Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (367)

Search Parameters:
Keywords = peat production

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2299 KiB  
Article
Valorization of Waste Mineral Wool and Low-Rank Peat in the Fertilizer Industry in the Context of a Resource-Efficient Circular Economy
by Marta Huculak-Mączka, Dominik Nieweś, Kinga Marecka and Magdalena Braun-Giwerska
Sustainability 2025, 17(15), 7083; https://doi.org/10.3390/su17157083 - 5 Aug 2025
Abstract
This study aims to evaluate eco-innovative solutions in the fertilizer industry that allow for waste valorization in the context of a resource-efficient circular economy. A comprehensive reuse strategy was developed for low-rank peat and post-cultivation horticultural mineral wool, involving the extraction of valuable [...] Read more.
This study aims to evaluate eco-innovative solutions in the fertilizer industry that allow for waste valorization in the context of a resource-efficient circular economy. A comprehensive reuse strategy was developed for low-rank peat and post-cultivation horticultural mineral wool, involving the extraction of valuable humic substances from peat and residual nutrients from used mineral wool, followed by the use of both post-extraction residues to produce organic–mineral substrates. The resulting products/semifinished products were characterized in terms of their composition and properties, which met the requirements necessary to obtain the admission of this type of product to the market in accordance with the Regulation of the Minister for Agriculture and Rural Development of 18 June 2008 on the implementation of certain provisions of the Act on fertilizers and fertilization (Journal of Laws No 119, item 765). Elemental analysis, FTIR spectroscopy, and solid-state CP-MAS 13C NMR spectroscopy suggest that post-extraction peat has a relatively condensed structure with a high C content (47.4%) and a reduced O/C atomic ratio and is rich in alkyl-like matter (63.2%) but devoid of some functional groups in favor of extracted fulvic acids. Therefore, it remains a valuable organic biowaste, which, in combination with post-extraction waste mineral wool in a ratio of 60:40 and possibly the addition of mineral nutrients, allows us to obtain a completely new substrate with a bulk density of 264 g/m3, a salinity of 7.8 g/dm3 and a pH of 5.3, with an appropriate content of heavy metals and with no impurities, meeting the requirements of this type of product. A liquid fertilizer based on an extract containing previously recovered nutrients also meets the criteria in terms of quality and content of impurities and can potentially be used as a fertilizing product suitable for agricultural crops. This study demonstrates a feasible pathway for transforming specific waste streams into valuable agricultural inputs, contributing to environmental protection and sustainable production. The production of a new liquid fertilizer using nutrients recovered from post-cultivation mineral wool and the preparation of an organic–mineral substrate using post-extraction solid residue is a rational strategy for recycling hard-to-biodegrade end-of-life products. Full article
Show Figures

Figure 1

15 pages, 1806 KiB  
Article
Drought and Shrub Encroachment Accelerate Peatland Carbon Loss Under Climate Warming
by Fan Lu, Boli Yi, Jun-Xiao Ma, Si-Nan Wang, Yu-Jie Feng, Kai Qin, Qiansi Tu and Zhao-Jun Bu
Plants 2025, 14(15), 2387; https://doi.org/10.3390/plants14152387 - 2 Aug 2025
Viewed by 156
Abstract
Peatlands store substantial amounts of carbon (C) in the form of peat, but are increasingly threatened by drought and shrub encroachment under climate warming. However, how peat decomposition and its temperature sensitivity (Q10) vary with depth and plant litter input [...] Read more.
Peatlands store substantial amounts of carbon (C) in the form of peat, but are increasingly threatened by drought and shrub encroachment under climate warming. However, how peat decomposition and its temperature sensitivity (Q10) vary with depth and plant litter input under these stressors remains poorly understood. We incubated peat from two depths with different degrees of decomposition, either alone or incubated with Sphagnum divinum shoots or Betula ovalifolia leaves, under five temperature levels and two moisture conditions in growth chambers. We found that drought and Betula addition increased CO2 emissions in both peat layers, while Sphagnum affected only shallow peat. Deep peat alone or with Betula exhibited higher Q10 than pure shallow peat. Drought increased the Q10 of both depths’ peat, but this effect disappeared with fresh litter addition. The CO2 production rate showed a positive but marginal correlation with microbial biomass carbon, and it displayed a rather similar responsive trend to warming as the microbial metabolism quotient. These results indicate that both deep and dry peat are more sensitive to warming, highlighting the importance of keeping deep peat buried and waterlogged to conserve existing carbon storage. Additionally, they further emphasize the necessity of Sphagnum moss recovery following vascular plant encroachment in restoring carbon sink function in peatlands. Full article
(This article belongs to the Section Plant–Soil Interactions)
Show Figures

