Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (255)

Search Parameters:
Keywords = passive pump

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 720 KiB  
Study Protocol
A Study Protocol to Assess the Association Between Ambient Air Pollution and Asthma and Other Respiratory Health Outcomes Amongst Children Below 5 Years of Age in Alexandra Township’s Early Childhood Development Centers, Johannesburg
by Velisha Thompson, Joyce Shirinde, Masilu D. Masekameni and Thokozani P. Mbonane
Methods Protoc. 2025, 8(4), 84; https://doi.org/10.3390/mps8040084 (registering DOI) - 1 Aug 2025
Viewed by 181
Abstract
Air pollution is linked to childhood mortality and morbidity in low- and middle-income countries globally. There is growing evidence linking air pollution to asthma and other respiratory diseases in children. Studies have shown that children are likely to experience asthma due to their [...] Read more.
Air pollution is linked to childhood mortality and morbidity in low- and middle-income countries globally. There is growing evidence linking air pollution to asthma and other respiratory diseases in children. Studies have shown that children are likely to experience asthma due to their narrow airways and their heightened sensitivity to environmental irritants. This study aims to investigate the relationship between ambient air pollution and respiratory diseases in children under the age of 5. The study will be conducted in the informal township of Alexandra, north of Johannesburg, South Africa. A quantitative approach will be used in this cross-sectional analytical study. Data will be collected using different tools that include a questionnaire to determine the prevalence of asthma and respiratory disease and potential risk factors. While environmental air pollution will be measured using Radiello passive samplers and Gillian pumps. Data will be analyzed using the latest version of the STATANow/MP 19.5 software. Furthermore, health risk assessment will be conducted for lifetime non-carcinogenic and carcinogenic risk estimation following the USEPA framework. The study will identify environmental triggers that exacerbate asthma and other respiratory conditions in other similar community settings and will contribute to the body of knowledge in public health. Ethical approval was obtained from the Research Ethics Committee, Faculty of Health Sciences at the University of Johannesburg. Full article
(This article belongs to the Section Public Health Research)
Show Figures

Figure 1

13 pages, 3812 KiB  
Article
Generation of Four-Beam Output in a Bonded Nd:YAG/Cr4+:YAG Laser via Fiber Splitter Pumping
by Qixiu Zhong, Dongdong Meng, Zhanduo Qiao, Wenqi Ge, Tieliang Zhang, Zihang Zhou, Hong Xiao and Zhongwei Fan
Photonics 2025, 12(8), 760; https://doi.org/10.3390/photonics12080760 - 29 Jul 2025
Viewed by 171
Abstract
To address the poor thermal performance and low output efficiency of conventional solid-state microchip lasers, this study proposes and implements a bonded Nd:YAG/Cr4+:YAG laser based on fiber splitter pumping. Experimental results demonstrate that at a 4.02 mJ pump pulse energy and [...] Read more.
To address the poor thermal performance and low output efficiency of conventional solid-state microchip lasers, this study proposes and implements a bonded Nd:YAG/Cr4+:YAG laser based on fiber splitter pumping. Experimental results demonstrate that at a 4.02 mJ pump pulse energy and a 100 Hz repetition rate, the system achieves four linearly polarized output beams with an average pulse energy of 0.964 mJ, a repetition rate of 100 Hz, and an optical-to-optical conversion efficiency of 23.98%. The energy distribution ratios for the upper-left, lower-left, upper-right, and lower-right beams are 22.61%, 24.46%, 25.50%, and 27.43%, with pulse widths of 2.184 ns, 2.193 ns, 2.205 ns, and 2.211 ns, respectively. As the optical axis distance increases, the far-field spot pattern transitions from a single circular profile to four fully separated spots, where the lower-right beam exhibits beam quality factors of Mx2 = 1.181 and My2 = 1.289. Simulations at a 293.15 K coolant temperature and a 4.02 mJ pump energy reveal that split pumping reduces the volume-averaged temperature rise in Nd:YAG by 28.81% compared to single-beam pumping (2.57 K vs. 3.61 K), decreases the peak temperature rise by 66.15% (6.97 K vs. 20.59 K), and suppresses peak-to-peak temperature variation by 78.6% (1.34 K vs. 6.26 K). Compared with existing multi-beam generation methods, the fiber splitter approach offers integrated advantages—including compact size, low cost, high energy utilization, superior beam quality, and elevated damage thresholds—and thus shows promising potential for automotive multi-point ignition, multi-beam single-photon counting LiDAR, and laser-induced breakdown spectroscopy (LIBS) online analysis. Full article
(This article belongs to the Special Issue Laser Technology and Applications)
Show Figures

