Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (79)

Search Parameters:
Keywords = passive flow control devices

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 7515 KB  
Article
Numerical Investigation on Flow Separation Control for Aircraft Serpentine Intake with Coanda Injector
by Zhan Fu, Zhixu Jin, Wenqiang Zhang, Tao Yang, Jichao Li and Jun Shen
Fluids 2025, 10(10), 271; https://doi.org/10.3390/fluids10100271 - 20 Oct 2025
Viewed by 269
Abstract
Modern military aircraft integrate a large number of high-power-density electronic devices, which leads to a rapid increase in thermal load and poses significant challenges for heat dissipation. A promising thermal management approach is to intake ram air through a fuselage-mounted S-duct inlet and [...] Read more.
Modern military aircraft integrate a large number of high-power-density electronic devices, which leads to a rapid increase in thermal load and poses significant challenges for heat dissipation. A promising thermal management approach is to intake ram air through a fuselage-mounted S-duct inlet and utilize it as a heat sink for the downstream heat exchanger. However, the S-duct’s geometry can induce significant flow separation and total pressure distortion, thereby limiting the mass flow rate. To address these challenges, this study investigates three flow-control strategies—vortex generators (VGs), Coanda injectors, and their combination—using high-fidelity three-dimensional numerical simulations validated against experimental data. The results indicate that VGs effectively suppress local separation and improve flow uniformity, although additional losses limit pressure recovery. The Coanda injector enhances boundary-layer momentum, substantially increasing mass flow throughput and pressure recovery. The combined VGs and Coanda injector approach achieves a lower distortion coefficient and provides a favorable balance between pressure recovery and flow uniformity. These findings demonstrate the potential of hybrid passive–active flow control in improving inlet aerodynamic quality and supporting integrated thermal management systems for future aircraft. Full article
(This article belongs to the Section Mathematical and Computational Fluid Mechanics)
Show Figures

Figure 1

17 pages, 2509 KB  
Article
Feasibility Study of Flywheel Mitigation Controls Using Hamiltonian-Based Design for E3 High-Altitude Electromagnetic Pulse Events
by Connor A. Lehman, Rush D. Robinett, David G. Wilson and Wayne W. Weaver
Energies 2025, 18(19), 5294; https://doi.org/10.3390/en18195294 - 7 Oct 2025
Viewed by 387
Abstract
This paper explores the feasibility of implementing a flywheel energy storage system designed to generate voltage for the purpose of mitigating current flow through the transformer neutral path to ground, which is induced by a high-altitude electromagnetic pulse (HEMP) event. The active flywheel [...] Read more.
This paper explores the feasibility of implementing a flywheel energy storage system designed to generate voltage for the purpose of mitigating current flow through the transformer neutral path to ground, which is induced by a high-altitude electromagnetic pulse (HEMP) event. The active flywheel system presents the advantage of employing custom optimal control laws, in contrast to the conventional approach of utilizing passive blocking capacitors. A Hamiltonian-based optimal control law for energy storage is derived and integrated into models of both the transformer and the flywheel energy storage system. This Hamiltonian-based feedback control law is subsequently compared against an energy-optimal feedforward control law to validate its optimality. The analysis reveals that the required energy storage capacity is 13Wh, the necessary power output is less than 5kW at any given time during the insult, and the required bandwidth for the controller is around 5Hz. These specifications can be met by commercially available flywheel devices. This methodology can be extended to other energy storage devices to ensure that their specifications adequately address the requirements for HEMP mitigation. Full article
Show Figures