Figure 1

26 pages, 8845 KiB  
Article
Occurrence State and Genesis of Large Particle Marcasite in a Thick Coal Seam of the Zhundong Coalfield in Xinjiang
by Xue Wu, Ning Lü, Shuo Feng, Wenfeng Wang, Jijun Tian, Xin Li and Hayerhan Xadethan
Minerals 2025, 15(8), 816; https://doi.org/10.3390/min15080816 - 31 Jul 2025
Viewed by 176
Abstract
The Junggar Basin contains a large amount of coal resources and is an important coal production base in China. The coal seam in Zhundong coalfield has a large single-layer thickness and high content of inertinite, but large particle Fe-sulphide minerals are associated with [...] Read more.
The Junggar Basin contains a large amount of coal resources and is an important coal production base in China. The coal seam in Zhundong coalfield has a large single-layer thickness and high content of inertinite, but large particle Fe-sulphide minerals are associated with coal seams in some mining areas. A series of economic and environmental problems caused by the combustion of large-grained Fe-sulphide minerals in coal have seriously affected the economic, clean and efficient utilization of coal. In this paper, the ultra-thick coal seam of the Xishanyao formation in the Yihua open-pit mine of the Zhundong coalfield is taken as the research object. Through the analysis of coal quality, X-ray fluorescence spectrometer test of major elements in coal, inductively coupled plasma mass spectrometry test of trace elements, SEM-Raman identification of Fe-sulphide minerals in coal and LA-MC-ICP-MS test of sulfur isotope of marcasite, the coal quality characteristics, main and trace element characteristics, macro and micro occurrence characteristics of Fe-sulphide minerals and sulfur isotope characteristics of marcasite in the ultra-thick coal seam of the Xishanyao formation are tested. On this basis, the occurrence state and genesis of large particle Fe-sulphide minerals in the ultra-thick coal seam of the Xishanyao formation are clarified. The main results and understandings are as follows: (1) the occurrence state of Fe-sulphide minerals in extremely thick coal seams is clarified. The Fe-sulphide minerals in the extremely thick coal seam are mainly marcasite, and concentrated in the YH-2, YH-3, YH-8, YH-9, YH-14, YH-15 and YH-16 horizons. Macroscopically, Fe-sulphide minerals mainly occur in three forms: thin film Fe-sulphide minerals, nodular Fe-sulphide minerals, and disseminated Fe-sulphide minerals. Microscopically, they mainly occur in four forms: flake, block, spearhead, and crack filling. (2) The difference in sulfur isotope of marcasite was discussed, and the formation period of marcasite was preliminarily divided. The overall variation range of the δ34S value of marcasite is wide, and the extreme values are quite different. The polyflake marcasite was formed in the early stage of diagenesis and the δ34S value was negative, while the fissure filling marcasite was formed in the late stage of diagenesis and the δ34S value was positive. (3) The coal quality characteristics of the thick coal seam were analyzed. The organic components in the thick coal seam are mainly inertinite, and the inorganic components are mainly clay minerals and marcasite. (4) The difference between the element content in the thick coal seam of the Zhundong coalfield and the average element content of Chinese coal was compared. The major element oxides in the thick coal seam are mainly CaO and MgO, followed by SiO2, Al2O3, Fe2O3 and Na2O. Li, Ga, Ba, U and Th are enriched in trace elements. (5) The coal-accumulating environment characteristics of the extremely thick coal seam are revealed. The whole thick coal seam is formed in an acidic oxidation environment, and the horizon with Fe-sulphide minerals is in an acidic reduction environment. The acidic reduction environment is conducive to the formation of marcasite and is not conducive to the formation of pyrite. (6) There are many matrix vitrinite, inertinite content, clay content, and terrigenous debris in the extremely thick coal seam. The good supply of peat swamp, suitable reduction environment and pH value, as well as groundwater leaching and infiltration, together cause the occurrence of large-grained Fe-sulphide minerals in the extremely thick coal seam of the Xishanyao formation in the Zhundong coalfield. Full article
Show Figures