Figure 1

17 pages, 3138 KiB  
Article
Addressing Energy Performance Challenges in a 24-h Fire Station Through Green Remodeling
by June Hae Lee, Jae-Sik Kang and Byonghu Sohn
Buildings 2025, 15(15), 2658; https://doi.org/10.3390/buildings15152658 - 28 Jul 2025
Viewed by 185
Abstract
This study presents a comprehensive case of green remodeling applied to a local fire station in Seoul, South Korea. The project aimed to improve energy performance through an integrated upgrade of passive systems (exterior insulation, high-performance windows, and airtightness) and active systems (electric [...] Read more.
This study presents a comprehensive case of green remodeling applied to a local fire station in Seoul, South Korea. The project aimed to improve energy performance through an integrated upgrade of passive systems (exterior insulation, high-performance windows, and airtightness) and active systems (electric heat pumps, energy recovery ventilation, and rooftop photovoltaic systems), while maintaining uninterrupted emergency operations. A detailed analysis of annual energy use before and after the remodeling shows a 44% reduction in total energy consumption, significantly exceeding the initial reduction target of 20%. While electricity use increased modestly during winter due to the electrification of heating systems, gas consumption dropped sharply by 63%, indicating a shift in energy source and improved efficiency. The building’s airtightness also improved significantly, with a reduction in the air change rate. The project further addressed unique challenges associated with continuously operated public facilities, such as insulating the fire apparatus garage and executing phased construction to avoid operational disruption. This study contributes valuable insights into green remodeling strategies for mission-critical public buildings, emphasizing the importance of integrating technical upgrades with operational constraints to achieve verified energy performance improvements. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

16 pages, 2583 KiB  
Article
Burst-Mode Operation of End-Pumped, Passively Q-Switched (Er/Yb):Glass Lasers
by Stephen R. Chinn, Lew Goldberg and A. D. Hays
Photonics 2025, 12(8), 750; https://doi.org/10.3390/photonics12080750 - 25 Jul 2025
Viewed by 170
Abstract
We describe the output characteristics of a compact, passively Q-switched, diode-end-pumped (Er/Yb):Glass laser operating in a multi-pulse burst mode. Such operation enables much higher optical efficiency and larger output of total energy than possible with conventional solitary pulse emissions. The laser generated a [...] Read more.
We describe the output characteristics of a compact, passively Q-switched, diode-end-pumped (Er/Yb):Glass laser operating in a multi-pulse burst mode. Such operation enables much higher optical efficiency and larger output of total energy than possible with conventional solitary pulse emissions. The laser generated a 15-pulse burst of pulses at 1.5 μm with a combined energy of 5.8 mJ. Measurements of pulse energies, spatial mode characteristics, output beam divergence, and impact of thermal effects in the (Er/Yb):Glass are described. These results are compared to predictions of a numerical simulation using a finite-difference beam propagation method (FD-BPM) that incorporates thermal effects caused by distributed local heating in the glass. We show good agreement between the measured and simulated laser output characteristics. Full article
(This article belongs to the Special Issue Laser Technology and Applications)
Show Figures