Figure 1

40 pages, 6391 KB  
Systematic Review
A Systematic Review of Technological Strategies to Improve Self-Starting in H-Type Darrieus VAWT
by Jorge-Saúl Gallegos-Molina and Ernesto Chavero-Navarrete
Sustainability 2025, 17(17), 7878; https://doi.org/10.3390/su17177878 - 1 Sep 2025
Viewed by 910
Abstract
The self-starting capability of straight-bladed H-type Darrieus Vertical Axis Wind Turbines (VAWTs) remains a major constraint for deployment, particularly in urban, low speed, and turbulent environments. We conducted a systematic review of technological strategies to improve self-starting, grouped into five categories: (1) aerodynamic [...] Read more.
The self-starting capability of straight-bladed H-type Darrieus Vertical Axis Wind Turbines (VAWTs) remains a major constraint for deployment, particularly in urban, low speed, and turbulent environments. We conducted a systematic review of technological strategies to improve self-starting, grouped into five categories: (1) aerodynamic airfoil design, (2) rotor configuration, (3) passive flow control, (4) active flow control, and (5) incident flow augmentation. Searches in Scopus and IEEE Xplore (last search 20 August 2025) covered the period from 2019 to 2026 and included peer-reviewed journal articles in English reporting experimental or numerical interventions on H-type Darrieus VAWTs with at least one start-up metric. From 1212 records, 53 studies met the eligibility after title/abstract screening and full-text assessment. Data were synthesized qualitatively using a comparative thematic approach, highlighting design parameters, operating conditions, and performance metrics (torque and power coefficients) during start-up. Quantitatively, studies reported typical start-up torque gains of 20–30% for airfoil optimization and passive devices, about 25% for incident-flow augmentation, and larger but less certain improvements (around 30%) for active control. Among the strategies, airfoil optimization and passive devices consistently improved start-up torque at low TSR with minimal added systems; rotor-configuration tuning and incident-flow devices further reduced start-up time where structural or siting constraints allowed; and active control showed the largest laboratory gains but with uncertain regarding energy and durability. However, limitations included heterogeneity in designs and metrics, predominance of 2D-Computational Fluid Dynamics (CFDs), and limited 3D/field validation restricted quantitative pooling. Risk of bias was assessed using an ad hoc matrix; overall certainty was rated as low to moderate due to limited validation and inconsistent uncertainty reporting. In conclusions, no single solution is universally optimal; hybrid strategies, combining optimized airfoils with targeted passive or active control, appear most promising. Future work should standardize start-up metrics, adopt validated 3D Fluid–Structure Interaction (FSI) models, and expand wind-tunnel/field trials. Full article
Show Figures

Graphical abstract

20 pages, 3037 KB  
Article
An Automated Microfluidic Platform for In Vitro Raman Analysis of Living Cells
by Illya Klyusko, Stefania Scalise, Francesco Guzzi, Luigi Randazzini, Simona Zaccone, Elvira Immacolata Parrotta, Valeria Lucchino, Alessio Merola, Carlo Cosentino, Ulrich Krühne, Isabella Aquila, Giovanni Cuda, Enzo Di Fabrizio, Patrizio Candeloro and Gerardo Perozziello
Biosensors 2025, 15(7), 459; https://doi.org/10.3390/bios15070459 - 16 Jul 2025
Cited by 1 | Viewed by 1184
Abstract
We present a miniaturized, inexpensive, and user-friendly microfluidic platform to support biological applications. The system integrates a mini-incubator providing controlled environmental conditions and housing a microfluidic device for long-term cell culture experiments. The incubator is designed to be compatible with standard inverted optical [...] Read more.
We present a miniaturized, inexpensive, and user-friendly microfluidic platform to support biological applications. The system integrates a mini-incubator providing controlled environmental conditions and housing a microfluidic device for long-term cell culture experiments. The incubator is designed to be compatible with standard inverted optical microscopes and Raman spectrometers, allowing for the non-invasive imaging and spectroscopic analysis of cell cultures in vitro. The microfluidic device, which reproduces a dynamic environment, was optimized to sustain a passive, gravity-driven flow of medium, eliminating the need for an external pumping system and reducing mechanical stress on the cells. The platform was tested using Raman analysis and adherent tumoral cells to assess proliferation prior and subsequent to hydrogen peroxide treatment for oxidative stress induction. The results demonstrated a successful adhesion of cells onto the substrate and their proliferation. Furthermore, the platform is suitable for carrying out optical monitoring of cultures and Raman analysis. In fact, it was possible to discriminate spectra deriving from control and hydrogen peroxide-treated cells in terms of DNA backbone and cellular membrane modification effects provoked by reactive oxygen species (ROS) activity. The 800–1100 cm−1 band highlights the destructive effects of ROS on the DNA backbone’s structure, as its rupture modifies its vibration; moreover, unpaired nucleotides are increased in treated sample, as shown in the 1154–1185 cm−1 band. Protein synthesis deterioration, led by DNA structure damage, is highlighted in the 1257–1341 cm−1, 1440–1450 cm−1, and 1640–1670 cm−1 bands. Furthermore, membrane damage is emphasized in changes in the 1270, 1301, and 1738 cm−1 frequencies, as phospholipid synthesis is accelerated in an attempt to compensate for the membrane damage brought about by the ROS attack. This study highlights the potential use of this platform as an alternative to conventional culturing and analysis procedures, considering that cell culturing, optical imaging, and Raman spectroscopy can be performed simultaneously on living cells with minimal cellular stress and without the need for labeling or fixation. Full article
(This article belongs to the Special Issue Microfluidic Devices for Biological Sample Analysis)
Show Figures

