Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (341)

Search Parameters:
Keywords = oxide-free bonding

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4518 KB  
Article
Microstructure and Properties of Inconel 718/WC Composite Coating on Mold Copper Plate
by Yu Liu, Haiquan Jin, Guohui Li, Peixuan Li, Shuai Zhang and Zhanhui Zhang
Coatings 2025, 15(12), 1394; https://doi.org/10.3390/coatings15121394 - 28 Nov 2025
Viewed by 106
Abstract
In order to improve the high-temperature wear resistance of mold copper plates, this study used laser cladding technology to prepare a high-wear-resistant composite coating with Inconel 718 and WC(Tungsten carbide) particles. The phase composition, microstructure, microhardness, and tribological properties at 400 °C were [...] Read more.
In order to improve the high-temperature wear resistance of mold copper plates, this study used laser cladding technology to prepare a high-wear-resistant composite coating with Inconel 718 and WC(Tungsten carbide) particles. The phase composition, microstructure, microhardness, and tribological properties at 400 °C were systematically analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Vickers microhardness tester, and high temperature friction and wear tester. The results indicate that the Inconel 718/WC coating is free of pores and cracks and exhibits a metallurgical bond with the substrate. Its phases mainly consist of a γ-Ni solid solution and various hard carbide reinforcing phases, such as MC, M3W3C, and W2C. The average microhardness of the coating reaches 851.7 HV0.5, which is 11.5 times than that of the substrate (74 HV0.5). At 400 °C, the wear rate of the coating is 3.48 × 10−4·mm3·N−1·m−1, only 35.7% of the substrate’s wear rate. The dominant wear mechanism is abrasive wear, accompanied by oxidative wear. The outstanding performance of the coating is attributed to the combined effects of grain refinement strengthening, solid solution strengthening, and second-phase strengthening induced by the various hard carbides. Full article
(This article belongs to the Section Laser Coatings)
Show Figures

Figure 1

18 pages, 1933 KB  
Article
Atomistic Insights into Structures and Dynamic Properties for Amorphous Aluminum/Lithium Alloys and Oxides
by Jiageng Xiong, Mi Zhang, Nijing Guo, Lijun Bao, Hua Hou and Baoshan Wang
Aerospace 2025, 12(12), 1041; https://doi.org/10.3390/aerospace12121041 - 24 Nov 2025
Viewed by 266
Abstract
Aluminum/lithium (Al/Li) alloy is a promising energetic material for solid composite propellants. The bonding structure, topological shape, density, cohesive energy, and mechanical and diffusion properties of the Al/Li alloy bulks and oxidation shells are calculated systematically using the large-scale force-field molecular dynamics simulations [...] Read more.
Aluminum/lithium (Al/Li) alloy is a promising energetic material for solid composite propellants. The bonding structure, topological shape, density, cohesive energy, and mechanical and diffusion properties of the Al/Li alloy bulks and oxidation shells are calculated systematically using the large-scale force-field molecular dynamics simulations together with the ab initio quantum chemistry calculations. Theoretical predicted structures and dynamic properties for various crystalline and amorphous reference compounds are compared with the available experimental data to validate the force-field simulations. The dependence of the structures and properties on the Li contents ranging from 2 to 50 wt% is clarified. It is revealed that both Al and Li atoms are resident in the same Al or Li environment in the Al/Li alloys. The presence of the crystalline δ’-Al3Li and β-AlLi phases in the Al/Li alloys is rationalized in terms of the coordination of Al/Li and the thermodynamic free energy of Li substitution. A homogenous six-coordinated Al/Li alloy could be generated with a Li content of 20 wt%. Young’s moduli of the alloys are improved via the low Li addition due to the anisotropic effect. The Al/Li/O oxidation shell is less dense than the amorphous alumina but the densities of oxides are generally higher than those of the corresponding Al/Li alloys. As the Li content increases, the Al/Li/O oxides form the ordered four-coordinated AlO4 passages together with the under-coordinated Li-O units, leading to considerably deteriorated mechanical performance and efficient Li diffusion with an activation energy of about 20 kJ/mol. The present work provides a deep understanding of the Al/Li alloys and Al/Li/O oxides in terms of performance and exposure stability. Full article
(This article belongs to the Special Issue Combustion of Solid Propellants)
Show Figures