Figure 1

22 pages, 3165 KiB  
Article
Efficiency Enhancement of Photovoltaic Panels via Air, Water, and Porous Media Cooling Methods: Thermal–Electrical Modeling
by Brahim Menacer, Nour El Houda Baghdous, Sunny Narayan, Moaz Al-lehaibi, Liomnis Osorio and Víctor Tuninetti
Sustainability 2025, 17(14), 6559; https://doi.org/10.3390/su17146559 - 18 Jul 2025
Viewed by 473
Abstract
Improving photovoltaic (PV) panel performance under extreme climatic conditions is critical for advancing sustainable energy systems. In hyper-arid regions, elevated operating temperatures significantly reduce panel efficiency. This study investigates and compares three cooling techniques—air cooling, water cooling, and porous media cooling—using thermal and [...] Read more.
Improving photovoltaic (PV) panel performance under extreme climatic conditions is critical for advancing sustainable energy systems. In hyper-arid regions, elevated operating temperatures significantly reduce panel efficiency. This study investigates and compares three cooling techniques—air cooling, water cooling, and porous media cooling—using thermal and electrical modeling based on CFD simulations in ANSYS. The numerical model replicates a PV system operating under peak solar irradiance (900 W/m2) and realistic ambient conditions in Adrar, Algeria. Simulation results show that air cooling leads to a modest temperature reduction of 6 °C and a marginal efficiency gain of 0.25%. Water cooling, employing a top-down laminar flow, reduces cell temperature by over 35 °C and improves net electrical output by 30.9%, despite pump energy consumption. Porous media cooling, leveraging passive evaporation through gravel, decreases panel temperature by around 30 °C and achieves a net output gain of 26.3%. Mesh sensitivity and validation against experimental data support the accuracy of the model. These findings highlight the significant potential of water and porous material cooling strategies to enhance PV performance in hyper-arid environments. The study also demonstrates that porous media can deliver high thermal effectiveness with minimal energy input, making it a suitable low-cost option for off-grid applications. Future work will integrate long-term climate data, real diffuser geometries, and experimental validation to further refine these models. Full article
Show Figures

Figure 1

20 pages, 3037 KiB  
Article
An Automated Microfluidic Platform for In Vitro Raman Analysis of Living Cells
by Illya Klyusko, Stefania Scalise, Francesco Guzzi, Luigi Randazzini, Simona Zaccone, Elvira Immacolata Parrotta, Valeria Lucchino, Alessio Merola, Carlo Cosentino, Ulrich Krühne, Isabella Aquila, Giovanni Cuda, Enzo Di Fabrizio, Patrizio Candeloro and Gerardo Perozziello
Biosensors 2025, 15(7), 459; https://doi.org/10.3390/bios15070459 - 16 Jul 2025
Viewed by 392
Abstract
We present a miniaturized, inexpensive, and user-friendly microfluidic platform to support biological applications. The system integrates a mini-incubator providing controlled environmental conditions and housing a microfluidic device for long-term cell culture experiments. The incubator is designed to be compatible with standard inverted optical [...] Read more.
We present a miniaturized, inexpensive, and user-friendly microfluidic platform to support biological applications. The system integrates a mini-incubator providing controlled environmental conditions and housing a microfluidic device for long-term cell culture experiments. The incubator is designed to be compatible with standard inverted optical microscopes and Raman spectrometers, allowing for the non-invasive imaging and spectroscopic analysis of cell cultures in vitro. The microfluidic device, which reproduces a dynamic environment, was optimized to sustain a passive, gravity-driven flow of medium, eliminating the need for an external pumping system and reducing mechanical stress on the cells. The platform was tested using Raman analysis and adherent tumoral cells to assess proliferation prior and subsequent to hydrogen peroxide treatment for oxidative stress induction. The results demonstrated a successful adhesion of cells onto the substrate and their proliferation. Furthermore, the platform is suitable for carrying out optical monitoring of cultures and Raman analysis. In fact, it was possible to discriminate spectra deriving from control and hydrogen peroxide-treated cells in terms of DNA backbone and cellular membrane modification effects provoked by reactive oxygen species (ROS) activity. The 800–1100 cm−1 band highlights the destructive effects of ROS on the DNA backbone’s structure, as its rupture modifies its vibration; moreover, unpaired nucleotides are increased in treated sample, as shown in the 1154–1185 cm−1 band. Protein synthesis deterioration, led by DNA structure damage, is highlighted in the 1257–1341 cm−1, 1440–1450 cm−1, and 1640–1670 cm−1 bands. Furthermore, membrane damage is emphasized in changes in the 1270, 1301, and 1738 cm−1 frequencies, as phospholipid synthesis is accelerated in an attempt to compensate for the membrane damage brought about by the ROS attack. This study highlights the potential use of this platform as an alternative to conventional culturing and analysis procedures, considering that cell culturing, optical imaging, and Raman spectroscopy can be performed simultaneously on living cells with minimal cellular stress and without the need for labeling or fixation. Full article
(This article belongs to the Special Issue Microfluidic Devices for Biological Sample Analysis)
Show Figures