Figure 1

29 pages, 4726 KB  
Article
Adaptive Pendulum-Tuned Mass Damper Based on Adjustable-Length Cable for Skyscraper Vibration Control
by Krzysztof Twardoch, Kacper Górski, Rafał Kwiatkowski, Kamil Jaśkielewicz and Bogumił Chiliński
Sustainability 2025, 17(14), 6301; https://doi.org/10.3390/su17146301 - 9 Jul 2025
Cited by 1 | Viewed by 1697
Abstract
The dynamic control of vibrations in skyscrapers is a critical consideration in sustainable building design, particularly in response to environmental excitations such as wind impact or seismic activity. Effective vibration neutralisation plays a crucial role in providing the safety of high-rise buildings. This [...] Read more.
The dynamic control of vibrations in skyscrapers is a critical consideration in sustainable building design, particularly in response to environmental excitations such as wind impact or seismic activity. Effective vibration neutralisation plays a crucial role in providing the safety of high-rise buildings. This research introduces an innovative concept for an active vibration damper that operates based on fluid dynamic transport to adaptively alter a skyscraper’s natural frequency, thereby counteracting resonant vibrations. A distinctive feature of this system is an adjustable-length cable mechanism, allowing for the dynamic modification of the pendulum’s effective length in real time. The structure, based on cable length adjustment, enables the PTMD to precisely tune its natural frequency to variable excitation conditions, thereby improving damping during transient or resonance phenomena of the building’s dynamic behaviour. A comprehensive mathematical model based on Lagrangian mechanics outlines the governing equations for this system, capturing the interactions between pendulum motion, fluid flow, and the damping forces necessary to maintain stability. Simulation analyses examine the role of initial excitation frequency and variable damping coefficients, revealing critical insights into optimal damper performance under varied structural conditions. The findings indicate that the proposed pendulum damper effectively mitigates resonance risks, paving the way for sustainable skyscraper design through enhanced structural adaptability and resilience. This adaptive PTMD, featuring an adjustable-length cable, provides a solution for creating safe and energy-efficient skyscraper designs, aligning with sustainable architectural practices and advancing future trends in vibration management technology. The study presented in this article supports the development of modern skyscraper design, with a focus on dynamic vibration control for sustainability and structural safety. It combines advanced numerical modelling, data-driven control algorithms, and experimental validation. From a sustainability perspective, the proposed PTMD system reduces the need for oversized structural components by providing adaptive, efficient damping, thereby lowering material consumption and embedded carbon. Through dynamically retuning structural stiffness and mass, the proposed PTMD enhances resilience and energy efficiency in skyscrapers, lowers lifetime energy use associated with passive damping devices, and enhances occupant comfort. This aligns with global sustainability objectives and new-generation building standards. Full article
Show Figures