Figure 1

21 pages, 3149 KiB  
Article
Carrier-Based Application of Phyto-Benefic and Salt-Tolerant Bacillus wiedmannii and Bacillus paramobilis for Sustainable Wheat Production Under Salinity Stress
by Raina Rashid, Atia Iqbal, Muhammad Shahzad, Sidra Noureen and Hafiz Abdul Muqeet
Plants 2025, 14(14), 2096; https://doi.org/10.3390/plants14142096 - 8 Jul 2025
Viewed by 391
Abstract
Plant growth-promoting rhizobacteria (PGPR) are beneficial soil microorganisms that enhance plant growth and stress tolerance through various mechanisms, including phytohormone production, EPS production, phosphate solubilization, and extracellular enzyme production. These bacteria establish endosymbiotic relationships with plants, improving nutrient availability and overall crop productivity. [...] Read more.
Plant growth-promoting rhizobacteria (PGPR) are beneficial soil microorganisms that enhance plant growth and stress tolerance through various mechanisms, including phytohormone production, EPS production, phosphate solubilization, and extracellular enzyme production. These bacteria establish endosymbiotic relationships with plants, improving nutrient availability and overall crop productivity. Despite extensive research on PGPR isolation, their practical application in agricultural fields has faced challenges due to environmental stresses and limited survival during storage. To address these limitations, the present study aimed to isolate salt-tolerant bacterial strains and formulate them with organic carriers to enhance their stability and effectiveness under saline conditions. The isolated bacterial strains exhibited high salt tolerance, surviving NaCl concentrations of up to 850 millimolar. These strains demonstrated basic key plant growth-promoting traits, including phosphate solubilization, auxin production, and nitrogen fixation. The application of carrier-based formulations with both strains, Bacillus wiedmannii (RR2) and Bacillus paramobilis (RR3), improved physiological and biochemical parameters in wheat plants subjected to salinity stress. The treated plants, when subjected to salinity stress, showed notable increases in chlorophyll a (73.3% by Peat + RR3), chlorophyll b (41.1% by Compost + RR3), carotenoids (51.1% by Peat + RR3), relative water content (77.7% by Compost + RR2), proline (75.8% by compost + RR3), and total sugar content (12.4% by peat + RR2), as compared to the stressed control. Plant yield parameters such as stem length (35.1% by Peat + RR3), spike length (22.5% by Peat + RR2), number of spikes (67.6% by Peat + RR3), and grain weight (39.8% by Peat + RR3) were also enhanced and compared to the stressed control. These results demonstrate the potential of the selected salt-tolerant PGPR strains (ST-strains) to mitigate salinity stress and improve wheat yield under natural field conditions. The study highlights the significance of carrier-based PGPR applications as an effective and sustainable approach for enhancing crop productivity in saline-affected soils. Full article
Show Figures

Figure 1

19 pages, 648 KiB  
Article
Supply Chain Dynamics of Moving from Peat-Based to Peat-Free Horticulture
by M. Nazli Koseoglu and Michaela Roberts
Sustainability 2025, 17(13), 6159; https://doi.org/10.3390/su17136159 - 4 Jul 2025
Viewed by 309
Abstract
Healthy peatlands provide valuable ecosystem services. Peat extraction damages peatlands, leading to carbon emissions. One of the main reasons for peat extraction is for use in horticulture. Replacing peat with recycled organic materials in horticulture is critical to preserve the valuable ecosystems provided [...] Read more.
Healthy peatlands provide valuable ecosystem services. Peat extraction damages peatlands, leading to carbon emissions. One of the main reasons for peat extraction is for use in horticulture. Replacing peat with recycled organic materials in horticulture is critical to preserve the valuable ecosystems provided by peatlands and to establish more circular supply chains that are reliant on recycling rather than extraction. Despite the strong policy commitment and budget allocation to restore peatlands, the demand for peat-based growing media remains high and drives most of the peat demand. In our research, we mapped the growing media supply chain, held semi-structured interviews with key stakeholders representing different interests, and surveyed amateur gardeners in the UK to understand the bottlenecks experienced by each profile in ending peat use and how to overcome them. We employed semi-structured key expert surveys to understand the supply chain dynamics and consumer demand, informed by these early interviews and the previous literature, we prepared and distributed an online consumer survey and interviewed supply-side stakeholders to understand their perspectives. The findings indicate that the barriers of availability, cost, and performance are shared between the supply-and-demand-side stakeholders. A portfolio of financial, educational and logistic interventions is required to simultaneously support the supply side to accelerate the transformation of production and supply patterns and to aid the demand side to adapt to growing with compost of recycled organic materials. The policies promoting recycled organic material use in horticulture must be coordinated within the UK and with other parts of Europe focusing on the elimination of the peat content in products rather than peat extraction to avoid extraction and the associated destruction of peat stocks elsewhere. Full article
Show Figures