Figure 1

22 pages, 7928 KB  
Article
Oxidation-Resistant Ni-AlSi12 Composite Coating with Strong Adhesion on Ti-6Al-4V Alloy Substrate via Mechanical Alloying and Subsequent Laser Cladding
by Huanjian Xie, Luyan Xu, Jian Jiang, Haoge Shou, Hongzhang Hao and Ruizhi Feng
Coatings 2025, 15(11), 1329; https://doi.org/10.3390/coatings15111329 - 14 Nov 2025
Viewed by 342
Abstract
Two Ni-AlSi12 coatings were prepared using mechanical alloying (MA) and mechanical alloying followed by laser cladding (LC), respectively. Phase composition and microstructure variations caused by powder weight ratio and laser-specific energy were thoroughly analyzed in this study. Mechanical properties and oxidation behavior are [...] Read more.
Two Ni-AlSi12 coatings were prepared using mechanical alloying (MA) and mechanical alloying followed by laser cladding (LC), respectively. Phase composition and microstructure variations caused by powder weight ratio and laser-specific energy were thoroughly analyzed in this study. Mechanical properties and oxidation behavior are markedly improved by subsequent laser cladding. The MA-LC coating, characterized by high densification and crack-free properties, presents a homogeneous microstructure with refined features. Microhardness testing reveals a marked superiority of the MA-LC coating over the conventional MA coating. The nano-hardness of MA-LC coating is 9.79 GPa, exhibiting that it is 6.84 times the nano-hardness of the MA sample. Owing to metallurgical bonding, the MA-LC coating possesses excellent scratch bonding performance. The MA-LC coating shows favorable oxidation behavior, due to the following three reasons: Firstly, oxygen diffusion can be effectively blocked by the compact Al2O3 oxide layer developed on the MA-LC coating surface, which reduces the oxidation velocity. Secondly, the coating’s mean grain dimensions demonstrate an increasing tendency after oxidation, which reduces the grain boundary serving as the oxygen diffusion channel. This enhancement significantly improves the coating’s oxidation resistance. Thirdly, analysis of the coating’s respective kernel average misorientation (KAM) map revealed a significant release of internal stress following 100 h oxidation, which can improve the coating’s resistance to spallation. Full article
(This article belongs to the Special Issue Advances in Surface Welding Techniques for Metallic Materials)
Show Figures

Figure 1

33 pages, 4181 KB  
Article
Synthesis, Physicochemical Characterization, and Biocidal Evaluation of Three Novel Aminobenzoic Acid-Derived Schiff Bases Featuring Intramolecular Hydrogen Bonding
by Alexander Carreño, Vania Artigas, Belén Gómez-Arteaga, Evys Ancede-Gallardo, Marjorie Cepeda-Plaza, Jorge I. Martínez-Araya, Roxana Arce, Manuel Gacitúa, Camila Videla, Marcelo Preite, María Carolina Otero, Catalina Guerra, Rubén Polanco, Ignacio Fuentes, Pedro Marchant, Osvaldo Inostroza, Fernando Gil and Juan A. Fuentes
Int. J. Mol. Sci. 2025, 26(21), 10801; https://doi.org/10.3390/ijms262110801 - 6 Nov 2025
Viewed by 665
Abstract
Metal-free aminobenzoic acid-derived Schiff bases are attractive antimicrobial leads because their azomethine (–C=N–) functionality enables tunable electronic properties and target engagement. We investigated whether halogenation on the phenolic ring would modulate the redox behavior and enhance antibacterial potency, and hypothesized that heavier halogens [...] Read more.
Metal-free aminobenzoic acid-derived Schiff bases are attractive antimicrobial leads because their azomethine (–C=N–) functionality enables tunable electronic properties and target engagement. We investigated whether halogenation on the phenolic ring would modulate the redox behavior and enhance antibacterial potency, and hypothesized that heavier halogens would favorably tune physicochemical and electronic descriptors. We synthesized three derivatives (SB-3/Cl, SB-4/Br, and SB-5/I) and confirmed their structures using FTIR, 1H- and 13C-NMR, UV-Vis, and HRMS. For SB-5, single-crystal X-ray diffraction and Hirshfeld analysis verified the intramolecular O–H⋯N hydrogen bond and key packing contacts. Cyclic voltammetry revealed an irreversible oxidation (aminobenzoic ring) and, for the halogenated series, a reversible reduction associated with the imine; peak positions and reversibility trends are consistent with halogen electronic effects and DFT-based MEP/LHS descriptors. Antimicrobial testing showed that SB-5 was selectively potent against Gram-positive aerobes, with low-to-mid micromolar MICs across the panel. Among anaerobes, activity was more substantial: Clostridioides difficile was inhibited at 0.1 µM, and SB-3/SB-5 reduced its sporulation at sub-MICs, while Blautia coccoides was highly susceptible (MIC 0.01 µM). No activity was detected against Gram-negative bacteria at the tested concentrations. In the fungal assay, Botrytis cinerea displayed only a transient fungistatic response without complete growth inhibition. In mammalian cells (HeLa), the compounds displayed clear concentration-dependent behavior. Overall, halogenation, particularly iodination, emerges as a powerful tool to couple redox tuning with selective Gram-positive activity and a favorable cellular tolerance window, nominating SB-5 as a promising scaffold for further antimicrobial optimization. Full article
Show Figures