Figure 1

40 pages, 3743 KB  
Review
Droplet Generation and Manipulation in Microfluidics: A Comprehensive Overview of Passive and Active Strategies
by Andrea Fergola, Alberto Ballesio, Francesca Frascella, Lucia Napione, Matteo Cocuzza and Simone Luigi Marasso
Biosensors 2025, 15(6), 345; https://doi.org/10.3390/bios15060345 - 29 May 2025
Cited by 4 | Viewed by 5696
Abstract
Droplet-based microfluidics (DBM) has emerged as a powerful tool for a wide range of biochemical applications, from single-cell analysis and drug screening to diagnostics and tissue engineering. This review provides a comprehensive overview of the latest advancements in droplet generation and trapping techniques, [...] Read more.
Droplet-based microfluidics (DBM) has emerged as a powerful tool for a wide range of biochemical applications, from single-cell analysis and drug screening to diagnostics and tissue engineering. This review provides a comprehensive overview of the latest advancements in droplet generation and trapping techniques, highlighting both passive and active approaches. Passive methods—such as co-flow, cross-flow, and flow-focusing geometries—rely on hydrodynamic instabilities and capillary effects, offering simplicity and integration with compact devices, though often at the cost of tunability. In contrast, active methods exploit external fields—electric, magnetic, thermal, or mechanical—to enable on-demand droplet control, allowing for higher precision and throughput. Furthermore, we explore innovative trapping mechanisms such as hydrodynamic resistance networks, microfabricated U-shaped wells, and anchor-based systems that enable precise spatial immobilization of droplets. In the final section, we also examine active droplet sorting strategies, including electric, magnetic, acoustic, and thermal methods, as essential tools for downstream analysis and high-throughput workflows. These manipulation strategies facilitate in situ chemical and biological analyses, enhance experimental reproducibility, and are increasingly adaptable to industrial-scale applications. Emphasis is placed on the design flexibility, scalability, and biological compatibility of each method, offering critical insights for selecting appropriate techniques based on experimental needs and operational constraints. Full article
(This article belongs to the Special Issue Micro/Nanofluidic System-Based Biosensors)
Show Figures

Figure 1

17 pages, 4641 KB  
Article
Experimental Study on Multi-Cell Counting Using an Inertial Microfluidic Device
by Muhammad Zulfiqar, Danish Manshad, Emad Uddin, Aamir Mubashar, Zaib Ali, Muhammad Irfan, Sibghat Ullah and Jingmin Li
Appl. Sci. 2025, 15(10), 5701; https://doi.org/10.3390/app15105701 - 20 May 2025
Viewed by 1179
Abstract
Inertial microfluidics has gained significant attention for cell counting applications due to its simplicity, high throughput, and precision. This study utilized an inertial flow microfluidic device to count blood cell-sized microparticles, simulating normal and diseased conditions. The device could focus on and count [...] Read more.
Inertial microfluidics has gained significant attention for cell counting applications due to its simplicity, high throughput, and precision. This study utilized an inertial flow microfluidic device to count blood cell-sized microparticles, simulating normal and diseased conditions. The device could focus on and count cells sized between 7 µm and 16 µm while being observed under optical microscopes, with controlled flow rates from 1 to 15 µL/min. Suspensions of cells with ratios of 600:1 for normal conditions and 400:1 for diseased conditions were studied in microchannels at different flow rates. The methodology for counting involved using a syringe pump for precise flow actuation and employing an image-based particle counting technique through optical microscopy, utilizing the passive technique of inertial microfluidics. Results were compared using two optical microscopes across both suspension types. The key findings showed that at a 600:1 ratio of 8 µm and 15 µm cells, counts of 6.45 × 107 cells/mL and 1.10 × 107 cells/mL, respectively, while in the 400:1 ratio of both cells, counts of 4.5 × 107 cells/mL and 2.16 × 107 cells/mL, respectively, were achieved at optimal parameters. This study employed an inertial flow microfluidic device to count microparticles the size of blood cells. We assessed the counting performance using optical microscopy at two different cell ratios and validated our results against hemocytometer counts. Our findings demonstrate that the channel size 150 µm and the flow rate at 1 µL/min provided the optimal counting accuracy for both particle sizes. This device offers an efficient and adaptable solution for accurate multi-cell counting under optimized conditions and supporting applications in resource-limited medical diagnostics. Full article
Show Figures