Figure 1

20 pages, 3098 KiB  
Article
Exploring Coffee Silverskin as a Sustainable Peat Additive in the Plant Nursery Production
by Natalia Miler, Piotr Wojewódzki, Anita Woźny, Dominika Rymarz and Agnieszka Gołębiewska
Agronomy 2025, 15(7), 1633; https://doi.org/10.3390/agronomy15071633 - 4 Jul 2025
Viewed by 333
Abstract
Sustainable alternatives to peat in horticultural substrates are increasingly sought. This study assessed the use of coffee silverskin (CS), a byproduct of coffee roasting, as a substrate component for rooting and growing ornamental plants—Buddleja, Lythrum, and Veronica. Plants were [...] Read more.
Sustainable alternatives to peat in horticultural substrates are increasingly sought. This study assessed the use of coffee silverskin (CS), a byproduct of coffee roasting, as a substrate component for rooting and growing ornamental plants—Buddleja, Lythrum, and Veronica. Plants were cultivated in peat-based substrates with 0%, 25%, 50%, and 75% CS addition. In order to determine the effect of substrate modification with CS, the following parameters were analyzed: rooting efficiency, plant growth, pigment content, physiological indices (SPAD, Fv/Fm, NFI), and substrate properties. A 25% CS addition supported high rooting success (94.4% on average) without negatively affecting root or shoot traits, and even improved flowering earliness. At 50% CS, Buddleja showed moderate tolerance, while Lythrum and Veronica performed poorly. The substrate with 75% CS addition significantly reduced rooting and growth across all species. Elevated pH and electrical conductivity in high-CS substrates likely contributed to plant stress. Physiological indicators confirmed minimal stress at 25% CS, but increased stress response at 75%. Overall, CS can replace up to 25% of peat in substrates without compromising plant performance, offering a sustainable alternative in nursery production. However, higher CS levels require structural or chemical adjustments to reduce compaction and stress effects. Further research is needed to improve CS-based substrate formulations for broader horticultural use. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

12 pages, 2724 KiB  
Article
Growth, Spectral Vegetation Indices, and Nutritional Performance of Watermelon Seedlings Subjected to Increasing Salinity Levels
by Alfonso Llanderal, Gabriela Vasquez Muñoz, Malena Suleika Pincay-Solorzano, Stanislaus Antony Ceasar and Pedro García-Caparros
Agronomy 2025, 15(7), 1620; https://doi.org/10.3390/agronomy15071620 - 2 Jul 2025
Viewed by 373
Abstract
The production of high-quality horticultural seedlings is essential for successful field transplantation. Nevertheless, increasing soil salinization poses a significant challenge, particularly in salt-affected regions. Watermelon seedlings were cultivated in pots with a substrate (mixture of ground blonde peat (60%), black peat (30%), and [...] Read more.
The production of high-quality horticultural seedlings is essential for successful field transplantation. Nevertheless, increasing soil salinization poses a significant challenge, particularly in salt-affected regions. Watermelon seedlings were cultivated in pots with a substrate (mixture of ground blonde peat (60%), black peat (30%), and perlite (10%) with pH 5.5–6.0) within a bamboo nethouse and subjected to varying salinity levels, i.e., 2–8 dS m−1 (T1, T2, T3, and T4). At the end of the experimental period (4 weeks), the growth parameters, spectral vegetation indices, and chemical parameters of the sap and leachate were evaluated. The results demonstrated that increased salinity levels reduced the biomass of watermelon seedlings. In addition, elevated salinity levels were associated with increased values of B (48%) and NBI (46%) and decreased values of G (9%) and NGI (7%) at the end of the experimental period. The effects of the salinity levels were also evident in the sap chemical parameters, with marked increases in Cl, Ca2+, and Na+ concentrations (9.6, 3.1, and 4.9 times, respectively) and decreases in the N-NO3, P, and K+ concentrations (51, 8, and 25%, respectively). The leachate analysis reported clear increases in the values of EC and concentrations of Cl, Ca2+, and Na+ at the end of the experimental period. To validate the relevance of these findings, further research under field conditions and across a range of climatic environments is warranted. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