Figure 1

10 pages, 946 KiB  
Article
Visible Triple-Wavelength Switchable Emission Generated in Passively Q-Switched Nd:YVO4 Self-Raman Laser
by Songtao Li, Shengxi Zheng, Bowen Zheng, Yong Wei, Yongchang Zhang, Yanmin Duan and Haiyong Zhu
Photonics 2025, 12(7), 669; https://doi.org/10.3390/photonics12070669 - 2 Jul 2025
Viewed by 279
Abstract
We report a passively Q-switched self-Raman laser using a dual-end composite c-cut Nd:YVO4 crystal, which generates switchable visible emissions at 533 nm, 560 nm, and 589 nm. A Cr4+:YAG/YAG composite crystal served the role of a saturable absorber to achieve [...] Read more.
We report a passively Q-switched self-Raman laser using a dual-end composite c-cut Nd:YVO4 crystal, which generates switchable visible emissions at 533 nm, 560 nm, and 589 nm. A Cr4+:YAG/YAG composite crystal served the role of a saturable absorber to achieve passive Q-switching. An angle-tuned BBO crystal was used to achieve the frequency mixing between the first-tokes wave and the fundamental wave. At an incident pump power of 9.5 W, the maximum average output powers were 425 mW for the 589 nm yellow laser, 193 mW for the 560 nm lime laser, and 605 mW for the 533 nm green laser, with corresponding pulse widths of approximately 3.8, 3.6, and 35.1 ns, respectively. This result shows that a passive Q-switching operation with self-Raman crystals presents a promising approach for compact multi-wavelength pulse laser sources. Full article
(This article belongs to the Special Issue Advances in Solid-State Laser Technology and Applications)
Show Figures

Figure 1

12 pages, 3592 KiB  
Article
Membrane-Embedded Anti-Cancer Peptide Causes a Minimal Structural Perturbation That Is Sufficient to Enhance Phospholipid Flip-Flop and Charge Permeation Rates
by Alfredo E. Cardenas and Ron Elber
Life 2025, 15(7), 1007; https://doi.org/10.3390/life15071007 - 25 Jun 2025
Viewed by 408
Abstract
A prime role of biological membranes is to form barriers for material transport into and out of cells. Membranes consist of phospholipids with polar heads, which are presented to the aqueous solutions, and hydrophobic tails that form the membrane core. This construct prevents [...] Read more.
A prime role of biological membranes is to form barriers for material transport into and out of cells. Membranes consist of phospholipids with polar heads, which are presented to the aqueous solutions, and hydrophobic tails that form the membrane core. This construct prevents the permeation of hydrophilic, well-solvated molecules across the lipid hydrophobic barrier. The barrier is not absolute, and several approaches are available for efficient translocation. Channels and pumps enable selective and efficient transport across membranes. Another transport mechanism is passive permeation, in which permeants, without assistance, directly transport across membranes. Passive transport is coupled to transient defects in the membrane structure that make crossing the hydrophobic bilayer easier—for example, displacements of head groups from aqueous solution–membrane interface into the membrane core. The defects, in turn, are rare unless assisted by passively permeating molecules such as cell-penetrating peptides that distort the membrane structure. One possible defect is a phospholipid molecule with a head pointing to the hydrophobic core. This membrane distortion allows head group flipping from one layer to the other. We show computationally, using atomically detailed simulations and the Milestoning theory, that the presence of a cell-penetrating peptide in a membrane greatly increases phospholipid flip-flop rate and hence defect formation and the permeability of membranes. Full article
(This article belongs to the Special Issue Applications of Molecular Dynamics to Biological Systems)
Show Figures