Figure 1

13 pages, 1905 KB  
Article
Efficient Degradation of Cis-Polyisoprene by GQDs/g-C3N4 Nanoparticles Under UV Light Irradiation
by Cilong Chen, Jinrui Liu, Bangsen Li, Dashuai Zhang, Peisong Zhang, Jianjun Shi and Zaifeng Shi
Organics 2025, 6(4), 47; https://doi.org/10.3390/org6040047 - 14 Oct 2025
Viewed by 463
Abstract
Rubber material with high elasticity and viscoelasticity has become the most widely used universal material, and the study of the aging failure mechanism of rubber has been meaningful research in the polymer materials field. Cis-polyisoprene was employed to analyze the mechanism of [...] Read more.
Rubber material with high elasticity and viscoelasticity has become the most widely used universal material, and the study of the aging failure mechanism of rubber has been meaningful research in the polymer materials field. Cis-polyisoprene was employed to analyze the mechanism of oxidative degradation under artificial UV irradiation, and the GQDs/g-C3N4 photocatalysis with a 2D layered structure prepared by the method of microwave-assisted polymerization enabled to accelerate the degradation procedure. The results showed that the oxidation of cis-polyisoprene occurred during the irradiation for 3 days and the structure of cis-polyisoprene changed. The α-H of the double bond was attacked by oxygen to form hydroperoxide. Then, aldehydes and ketones generated as the addition reaction of double bonds occurred. The content of the hydrogen of C=C reduced, and the oxidative degradation was dominant at the initial aging stage. The crosslinking reaction was dominant at the final aging stage and the average molecular weight decreased from 15.49 × 104 to 8.78 × 104. The GQDs could promote the charge transfer and the photodegradation efficiency and inhibit the electron–hole recombination. The light capture ability of GQDs was improved after compositing with g-C3N4. The free radicals ·O22− generated after adding GQDs/g-C3N4 nanoparticles, and the molecular weight of cis-polyisoprene decreased to 5.79 × 104, with the photocatalytic efficiency increasing by 20%. This work provided academic bases and reference values for the application of photocatalysts in the field of natural rubber degradation and rubber wastewater treatment. Full article
Show Figures