19 pages, 1560 KiB  
Article
Hop Waste Seed Coating (Pilling) as Circular Bioeconomic Alternative to Improve Seed Germination and Trichoderma Development
by Sara Mayo-Prieto, Alejandra J. Porteous-Álvarez, Guzmán Carro-Huerga, Laura Zanfaño, Daniela Ramírez-Lozano, Álvaro Rodríguez-González, Alicia Lorenzana de la Varga and Pedro A. Casquero
Agriculture 2025, 15(13), 1328; https://doi.org/10.3390/agriculture15131328 - 20 Jun 2025
Viewed by 711
Abstract
This study investigates the use of hop cone residues as a sustainable alternative to peat in seed coating formulations for the delivery of biocontrol agents such as Trichoderma. Some native isolates, T. velutinum T029 and T. harzianum T019 and T059, were tested [...] Read more.
This study investigates the use of hop cone residues as a sustainable alternative to peat in seed coating formulations for the delivery of biocontrol agents such as Trichoderma. Some native isolates, T. velutinum T029 and T. harzianum T019 and T059, were tested for their development on peat and hop residues using qPCR. The results showed significantly higher fungal growth in hop cones, indicating their value as a carbon-rich substrate. Seed germination tests on various species showed that hop-based coatings did not inhibit germination and in some cases improved it. Field trials confirmed that bean seeds coated with hops 24 h before sowing outperformed those coated with peat, particularly in integrated production systems, in terms of germination. The results of this study suggest a new area of research: using hop residues in sustainable seed treatments could promote the valorization of agricultural residues, while improving crop establishment and reducing the dependence on synthetic inputs. Full article
(This article belongs to the Special Issue Converting and Recycling of Agroforestry Residues)
Show Figures