Figure 1

21 pages, 1205 KiB  
Article
Development of an Innovative Landfill Gas Purification System in Latvia
by Laila Zemite, Davids Kronkalns, Andris Backurs, Leo Jansons, Nauris Eglitis, Patrick Cnubben and Sanda Lapuke
Sustainability 2025, 17(13), 5691; https://doi.org/10.3390/su17135691 - 20 Jun 2025
Viewed by 400
Abstract
The management of municipal solid waste remains a critical environmental and energy challenge across the European Union (EU), where a significant portion of waste still ends up in landfills, generating landfill gas (LFG) rich in methane and harmful impurities. In Latvia, despite national [...] Read more.
The management of municipal solid waste remains a critical environmental and energy challenge across the European Union (EU), where a significant portion of waste still ends up in landfills, generating landfill gas (LFG) rich in methane and harmful impurities. In Latvia, despite national strategies to enhance circularity, untreated LFG is underutilized due to inadequate purification infrastructure, particularly in meeting biomethane standards. This study addressed this gap by proposing and evaluating an innovative, multistep LFG purification system tailored to Latvian conditions, with the aim of enabling the broader use of LFG for energy cogeneration and potentially biomethane injection. The research objective was to design, describe, and preliminarily assess a pilot-scale LFG purification prototype suitable for deployment at Latvia’s largest landfill facility—Landfill A. The methodological approach combined chemical composition analysis of LFG, technical site assessments, and engineering modelling of a five-step purification system, including desulfurization, cooling and moisture removal, siloxane filtration, pumping stabilization, and activated carbon treatment. The system was designed for a nominal gas flow rate of 1500 m3/h and developed with modular scalability in mind. The results showed that raw LFG from Landfill A contains high concentrations of hydrogen sulfide, siloxanes, and volatile organic compounds (VOCs), far exceeding permissible thresholds for biomethane applications. The designed prototype demonstrated the technical feasibility of reducing hydrogen sulfide (H2S) concentrations to <7 mg/m3 and siloxanes to ≤0.3 mg/m3, thus aligning the purified gas with EU biomethane quality requirements. Infrastructure assessments confirmed that existing electricity, water, and sewage capacities at Landfill A are sufficient to support the system’s operation. The implications of this research suggest that properly engineered LFG purification systems can transform landfills from passive waste sinks into active energy resources, aligning with the EU Green Deal goals and enhancing local energy resilience. It is recommended that further validation be carried out through long-term pilot operation, economic analysis of gas recovery profitability, and adaptation of the system for integration with national gas grids. The prototype provides a transferable model for other Baltic and Eastern European contexts, where LFG remains an underexploited asset for sustainable energy transitions. Full article
Show Figures