Figure 1

15 pages, 8005 KB  
Article
Effect of the Activator B(OCH3)3 on the Microstructure and Mechanical Properties of Cu-Mn-Al Alloy Coating via CMT Cladding
by Jin Peng, Shihua Xie, Junhai Xia, Xingxing Wang, Zenglei Ni, Pei Wang and Nannan Chen
Crystals 2025, 15(10), 881; https://doi.org/10.3390/cryst15100881 - 13 Oct 2025
Cited by 1 | Viewed by 329
Abstract
This study investigates the fabrication of a Cu-Mn-Al alloy coating on 27SiMn steel using Cold Metal Transfer (CMT) technology with an innovative Ar-B(OCH3)3 mixed shielding gas, focusing on the effect of the gas flow rate (5–20 L/min). The addition of [...] Read more.
This study investigates the fabrication of a Cu-Mn-Al alloy coating on 27SiMn steel using Cold Metal Transfer (CMT) technology with an innovative Ar-B(OCH3)3 mixed shielding gas, focusing on the effect of the gas flow rate (5–20 L/min). The addition of B(OCH3)3 was found to significantly enhance process stability by improving molten pool wettability, resulting in a wider cladding layer (6.565 mm) and smaller wetting angles compared to pure Ar. Macro-morphology analysis identified 10 L/min as the optimal flow rate for achieving a uniform and defect-free coating, while deviations led to oxidation (at low flow) or spatter and turbulence (at high flow). Microstructural characterization revealed that the flow rate critically governs phase evolution, with the primary κI phase transforming from dendritic/granular to petal-like/rod-like morphologies. At higher flow rates (≥15 L/min), increased stirring promoted Fe dilution from the substrate, leading to the formation of Fe-rich intermetallic compounds and distinct spherical Fe phases. Consequently, the cladding layer obtained at 10 L/min exhibited balanced and superior properties, achieving a maximum shear strength of 303.22 MPa and optimal corrosion resistance with a minimum corrosion rate of 0.02935 mm/y. All shear fractures occurred within the cladding layer, demonstrating superior interfacial bonding strength and ductile fracture characteristics. This work provides a systematic guideline for optimizing shielding gas parameters in the CMT cladding of high-performance Cu-Mn-Al alloy coatings. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

24 pages, 3803 KB  
Review
Review of Preparation and Key Functional Properties of Micro-Arc Oxidation Coatings on Various Metal Substrates
by Ningning Li, Huiyi Wang, Qiuzhen Liu, Zhenjie Hao, Da Xu, Xi Chen, Datian Cui, Lei Xu and Yaya Feng
Coatings 2025, 15(10), 1201; https://doi.org/10.3390/coatings15101201 - 12 Oct 2025
Cited by 1 | Viewed by 1241
Abstract
Micro-arc oxidation (MAO) technology demonstrates remarkable advantages in fabricating ceramic coatings on lightweight alloys. For aluminum alloys, MAO rapidly forms dense, pore-free ceramic layers within minutes, significantly enhancing corrosion and wear resistance at low processing costs. In magnesium alloys, optimized electrolyte compositions and [...] Read more.
Micro-arc oxidation (MAO) technology demonstrates remarkable advantages in fabricating ceramic coatings on lightweight alloys. For aluminum alloys, MAO rapidly forms dense, pore-free ceramic layers within minutes, significantly enhancing corrosion and wear resistance at low processing costs. In magnesium alloys, optimized electrolyte compositions and process parameters enable composite coatings with a combination of high hardness and self-lubrication properties, while post-treatments like laser melting or corrosion inhibitors extend salt spray corrosion resistance. Titanium alloys benefit from MAO coatings with exceptional interfacial bonding strength and mechanical performance, making them ideal for biomedical implants and aerospace components. Notably, dense ceramic oxide films grown in situ via MAO on high-entropy alloys (HEAs) triple surface hardness and enhance wear/corrosion resistance. However, MAO applications on steel require pretreatments like aluminizing, thermal spraying, or ion plating. Current challenges include coating uniformity control, efficiency for complex geometries, and long-term stability. Future research focuses on multifunctional coatings (self-healing, antibacterial) and eco-friendly electrolyte systems to expand engineering applications. Full article
Show Figures