Figure 1

16 pages, 254 KiB  
Article
Reduction in Peat Usage in Container Production of Cherry Laurel (Prunus laurocerasus): Effects of Biochar and Compost Amendments on Substrate Quality and Plant Growth
by Miron Lewandowski, Przemysław Bąbelewski, Karolina Blabuś and Marta Czaplicka
Sustainability 2025, 17(12), 5599; https://doi.org/10.3390/su17125599 - 18 Jun 2025
Viewed by 311
Abstract
With increasing emphasis on sustainable horticulture, optimizing substrate composition is essential to reduce peat usage in container production. This study evaluated the effects of biochar and compost amendments on the growth and nutrient status of cherry laurel (Prunus laurocerasus) in two [...] Read more.
With increasing emphasis on sustainable horticulture, optimizing substrate composition is essential to reduce peat usage in container production. This study evaluated the effects of biochar and compost amendments on the growth and nutrient status of cherry laurel (Prunus laurocerasus) in two separate experiments conducted over five months. Experiment I assessed growth in pure peat and in peat–compost blends at volume ratios of 100:0, 70:30, 50:50, 30:70 and 0:100. Experiment II investigated the effect of adding biochar to a pure peat substrate at rates of 3 g·dm−3 and 5 g·dm−3. Key parameters were monitored, including the above and below-ground biomass, leaf and shoot counts, chlorophyll content, and the chemical composition of plant tissue and substrate. Compost addition increased the substrate pH from ~4.6 to ~6.4, while electrical conductivity increased with a higher compost content, reaching values approximately 2–3 times greater than in pure peat. Nutrient levels (Ca, K, Mg, P, NO3) also rose consistently with an increasing compost share. While a higher compost content generally reduced the biomass, leaf and shoot number, the greatest plant height and relatively favorable biomass were observed at 30% and 50% compost mixtures. Biochar addition slightly increased plant height, while the total biomass, root mass, and shoot number tended to decrease compared to pure peat, particularly at the lower biochar dose (3 g·dm−3). The substrate pH remained relatively stable, whereas electrical conductivity (EC) showed a slight upward trend with increasing biochar levels. Biochar also slightly increased the substrate nutrient content (Ca, K, Mg, P, NO3). Full article
(This article belongs to the Section Sustainable Agriculture)
16 pages, 1472 KiB  
Article
Valorization of Underused Biomass of Acacia dealbata and Acacia melanoxylon Through Vermicomposting as an Alternative Substrate for Cucumber Production
by Maria C. Morais, Elisabete Nascimento-Gonçalves, Tiago Azevedo, Henda Lopes, Helena Ferreira, Ana M. Coimbra, Berta Gonçalves, João R. Sousa, Marta Roboredo and Paula A. Oliveira
Recycling 2025, 10(3), 120; https://doi.org/10.3390/recycling10030120 - 17 Jun 2025
Viewed by 334
Abstract
Invasive alien species are one of the main threats to global biodiversity, and pose significant management challenges in several areas outside their natural range. In southern Mediterranean Europe, the invasion of Acacia species is particularly severe and its control requires costly and often [...] Read more.
Invasive alien species are one of the main threats to global biodiversity, and pose significant management challenges in several areas outside their natural range. In southern Mediterranean Europe, the invasion of Acacia species is particularly severe and its control requires costly and often ineffective actions. The use of vermicompost derived from these species to replace peat-based substrates in horticulture offers a promising alternative to mitigate their economic and environmental impacts while enhancing the sustainability of their control. This study explored the potential of vermicompost produced from the fresh aboveground waste biomass (leaves + stems + flowers) of Acacia dealbata and Acacia melanoxylon (75:25 w/w), two of the most aggressive Acacia species in the Mediterranean, using Eisenia fetida over twelve weeks. In essence, this study aimed to evaluate the quality of the produced vermicompost and its suitability as a partial substitute for potting substrate in the production of cucumber (Cucumis sativus) seedlings for transplant. Four substrate mixtures containing 0%, 10%, 30%, and 50% of Acacia vermicompost (w/w), combined with commercial peat-based potting substrate and perlite (20%) were tested in polystyrene seedling trays. Seedling emergence, growth, and leaf biochemical parameters (photosynthetic pigments, phenolics, soluble sugars and starch, and total thiobarbituric acid-reactive substances—TBARSs) were evaluated. The results showed that the addition of Acacia vermicompost to the commercial substrate did not affect its germination but significantly enhanced seedling growth, particularly in mixtures containing 30% and 50% Acacia vermicompost. In addition, the absence of accumulation of TBARSs also reflected the superiority of these two treatments. These findings suggest that vermicompost derived from A. dealbata and A. melanoxylon biomass can be a viable peat-based substrate alternative for horticultural production, with the dual benefit of promoting sustainable agricultural practices and contributing to invasive species management. Full article
(This article belongs to the Special Issue Biomass Revival: Rethinking Waste Recycling for a Greener Future)
Show Figures

Figure 1

17 pages, 4663 KiB  
Article
New Data from Minor Mountainous Lakes as High-Resolution Geological Archives of the Northern Apennines, Italy: Lake Moo
by Yago Nestola and Stefano Segadelli
Geosciences 2025, 15(6), 217; https://doi.org/10.3390/geosciences15060217 - 11 Jun 2025
Viewed by 357
Abstract
Sedimentary basins developed in mountain belts are natural traps of catchment erosion products and can produce comprehensive palaeoflood records that extend beyond instrumental or historical data. This study investigates the Lake Moo plain (1120 m a.s.l.), located in the Mt. Ragola (1712 m [...] Read more.
Sedimentary basins developed in mountain belts are natural traps of catchment erosion products and can produce comprehensive palaeoflood records that extend beyond instrumental or historical data. This study investigates the Lake Moo plain (1120 m a.s.l.), located in the Mt. Ragola (1712 m a.s.l.) ophiolitic massif in the Northern Apennines (Italy), which serves as an excellent case study for inferring the chronology of past flood events due to its position relative to the dominant atmospheric flow and its favorable geological and geomorphological characteristics. The Northern Apennines is a relatively understudied region regarding the reconstruction of past Holocene flood activity through the analysis of lake sediments and peat bogs, compared with areas like the Alps. The main objective of this research was to analyze sediment cores taken from a lake situated in a catchment area dominated by ultramafic rock lithologies and associated residual weathering cover deposits. This allowed us to detect and characterize past flood events in the Ligurian–Emilian Apennines. A multidisciplinary approach, integrated with reference data on geology, geomorphology, pedology, and petrography, enabled a more detailed description of the changes in the hydrologic cycle. Collectively, these data suggest that periods of increased past flood activity were closely linked to phases of rapid climate change at the scale of the Ligurian–Emilian Apennines. The preliminary results suggest that floods occurring during periods of temperature drops have distinct characteristics compared with those during temperature rises. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