Figure 1

22 pages, 7614 KiB  
Article
Virtualized Computational RFID (VCRFID) Solution for Industry 4.0 Applications
by Elisa Pantoja, Yimin Gao, Jun Yin and Mircea R. Stan
Electronics 2025, 14(12), 2397; https://doi.org/10.3390/electronics14122397 - 12 Jun 2025
Viewed by 392
Abstract
This paper presents a Virtualized Computational Radio Frequency Identification (VCRFID) solution that utilizes far-field UHF RF for sensing, computing, and self-powering at the edge. A standard UHF RFID system is asymmetric as it consists of a relatively large, complex “reader”, which acts as [...] Read more.
This paper presents a Virtualized Computational Radio Frequency Identification (VCRFID) solution that utilizes far-field UHF RF for sensing, computing, and self-powering at the edge. A standard UHF RFID system is asymmetric as it consists of a relatively large, complex “reader”, which acts as an RF transmitter and controller for a number of small simple battery-less “tags”, which work in passive mode as they communicate and harvest RF energy from the reader. Previously proposed Computational RFID (CRFID) solutions enhance the standard RFID tags with microcontrollers and sensors in order to gain enhanced functionality, but they end up requiring a relatively high level of power, and thus ultimately reduced range, which limits their use for many Internet-of-Things (IoT) application scenarios. Our VCRFID solution instead keeps the functionality of the tags minimalistic by only providing a sensor interface to be able to capture desired environmental data (temperature, humidity, vibration, etc.), and then transmit it to the RFID reader, which then performs all the computational load usually carried out by a microcontroller on the tag in prior work. This virtualization of functions enables the design of a circuit without a microcontroller, providing greater flexibility and allowing for wireless reconfiguration of tag functions over RF for a 97% reduction in energy consumption compared to prior energy-harvesting RFID tags with microcontrollers. The target application is Industry 4.0 where our VCRFID solution enables battery-less fine-grain monitoring of vibration and temperature data for pumps and motors for predictive maintenance scenarios. Full article
(This article belongs to the Special Issue RFID Applied to IoT Devices)
Show Figures

Figure 1

19 pages, 2789 KiB  
Article
The Effect of Low-Carbon Technology on Carbon Emissions Reduction in the Building Sector: A Case Study of Xi’an, China
by Dongyi Zhang, Lu Sun, Yifan Zhang, Tianye Liu, Lu Gao, Fufu Wang, Xinting Qiao, Yuqi Liu, Jian Zuo and Yupeng Wang
Buildings 2025, 15(12), 1989; https://doi.org/10.3390/buildings15121989 - 10 Jun 2025
Viewed by 476
Abstract
Efficient carbon reduction pathways in the building sector are critical for urban decarbonization. This study predicts urban carbon emissions and establishes models to evaluate the carbon emission reduction potential of applying building low-carbon technologies (LCTs) at the urban scale. The models under consideration [...] Read more.
Efficient carbon reduction pathways in the building sector are critical for urban decarbonization. This study predicts urban carbon emissions and establishes models to evaluate the carbon emission reduction potential of applying building low-carbon technologies (LCTs) at the urban scale. The models under consideration encompass a spectrum of active strategies, specifically heat pump (HP), rooftop photovoltaic (PV) systems, and smart heating, ventilation, and air conditioning (HVAC) systems, alongside passive strategies encompassing advanced building materials and building envelopes. The predictive calculations consider building typologies, technological evolution, adoption rates, and local policy constraints. Results indicate that by 2030, the building sector in Xi’an will account for over 30% of the city’s total carbon emissions. The integrated emission reduction effect of LCTs reaches 25.8%, with building materials contributing the most significantly at 9%. Notably, rooftop PV systems demonstrate the highest carbon reduction potential among active strategies, while HP exhibits the fastest annual growth rate in mitigation. Furthermore, the study evaluates the feasibility of these LCTs to accelerate progress toward carbon reduction goals in the building sector. Full article
Show Figures

