, 1900 KB  
Article
Application of a Dynamic Exposure Population Toxicokinetic Model for Perfluorooctane Sulfonic Acid (PFOS) and Extension to Perfluorodecanoic Acid (PFDA) at a North American Beef Cattle Farm with a History of Biosolids Land Application
by Barbara A. Astmann, Antti T. Mikkonen, Thomas L. Simones, Meghan Flanagan, Duncan Pfaehler, Ivan Lenov and Andrew E. Smith
Toxics 2025, 13(7), 541; https://doi.org/10.3390/toxics13070541 - 27 Jun 2025
Cited by 3 | Viewed by 1696
Abstract
Historical application of wastewater treatment sludge (biosolids) has introduced per- and polyfluoroalkyl substances (PFAS) into agricultural systems and led to contamination of crops and livestock. Previous work validated a dynamic exposure and population toxicokinetic (DE_PopTK) modeling approach for estimating perfluorooctane sulfonic acid (PFOS) [...] Read more.
Historical application of wastewater treatment sludge (biosolids) has introduced per- and polyfluoroalkyl substances (PFAS) into agricultural systems and led to contamination of crops and livestock. Previous work validated a dynamic exposure and population toxicokinetic (DE_PopTK) modeling approach for estimating perfluorooctane sulfonic acid (PFOS) and perfluorohexane sulfonic acid (PFHxS) concentrations in cattle tissues at sites primarily dominated by water contamination. This work expands the efforts to validate the DE_PopTK model at a self-contained beef farm in Maine with PFAS exposures from feed grown on site where soil is contaminated from historical biosolids applications. The model is also extended to estimate perfluorodecanoic acid (PFDA) exposure and tissue levels. Farm-specific data were obtained to consider farm management practices, spatial variation of PFAS in soil, animal growth, and seasonal and annual variability in estimating daily exposures based on water, feed, and soil intake. A dynamic exposure pattern was observed as cattle accumulated PFAS while consuming feed grown on contaminated land and eliminated it while grazing on non-contaminated pastures. Model-estimated PFOS and PFDA levels in serum and muscle were in good agreement with biomonitoring data collected at the farm over a four-year period to reflect periods of accumulation and depuration, with the percentage error ranging from 16% to 73% when comparing modeled and measured data. Our findings demonstrated that understanding farm exposures and collecting site-specific data were integral to model performance. The model was applied to simulate management strategies and complement economic analyses to demonstrate that, with modifications to management practices, it is feasible for the farm to achieve lower PFOS and PFDA levels in beef and maintain economic viability despite elevated PFAS soil levels. Full article
Show Figures

Graphical abstract

Back to TopTop