14 pages, 2070 KiB  
Article
Development of an Efficient Micropropagation Protocol for Curcuma longa L. cv. Trang 1
by Atcha Boonprasert, Pundanai Chitphet, Nuttha Sanevas, Ekaphan Kraichak, Supachai Vuttipongchaikij and Narong Wongkantrakorn
Int. J. Plant Biol. 2025, 16(2), 64; https://doi.org/10.3390/ijpb16020064 - 6 Jun 2025
Viewed by 578
Abstract
Turmeric (Curcuma longa L. cv. Trang 1), a high-value cultivar known for its elevated curcuminoid and volatile oil content, holds significant potential in pharmaceutical and food applications. However, its commercial propagation is constrained by low rhizome productivity and the limitations of conventional [...] Read more.
Turmeric (Curcuma longa L. cv. Trang 1), a high-value cultivar known for its elevated curcuminoid and volatile oil content, holds significant potential in pharmaceutical and food applications. However, its commercial propagation is constrained by low rhizome productivity and the limitations of conventional vegetative propagation. This study aimed to improve the propagation efficiency of turmeric cv. Trang 1 by developing optimized protocols for explant sterilization, shoot proliferation, root induction, and acclimatization. Sprouted rhizome buds were sterilized and cultured on a Murashige and Skoog (MS) medium supplemented with various plant growth regulators, including cytokinins (benzyladenine [BA], thidiazuron [TDZ], and meta-topolin [mT]) and auxins (indole-3-butyric acid [IBA] and 1-naphthaleneacetic acid [NAA]). The shoot induction (4.60 ± 1.47 shoots per explant) and shoot height (2.34 ± 0.61 cm) were observed on the MS medium with 3.0 mg/L BA, while the TDZ, at 0.5 mg/L, also induced a high number of shoots (5.22 ± 0.64). When using single shoots derived from bud explants, mT at 1.5 mg/L significantly enhanced the shoot formation. For the root induction, 2.0 mg/L IBA yielded the highest number of roots (7.33 ± 1.49), while NAA was less effective. The plantlets acclimatized in a 1:1 soil and peat moss mixture showed the highest survival rate (86.67%). This improved protocol enables the efficient production of turmeric plantlets, supporting commercial deployment. Full article
(This article belongs to the Section Plant Physiology)
Show Figures

Figure 1

12 pages, 1878 KiB  
Article
Micropropagation of Philodendron ‘White Knight’ via Shoot Regeneration from Petiole Explants
by Iro Kang and Iyyakkannu Sivanesan
Plants 2025, 14(11), 1714; https://doi.org/10.3390/plants14111714 - 4 Jun 2025
Viewed by 735
Abstract
Philodendron ‘White Knight’ is a popular climbing evergreen plant typically propagated through stem cuttings. However, this method is slow and inefficient, making it challenging to meet the rising market demand. In vitro propagation could enhance the multiplication of this cultivar. However, research on [...] Read more.
Philodendron ‘White Knight’ is a popular climbing evergreen plant typically propagated through stem cuttings. However, this method is slow and inefficient, making it challenging to meet the rising market demand. In vitro propagation could enhance the multiplication of this cultivar. However, research on its in vitro propagation is limited. Therefore, the objective of the present study was to establish an efficient micropropagation technique to mass-produce Philodendron ‘White Knight’ to meet the market demand. We investigate the impact of silver nanoparticles (Ag NPs) on the surface sterilization of Philodendron ‘White Knight’ petioles, the role of plant growth regulators in adventitious shoot regeneration and shoot multiplication, and the effect of auxins on the rooting ability of Philodendron ‘White Knight’ microshoots. There are few stages in plant micropropagation. The establishment of aseptic culture is the first and most important stage. For Philodendron ‘White Knight’, aseptic petiole explants (100%) were obtained after treatment with 40 mg L−1 Ag NPs for 60 min. This was followed by adventitious shoot induction, and the highest rate of adventitious shoot induction (52.6%) and the maximum shoot number (13.9 shoots per petiole) were achieved on Murashige and Skoog shoot multiplication B (MS-B) medium with 20 µM of 2-isopentenyl adenine (2-IP) and 5.0 µM of naphthalene acetic acid (NAA). The shoot multiplication stage was achieved with the highest number of shoots (34 shoots per shoot tip) with a length of 5.1 cm, which was obtained on MS-B medium with 5.0 µM 2-IP and 2.5 µM NAA. All the microshoots produced roots during the root induction stage with the maximum root number (8.2 roots per shoot), and the greatest plantlet height (9.1 cm) was achieved on half-strength Murashige and Skoog medium containing indole-3-butyric acid (10.0 μM). The rooted plantlets of Philodendron ‘White Knight’ were transplanted into a substrate composed of 10% peat moss, 50% orchid stone, and 40% coconut husk chips and acclimatized in a greenhouse environment, achieving a survival rate of 100%. This micropropagation protocol can be used for the commercial production of Philodendron ‘White Knight’. Full article
(This article belongs to the Special Issue Plant Tissue Culture V)
Show Figures