Figure 1

17 pages, 4641 KiB  
Article
Experimental Study on Multi-Cell Counting Using an Inertial Microfluidic Device
by Muhammad Zulfiqar, Danish Manshad, Emad Uddin, Aamir Mubashar, Zaib Ali, Muhammad Irfan, Sibghat Ullah and Jingmin Li
Appl. Sci. 2025, 15(10), 5701; https://doi.org/10.3390/app15105701 - 20 May 2025
Viewed by 566
Abstract
Inertial microfluidics has gained significant attention for cell counting applications due to its simplicity, high throughput, and precision. This study utilized an inertial flow microfluidic device to count blood cell-sized microparticles, simulating normal and diseased conditions. The device could focus on and count [...] Read more.
Inertial microfluidics has gained significant attention for cell counting applications due to its simplicity, high throughput, and precision. This study utilized an inertial flow microfluidic device to count blood cell-sized microparticles, simulating normal and diseased conditions. The device could focus on and count cells sized between 7 µm and 16 µm while being observed under optical microscopes, with controlled flow rates from 1 to 15 µL/min. Suspensions of cells with ratios of 600:1 for normal conditions and 400:1 for diseased conditions were studied in microchannels at different flow rates. The methodology for counting involved using a syringe pump for precise flow actuation and employing an image-based particle counting technique through optical microscopy, utilizing the passive technique of inertial microfluidics. Results were compared using two optical microscopes across both suspension types. The key findings showed that at a 600:1 ratio of 8 µm and 15 µm cells, counts of 6.45 × 107 cells/mL and 1.10 × 107 cells/mL, respectively, while in the 400:1 ratio of both cells, counts of 4.5 × 107 cells/mL and 2.16 × 107 cells/mL, respectively, were achieved at optimal parameters. This study employed an inertial flow microfluidic device to count microparticles the size of blood cells. We assessed the counting performance using optical microscopy at two different cell ratios and validated our results against hemocytometer counts. Our findings demonstrate that the channel size 150 µm and the flow rate at 1 µL/min provided the optimal counting accuracy for both particle sizes. This device offers an efficient and adaptable solution for accurate multi-cell counting under optimized conditions and supporting applications in resource-limited medical diagnostics. Full article
Show Figures

Figure 1

11 pages, 3389 KiB  
Article
Applications of Prepared MnMoO4 Nanoparticles as Saturable Absorbers for Q-Switched Erbium-Doped Fiber Lasers: Experimental and Theoretical Analysis
by Tahani A. Alrebdi, Shahid Sadiq, Si-Cong Tian, Mamoon Asghar, Izhar Saghir and Haroon Asghar
Photonics 2025, 12(5), 474; https://doi.org/10.3390/photonics12050474 - 12 May 2025
Cited by 2 | Viewed by 403
Abstract
This study presents the synthesis of manganese molybdenum tetraoxide (MnMoO4)-based nanoparticles and then their experimental demonstration as saturable absorbers (SAs) in erbium-doped fiber lasers (EDFLs). The MnMoO4 nanoparticles were prepared and then embedded between the fiber ferrule to act as [...] Read more.
This study presents the synthesis of manganese molybdenum tetraoxide (MnMoO4)-based nanoparticles and then their experimental demonstration as saturable absorbers (SAs) in erbium-doped fiber lasers (EDFLs). The MnMoO4 nanoparticles were prepared and then embedded between the fiber ferrule to act as an SA to generate Q-switched pulsed operation in EDFLs. For the characterization, scanning electron microscopy (SEM) was employed to confirm the particle size of the prepared MnMoO4 nanoparticles, and the SA optical properties were further investigated by measuring their modulation depth and saturation intensity. By implementing the prepared SA within the cavity, the measured results revealed that under pump power ranging from 28 to 312.5 mW, the laser exhibited Q-switched pulse durations varying from 15.22 to 2.35 µs and repetition rates spanning from 24.98 to 88.11 kHz. The proposed EDFL system delivered an average output power between 0.128 and 2.95 mW, pulse energies ranging from 5.12 to 33.49 nJ, and peak power from 0.281 to 6.26 mW. The laser stability was also confirmed by continuously noticing the pulse duration, emission wavelengths, and pulse repetition rates for 4 h. Finally, a numerical model based on a nonlinear Schrödinger equation (NLSE) was employed to validate both experimental and theoretical results of the passive Q-switched EDFL. These findings highlight the potential of EDFLs utilizing MnMoO4-based SAs for potential applications in pulsed laser sources. Full article
(This article belongs to the Special Issue The Latest Frontiers in Fiber Laser Innovations)
Show Figures