Figure 1

15 pages, 16764 KB  
Article
Computational Analysis of Tandem Micro-Vortex Generators for Supersonic Boundary Layer Flow Control
by Caixia Chen, Yong Yang and Yonghua Yan
Computation 2025, 13(4), 101; https://doi.org/10.3390/computation13040101 - 19 Apr 2025
Cited by 1 | Viewed by 679
Abstract
Micro-vortex generators (MVGs) are widely utilized as passive devices to control flow separation in supersonic boundary layers by generating ring-like vortices that mitigate shock-induced effects. This study employs large eddy simulation (LES) to investigate the flow structures in a supersonic boundary layer (Mach [...] Read more.
Micro-vortex generators (MVGs) are widely utilized as passive devices to control flow separation in supersonic boundary layers by generating ring-like vortices that mitigate shock-induced effects. This study employs large eddy simulation (LES) to investigate the flow structures in a supersonic boundary layer (Mach 2.5, Re = 5760) controlled by two MVGs installed in tandem, with spacings varying from 11.75 h to 18.75 h (h = MVG height), alongside a single-MVG reference case. A fifth-order WENO scheme and third-order TVD Runge–Kutta method were used to solve the unfiltered Navier–Stokes equations, with the Liutex method applied to visualize vortex structures. Results reveal that tandem MVGs produce complex vortex interactions, with spanwise and streamwise vortices merging extensively, leading to a significant reduction in vortex intensity due to mutual cancellation. A momentum deficit forms behind the second MVG, weakening that from the first, while the boundary layer energy thickness doubles compared to the single-MVG case, indicating increased energy loss. Streamwise vorticity distributions and instantaneous streamlines highlight intensified interactions with closer spacings, yet this complexity diminishes overall flow control effectiveness. Contrary to expectations, the tandem configuration does not enhance boundary layer control but instead weakens it, as evidenced by reduced vortex strength and amplified energy dissipation. These findings underscore a critical trade-off in tandem MVG deployment, suggesting that while vortex interactions enrich flow complexity, they may compromise the intended control benefits in supersonic flows, with implications for optimizing MVG arrangements in practical applications. Full article
(This article belongs to the Section Computational Engineering)
Show Figures

Figure 1

9 pages, 2253 KB  
Proceeding Paper
Investigating the Impact of Flow Control Devices on the Low-Speed Performance of a Blended-Wing-Body UAV
by Spyridon Antoniou, Konstantinos Antoniou, Pericles Panagiotou and Kyros Yakinthos
Eng. Proc. 2025, 90(1), 18; https://doi.org/10.3390/engproc2025090018 - 11 Mar 2025
Cited by 1 | Viewed by 709
Abstract
This study investigates the effect of active and passive flow control devices on the aerodynamic behavior and stability of a Blended-Wing-Body (BWB) Unmanned Air Vehicle (UAV), emphasizing the low-speed segments of a typical flight. Vortilons, which are small fins placed on the leading [...] Read more.
This study investigates the effect of active and passive flow control devices on the aerodynamic behavior and stability of a Blended-Wing-Body (BWB) Unmanned Air Vehicle (UAV), emphasizing the low-speed segments of a typical flight. Vortilons, which are small fins placed on the leading edge of the wing, generate vortices that delay the appearance of spanwise flow and consequently the appearance of pitch break. Belly flaps are located on the underside of the UAV and can enhance the lift, while they produce a nose-up pitching moment. Seven different configurations are examined using high-fidelity Computational Fluid Dynamics (CFD) over a range of angles of attack to address the effect of each device on the lift and drag forces and the pitching moment of the UAV. Based on these results, the low-speed performance of the platform is evaluated by calculating the minimum speed, the take-off distance, and the maximum lift to drag ratio, while the elevon deflection required for the take-off rotation of the UAV is also assessed. Full article
Show Figures