Figure 1

16 pages, 3060 KiB  
Article
Exploring Expert Systems and Geostatistical Modelling to Estimate the Extent of Peatland Suitable for Peat Inversion in Norway
by Geir-Harald Strand, Jonathan Rizzi, Dorothee Kolberg and Synnøve Rivedal
Land 2025, 14(6), 1186; https://doi.org/10.3390/land14061186 - 30 May 2025
Viewed by 389
Abstract
Peat inversion is a management technique used to reduce emissions and retain carbon in cultivated peatland while allowing for effective forage production. Although maps and land registers document the presence of cultivated peatland that is suitable for peat inversion, these data do not [...] Read more.
Peat inversion is a management technique used to reduce emissions and retain carbon in cultivated peatland while allowing for effective forage production. Although maps and land registers document the presence of cultivated peatland that is suitable for peat inversion, these data do not cover all regions of interest. This study explores how an expert system and geostatistical modelling can be used to identify cultivated peatland suitable for peat inversion. The expert system proved to work moderately well for cultivable (but not for cultivated) peatland. Geostatistical modelling, using cultivable peatland as statistical support, gave good results in regions with large, continuous landforms. The results were less accurate in regions with rough, rapidly shifting terrain forms and where peatland was less frequent. The difference could be seen in the range and shape of the semivariograms. Geostatistical modelling can be used to identify cultivated peatland suitable for peat inversion in regions where the semivariogram shows a clear and well-defined spatial autocorrelation structure. Full article
Show Figures

Figure 1

13 pages, 907 KiB  
Article
Investigating Black Soldier Fly Larval (Hermetia illucens) Frass Applications as a Partial Peat Replacement and Liquid Fertilizer in Brassicaceae Crop Production
by Maria Y. Chavez, Armando Villa Ignacio, Joshua K. Craver and Jennifer Bousselot
Agrochemicals 2025, 4(2), 8; https://doi.org/10.3390/agrochemicals4020008 - 29 May 2025
Viewed by 741
Abstract
Insect frass is the left-over side stream from mass rearing insects as food and feed. Research indicates that black soldier fly, Hermetia illucens, larvae (BSFL) frass can improve the yield of leafy greens while also increasing nutrient uptake. Two studies evaluated the [...] Read more.
Insect frass is the left-over side stream from mass rearing insects as food and feed. Research indicates that black soldier fly, Hermetia illucens, larvae (BSFL) frass can improve the yield of leafy greens while also increasing nutrient uptake. Two studies evaluated the impact of BSFL frass on two Brassicaceae crops: kale (Brassica oleracea) and mustard (Sinapis alba). In Study 1, greenhouse potting mixes comprised of 10% BSFL frass produced kale and mustard fresh and dry weights, relative chlorophyll concentrations, and nitrogen concentration in plant tissues that were comparable to a 100% peat mix control. In mustard tissue, phosphorus and potassium concentrations were higher in the BSFL 10% treatment compared to the control. This provides further motive for incorporating frass into peat-based substrates to reduce peat consumption and extraction. In Study 2, Liquid BSFL frass tea was applied to kale in an outdoor container study. The frass tea only treatment produced the worst outcomes for yield. However, a mixture of frass tea and traditional fertilizer resulted in comparable yield to a control provided the same volume in solely fertilizer. With further research, frass tea could be supplemented to reduce conventional fertilizers. Full article
(This article belongs to the Section Fertilizers and Soil Improvement Agents)
Show Figures

Figure 1

Back to TopTop