Figure 1

10 pages, 2843 KiB  
Article
Passively Q-Switched Thulium-Doped Fiber Laser Employing a Glycerin-Based Saturable Absorber
by Edwin Addiel Espinosa-De-La-Cruz, Manuel Durán-Sánchez, Ulises Alcántara-Bautista, Alejandro Reyes-Mora, Adalid Ibarra-Garrido, Ivan Armas-Rivera, Luis Alberto Rodríguez-Morales, Miguel Bello-Jiménez and Baldemar Ibarra-Escamilla
Fibers 2025, 13(5), 61; https://doi.org/10.3390/fib13050061 - 8 May 2025
Viewed by 700
Abstract
A passively Q-switched Thulium-doped fiber laser based on glycerin as the saturable absorber is experimentally demonstrated for the first time. The saturable absorber consists of two FC/PC connectors aligned within a mechanical fiber-fiber coupler, with the intervening gap filled with glycerin. Such a [...] Read more.
A passively Q-switched Thulium-doped fiber laser based on glycerin as the saturable absorber is experimentally demonstrated for the first time. The saturable absorber consists of two FC/PC connectors aligned within a mechanical fiber-fiber coupler, with the intervening gap filled with glycerin. Such a saturable absorber is integrated into a compact ring cavity, enabling passive Q-switched laser operation. Starting at a minimum pump power of 1.7 W, Q-switched pulses with a central wavelength of 1946 nm are obtained. At the maximum pump power of 2.4 W, the laser generates pulses with a duration of approximately 2 µs, a repetition rate of 26.7 kHz, and a pulse energy of 1.08 µJ. To the best of our knowledge, this is the first demonstration of passively Q-switched laser operation utilizing a glycerin-based saturable absorber for generating pulsed emission at the 2-µm wavelength region. This breakthrough represents a significant advancement in fiber laser technology, introducing a novel and efficient approach to pulse generation. Full article
Show Figures

Figure 1

19 pages, 1896 KiB  
Article
Surface Water Monitoring with Sedimentation Boxes: Assessing the Sampling Performance and Its Effect on Microplastic Concentration
by Cristina Julieta Saravia, Mathias Ricking, Peter Grathwohl, Claus Gerhard Bannick and Nathan Obermaier
Water 2025, 17(8), 1152; https://doi.org/10.3390/w17081152 - 12 Apr 2025
Cited by 1 | Viewed by 492
Abstract
Currently, there are still no harmonized and thus reproducible methods for microplastics (MP) sampling. Infrequent spot sampling with, e.g., nets, pumps, or containers, does not reflect the large spatial and temporal variety of MP abundance, and there is little experience with time-integrated, passive [...] Read more.
Currently, there are still no harmonized and thus reproducible methods for microplastics (MP) sampling. Infrequent spot sampling with, e.g., nets, pumps, or containers, does not reflect the large spatial and temporal variety of MP abundance, and there is little experience with time-integrated, passive sampling methods. However, passive samplers have been applied thoroughly to recover suspended particulate matter (SPM) from water bodies. The physical and chemical characteristics of MP are in range with those of other materials belonging to SPM, and we state that MP are an integral component of SPM. In general, passive samplers like the sedimentation box decrease the flow velocity, enhancing the sedimentation of SPM within the device. The retention rates of particles in sedimentation boxes depend on various factors such as the flow velocity, the SPM size and density, but precise information remains scarce. Therefore, we performed laboratory tests to assess the retention rates of the polymers polystyrene and polyethylene and analyzed the dependency of sedimentation on the flow velocity and particle sizes. The quantification of MP in samples collected by sedimentation boxes underestimates the concentration of smaller-sized particles due to their lower retention rate, and MP concentrations should be reported accordingly. Subsequently, we carried out a series of field experiments with sedimentation boxes and showed that MP can be retained from different water bodies with diverse characteristics. Due to their robust sampling mechanism, sedimentation boxes are promising devices for time-integrated, long-term sampling of MP. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Graphical abstract

Back to TopTop