Figure 1

17 pages, 3019 KB  
Article
A Reusable Capillary Flow-Driven Microfluidic System for Abscisic Acid Detection Using a Competitive Immunoassay
by Cristiana Domingues, Marta S. C. Rodrigues, Pedro G. M. Condelipes, Ana Margarida Fortes, Virginia Chu and João Pedro Conde
Sensors 2025, 25(2), 411; https://doi.org/10.3390/s25020411 - 12 Jan 2025
Cited by 1 | Viewed by 1852
Abstract
Point-of-care (PoC) devices offer a promising solution for fast, portable, and easy-to-use diagnostics. These characteristics are particularly relevant in agrifood fields like viticulture where the early detection of plant stresses is crucial to crop yield. Microfluidics, with its low reagent volume requirements, is [...] Read more.
Point-of-care (PoC) devices offer a promising solution for fast, portable, and easy-to-use diagnostics. These characteristics are particularly relevant in agrifood fields like viticulture where the early detection of plant stresses is crucial to crop yield. Microfluidics, with its low reagent volume requirements, is well-suited for such applications. Self-driven microfluidic devices, which rely on capillary forces for fluid motion, offer an attractive alternative by eliminating the need for external pumps and complex fluid control systems. However, traditional microfluidic prototyping materials like polydimethylsiloxane (PDMS) present challenges due to their hydrophobic nature. This paper presents the development of a reusable, portable, capillary-driven microfluidic platform based on a PDMS-PEG (polyethylene glycol) copolymer designed for the rapid low-cost detection of abscisic acid (ABA), a key biomarker for the onset of ripening of non-climacteric fruits and drought stress in vines. By employing passive fluid transport mechanisms, such as capillary-driven sequential flow, this platform enables precise biological and chemical screenings while maintaining portability and ease of use. A simplified field-ready sample processing method is used to prepare the grapes for analysis. Full article
(This article belongs to the Special Issue Biosensors for Point-of-Care Diagnostics)
Show Figures

Figure 1

22 pages, 20784 KB  
Review
Advances in Flow Control Methods for Pump-Stall Suppression: Passive and Active Approaches
by Hongbo Zhao, Xiangkai Zhou, Long Meng, Xuejin Zhu, Chengqi Mou and Peijian Zhou
Energies 2024, 17(23), 6157; https://doi.org/10.3390/en17236157 - 6 Dec 2024
Cited by 1 | Viewed by 1572
Abstract
This article provides a comprehensive review of key approaches to suppressing stall flow in pumps, offering insights to enhance pump performance and reliability. It begins by outlining the formation mechanisms and characteristics of stalls, followed by an in-depth analysis of various stall types. [...] Read more.
This article provides a comprehensive review of key approaches to suppressing stall flow in pumps, offering insights to enhance pump performance and reliability. It begins by outlining the formation mechanisms and characteristics of stalls, followed by an in-depth analysis of various stall types. The discussion highlights passive and active flow control methods, emphasizing their roles in suppressing stall phenomena. Passive flow-control strategies, including surface roughness, grooves, obstacles, fixed guide vanes, and vortex generators, are examined with a focus on their mechanisms and effectiveness in suppressing stall. Similarly, active flow-control techniques, such as jets and adjustable guide vanes, are explored for their capacity to regulate the flow field and suppress stall. The novelty of this review lies in its exploration of the effectiveness of passive and active flow-control methods in suppressing pump stall, with a focus on their mechanisms of action and the underlying principles of stall formation. The findings reveal that appropriate flow-control measures can mitigate laminar flow separation and reduce performance losses associated with stall. However, careful attention must be given to the optimal arrangement of control devices. Finally, the article highlights the limitations of current implementations of combined active and passive flow-control methods while offering insights into the future potential of advanced flow-control technologies in regard to suppressing stall. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

