Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = passive harmonic transponder

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3453 KB  
Article
Robust Peak Detection Techniques for Harmonic FMCW Radar Systems: Algorithmic Comparison and FPGA Feasibility Under Phase Noise
by Ahmed El-Awamry, Feng Zheng, Thomas Kaiser and Maher Khaliel
Signals 2025, 6(3), 36; https://doi.org/10.3390/signals6030036 - 30 Jul 2025
Cited by 1 | Viewed by 1406
Abstract
Accurate peak detection in the frequency domain is fundamental to reliable range estimation in Frequency-Modulated Continuous-Wave (FMCW) radar systems, particularly in challenging conditions characterized by a low signal-to-noise ratio (SNR) and phase noise impairments. This paper presents a comprehensive comparative analysis of five [...] Read more.
Accurate peak detection in the frequency domain is fundamental to reliable range estimation in Frequency-Modulated Continuous-Wave (FMCW) radar systems, particularly in challenging conditions characterized by a low signal-to-noise ratio (SNR) and phase noise impairments. This paper presents a comprehensive comparative analysis of five peak detection algorithms: FFT thresholding, Cell-Averaging Constant False Alarm Rate (CA-CFAR), a simplified Matrix Pencil Method (MPM), SVD-based detection, and a novel Learned Thresholded Subspace Projection (LTSP) approach. The proposed LTSP method leverages singular value decomposition (SVD) to extract the dominant signal subspace, followed by signal reconstruction and spectral peak analysis, enabling robust detection in noisy and spectrally distorted environments. Each technique was analytically modeled and extensively evaluated through Monte Carlo simulations across a wide range of SNRs and oscillator phase noise levels, from 100 dBc/Hz to 70 dBc/Hz. Additionally, real-world validation was performed using a custom-built harmonic FMCW radar prototype operating in the 2.4–2.5 GHz transmission band and 4.8–5.0 GHz harmonic reception band. Results show that CA-CFAR offers the highest resilience to phase noise, while the proposed LTSP method delivers competitive detection performance with improved robustness over conventional FFT and MPM techniques. Furthermore, the hardware feasibility of each algorithm is assessed for implementation on a Xilinx FPGA platform, highlighting practical trade-offs between detection performance, computational complexity, and resource utilization. These findings provide valuable guidance for the design of real-time, embedded FMCW radar systems operating under adverse conditions. Full article
Show Figures

Graphical abstract

22 pages, 6904 KB  
Article
Harmonic FMCW Radar System: Passive Tag Detection and Precise Ranging Estimation
by Ahmed El-Awamry, Feng Zheng, Thomas Kaiser and Maher Khaliel
Sensors 2024, 24(8), 2541; https://doi.org/10.3390/s24082541 - 15 Apr 2024
Cited by 7 | Viewed by 4482
Abstract
This paper details the design and implementation of a harmonic frequency-modulated continuous-wave (FMCW) radar system, specialized in detecting harmonic tags and achieving precise range estimation. Operating within the 2.4–2.5 GHz frequency range for the forward channel and 4.8–5.0 GHz for the backward channel, [...] Read more.
This paper details the design and implementation of a harmonic frequency-modulated continuous-wave (FMCW) radar system, specialized in detecting harmonic tags and achieving precise range estimation. Operating within the 2.4–2.5 GHz frequency range for the forward channel and 4.8–5.0 GHz for the backward channel, this study delves into the various challenges faced during the system’s realization. These challenges include selecting appropriate components, calibrating the system, processing signals, and integrating the system components. In addition, we introduce a single-layer passive harmonic tag, developed specifically for assessing the system, and provide an in-depth theoretical analysis and simulation results. Notably, the system is characterized by its low power consumption, making it particularly suitable for short-range applications. The system’s efficacy is further validated through experimental evaluations in a real-world indoor environment across multiple tag positions. Our measurements underscore the system’s robust ranging accuracy and its ability to mitigate self-interference, showcasing its significant potential for applications in harmonic tag detection and ranging. Full article
(This article belongs to the Special Issue Radar Sensors for Target Tracking and Localization)
Show Figures

Figure 1

16 pages, 5165 KB  
Article
Energy-Efficient Harmonic Transponder Based on On-Off Keying Modulation for Both Identification and Sensing
by Valentina Palazzi, Luca Roselli, Manos M. Tentzeris, Paolo Mezzanotte and Federico Alimenti
Sensors 2022, 22(2), 620; https://doi.org/10.3390/s22020620 - 14 Jan 2022
Cited by 16 | Viewed by 3595
Abstract
This paper presents a novel passive Schottky-diode frequency doubler equipped with an on-off keying (OOK) modulation port to be used in harmonic transponders for both identification and sensing applications. The amplitude modulation of the second-harmonic output signal is achieved by driving a low-frequency [...] Read more.
This paper presents a novel passive Schottky-diode frequency doubler equipped with an on-off keying (OOK) modulation port to be used in harmonic transponders for both identification and sensing applications. The amplitude modulation of the second-harmonic output signal is achieved by driving a low-frequency MOSFET, which modifies the dc impedance termination of the doubler. Since the modulation signal is applied to the gate port of the transistor, no static current is drained. A proof-of-concept prototype was manufactured and tested, operating at 1.04 GHz. An on/off ratio of 23 dB was observed in the conversion loss of the doubler for an available input power of −10 dBm. The modulation port of the circuit was excited with a square wave (fm up to 15 MHz), and the measured sidebands in the spectrum featured a good agreement with the theory. Then, the doubler was connected to a harmonic antenna system and tested in a wireless experiment for fm up to 1 MHz, showing an excellent performance. Finally, an experiment was conducted where the output signal of the doubler was modulated by a reed switch used to measure the rotational speed of an electrical motor. This work opens the door to a new class of frequency doublers, suitable for ultra low-power harmonic transponders for identification and sensing applications. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

Back to TopTop