36 pages, 21118 KB  
Article
Flow Separation Control and Aeroacoustic Effects of a Leading-Edge Slat over a Wind Turbine Blade
by Sami Bouterra, Riyadh Belamadi, Abdelouaheb Djemili and Adrian Ilinca
Energies 2024, 17(22), 5597; https://doi.org/10.3390/en17225597 - 9 Nov 2024
Cited by 1 | Viewed by 2145
Abstract
To enable wind energy to surpass fossil fuels, the power-to-cost ratio of wind turbines must be competitive. Increasing installation capacities and wind turbine sizes indicates a strong trend toward clean energy. However, larger rotor diameters, reaching up to 170 m, introduce stability and [...] Read more.
To enable wind energy to surpass fossil fuels, the power-to-cost ratio of wind turbines must be competitive. Increasing installation capacities and wind turbine sizes indicates a strong trend toward clean energy. However, larger rotor diameters, reaching up to 170 m, introduce stability and aeroelasticity concerns and aerodynamic phenomena that cause noise disturbances. These issues hinder performance enhancement and social acceptance of wind turbines. A critical aerodynamic challenge is flow separation on the blade’s suction side, leading to a loss of lift and increased drag, ultimately stalling the blade and reducing turbine performance. Various active and passive flow control techniques have been studied to address these issues, with passive techniques offering the advantage of no external energy requirement. High-lift devices, such as leading-edge slats, are promising in improving aerodynamic performance by controlling flow separation. This study explores the geometric parameters of slats and their effects on wind turbine blades’ aerodynamic and acoustic performance. Using an adequate turbulence model at Re = 106 for angles of attack from 14° to 24°, 77 slat configurations were evaluated. Symmetric slats showed superior performance at high angles of attack, while slat chord length was inversely proportional to aerodynamic improvement. A hybrid method was employed to predict noise, revealing slat-induced modifications in eddy topology and increased low- and high-frequency noise. This study’s main contribution is correlating slat-induced aerodynamic improvements with their acoustic effects. The directivity reveals a 10–15 dB reduction induced by the slat at 1 kHz, while the slat induces higher noise at higher frequencies. Full article
Show Figures

Figure 1

32 pages, 10643 KB  
Article
A Novel Size-Based Centrifugal Microfluidic Design to Enrich and Magnetically Isolate Circulating Tumor Cells from Blood Cells through Biocompatible Magnetite–Arginine Nanoparticles
by Alireza Farahinia, Milad Khani, Tyler A. Morhart, Garth Wells, Ildiko Badea, Lee D. Wilson and Wenjun Zhang
Sensors 2024, 24(18), 6031; https://doi.org/10.3390/s24186031 - 18 Sep 2024
Cited by 6 | Viewed by 2383
Abstract
This paper presents a novel centrifugal microfluidic approach (so-called lab-on-a-CD) for magnetic circulating tumor cell (CTC) separation from the other healthy cells according to their physical and acquired chemical properties. This study enhances the efficiency of CTC isolation, crucial for cancer diagnosis, prognosis, [...] Read more.
This paper presents a novel centrifugal microfluidic approach (so-called lab-on-a-CD) for magnetic circulating tumor cell (CTC) separation from the other healthy cells according to their physical and acquired chemical properties. This study enhances the efficiency of CTC isolation, crucial for cancer diagnosis, prognosis, and therapy. CTCs are cells that break away from primary tumors and travel through the bloodstream; however, isolating CTCs from blood cells is difficult due to their low numbers and diverse characteristics. The proposed microfluidic device consists of two sections: a passive section that uses inertial force and bifurcation law to sort CTCs into different streamlines based on size and shape and an active section that uses magnetic forces along with Dean drag, inertial, and centrifugal forces to capture magnetized CTCs at the downstream of the microchannel. The authors designed, simulated, fabricated, and tested the device with cultured cancer cells and human cells. We also proposed a cost-effective method to mitigate the surface roughness and smooth surfaces created by micromachines and a unique pulsatile technique for flow control to improve separation efficiency. The possibility of a device with fewer layers to improve the leaks and alignment concerns was also demonstrated. The fabricated device could quickly handle a large volume of samples and achieve a high separation efficiency (93%) of CTCs at an optimal angular velocity. The paper shows the feasibility and potential of the proposed centrifugal microfluidic approach to satisfy the pumping, cell sorting, and separating functions for CTC separation. Full article
Show Figures

Figure 1

14 pages, 14437 KB  
Article
Aeroacoustic Coupling in Rectangular Deep Cavities: Passive Control and Flow Dynamics
by Abdul Hamid Jabado, Mouhammad El Hassan, Ali Hammoud, Anas Sakout and Hassan H. Assoum
Fluids 2024, 9(8), 187; https://doi.org/10.3390/fluids9080187 - 17 Aug 2024
Cited by 1 | Viewed by 1417
Abstract
Deep cavity configurations are common in various industrial applications, including automotive windows, sunroofs, and many other applications in aerospace engineering. Flows over such a geometry can result in aeroacoustic coupling between the cavity shear layer oscillations and the surrounding acoustic modes. This phenomenon [...] Read more.
Deep cavity configurations are common in various industrial applications, including automotive windows, sunroofs, and many other applications in aerospace engineering. Flows over such a geometry can result in aeroacoustic coupling between the cavity shear layer oscillations and the surrounding acoustic modes. This phenomenon can result in a resonance that can lead to significant noise and may cause damage to mechanical structures. Flow control methods are usually used to reduce or eliminate the aeroacoustic resonance. An experimental set up was developed to study the effectiveness of both a cylinder and a profiled cylinder positioned upstream from the cavity in reducing the flow resonance. The cavity flow and the acoustic signals were obtained using particle image velocimetry (PIV) and unsteady pressure sensors, respectively. A decrease of up to 36 dB was obtained in the sound pressure levels (SPL) using the passive control methods. The profiled cylinder showed a similar efficacy in reducing the resonance despite the absence of a high-frequency forcing. Time-space cross-correlation maps along the cavity shear layer showed the suppression of the feedback mechanism for both control methods. A snapshot proper orthogonal decomposition (POD) showed interesting differences between the cylinder and profiled cylinder control methods in terms of kinetic energy content and the vortex dynamics behavior. Furthermore, the interaction of the wake of the control device with the cavity shear layer and its impact on the aeroacoustic coupling was investigated using the POD analysis. Full article
(This article belongs to the Special Issue Flow Visualization: Experiments and Techniques)
Show Figures

Figure 1

11 pages, 3010 KB  
Article
The Performance and Fabrication of 3D Variable Cross-Section Channel for Passive Microfluidic Control
by Wenjie Qian, Zhou Zhou, Qing Wang, Wei Shi, Manman Xu and Daoheng Sun
Micromachines 2024, 15(8), 1038; https://doi.org/10.3390/mi15081038 - 15 Aug 2024
Cited by 1 | Viewed by 1281
Abstract
Passive fluid control has mostly been used for valves, pumps, and mixers in microfluidic systems. The basic principle is to generate localized losses in special channel structures, such as branches, grooves, or spirals. The flow field in two-dimensional space can be easily calculated [...] Read more.
Passive fluid control has mostly been used for valves, pumps, and mixers in microfluidic systems. The basic principle is to generate localized losses in special channel structures, such as branches, grooves, or spirals. The flow field in two-dimensional space can be easily calculated using the typical Stokes formula, but it is challenging in three-dimensional space. Moreover, the flow field with periodic variable cross-sections channeled of polyhedral units has been neglected in this research field due to previous limitations in manufacturing technology. With the continuous progress of 3D printing technology, the field of microfluidic devices ushered in a new era of manufacturing three-dimensional irregular channels. In this study, we present finite analysis results for a periodic nodular-like channel. The experiments involve variations in the Reynold number (Re), periodic frequency, and comparative analyses with conventional structures. The findings indicate that this variable 3D cross-section structure can readily achieve performance comparable to other passive fluid control methods in valve applications. A 3D model of the periodic tetrahedron channel was fabricated using 3D printing to validate these conclusions. This research has the potential to significantly enhance the performance of passive fluid control units that have long been constrained by manufacturing dimensions. Full article
Show Figures

Figure 1

Back to TopTop