Figure 1

14 pages, 9892 KB  
Article
Research on Chromium-Free Passivation and Corrosion Performance of Pure Copper
by Xinghan Yu, Ziye Xue, Haibo Chen, Wei Li, Hang Li, Jing Hu, Jianli Zhang, Qiang Chen, Guangya Hou and Yiping Tang
Materials 2025, 18(19), 4585; https://doi.org/10.3390/ma18194585 - 2 Oct 2025
Viewed by 808
Abstract
In response to the actual needs of pure copper bonding wires, it is crucial to develop a chromium-free passivator that is environmentally friendly and has excellent corrosion resistance. In this study, three different composite organic formulations of chromium-free passivation solutions are selected: 2-Amino-5-mercapto-1,3,4 [...] Read more.
In response to the actual needs of pure copper bonding wires, it is crucial to develop a chromium-free passivator that is environmentally friendly and has excellent corrosion resistance. In this study, three different composite organic formulations of chromium-free passivation solutions are selected: 2-Amino-5-mercapto-1,3,4 thiadiazole (AMT) + 1-phenyl-5-mercapto tetrazolium (PMTA), 2-mercaptobenzimidazole (MBI) + PMTA, and Hexadecanethiol (CHS) + sodium dodecyl sulfate (SDS). The performance analysis and corrosion mechanism were compared with traditional hexavalent chromium passivation through characterization techniques such as XRD, SEM, and XPS. The results show that the best corrosion resistance formula is the combination of the PMTA and MBI passivation agent, and all its performances are superior to those of hexavalent chromium. The samples treated with this passivation agent corrode within 18 s in the nitric acid drop test, which is better than the 16 s for Cr6+ passivation. The samples do not change color after being immersed in salt water for 48 h. Electrochemical tests and high-temperature oxidation test also indicate better corrosion resistance than Cr6+ passivation. Through the analysis of functional groups and bonding, the excellent passivation effect is demonstrated to be achieved by the synergistic action of the chemical adsorption film formation of PMTA and the anchoring effect of MBI. Eventually, a dense Cu-PMTA-BMI film is formed on the surface, which effectively blocks the erosion of the corrosive medium and significantly improves the corrosion resistance. Full article
(This article belongs to the Special Issue Antibacterial and Corrosion-Resistant Coatings for Marine Application)
Show Figures

Figure 1

17 pages, 723 KB  
Review
Rebuilding Mitochondrial Homeostasis and Inhibiting Ferroptosis: Therapeutic Mechanisms and Prospects for Spinal Cord Injury
by Qin Wang, Qingqing Qin, Wenqiang Liang, Haoran Guo, Yang Diao, Shengsheng Tian and Xin Wang
Biomedicines 2025, 13(9), 2290; https://doi.org/10.3390/biomedicines13092290 - 18 Sep 2025
Viewed by 965
Abstract
During the pathological process of spinal cord injury (SCI), ferroptosis is closely related to mitochondrial homeostasis. Following the occurrence of SCI, the interruption of local blood supply leads to mitochondrial damage within cells and a reduction in Adenosine triphosphate (ATP) production. This results [...] Read more.
During the pathological process of spinal cord injury (SCI), ferroptosis is closely related to mitochondrial homeostasis. Following the occurrence of SCI, the interruption of local blood supply leads to mitochondrial damage within cells and a reduction in Adenosine triphosphate (ATP) production. This results in the loss of transmembrane ion gradients, causing an influx of Ca2+ into the cells, which in turn generates a significant amount of Reactive oxygen species (ROS) and reactive nitrogen species. This leads to severe mitochondrial dysfunction and an imbalance in mitochondrial homeostasis. Ferroptosis is a form of programmed cell death that differs from other types of apoptosis, as it is dependent on the accumulation of iron and lipid peroxides, along with their byproducts. The double bond structures in intracellular polyunsaturated fatty acids (PUFA) are particularly susceptible to attack by ROS, leading to the formation of lipid alkyl free radicals. This accumulation of lipid peroxides within the cells triggers ferroptosis. After SCI, the triggering of ferroptosis is closely associated with the “death triangle”—a core network that catalyzes cell death through the interaction of three factors: local iron overload, collapse of antioxidant defenses, and dysregulation of PUFA metabolism (where PUFA are susceptible to attack by reactive ROS leading to lipid peroxidation). These three elements interact to form a central network driving cell death. In the pathological cascade of SCI, mitochondria serve as both a major source of ROS and a primary target of their attack, playing a crucial role in the initiation and execution of cellular ferroptosis. Mitochondrial homeostasis imbalance is not only a key inducer of the “death triangle” (such as the intensification of lipid peroxidation by mitochondrial ROS), but is also reverse-regulated by the “death triangle” (such as the destruction of mitochondrial structure by lipid peroxidation products). Through the cascade reaction of this triangular network, mitochondrial homeostasis imbalance and the “death triangle” jointly drive the progression of secondary damage. This study aims to synthesize the mechanisms by which various therapeutic approaches mitigate SCI through targeted regulation of mitochondrial homeostasis and inhibition of ferroptosis. Unlike previous research, we integrate the bidirectional regulatory relationship between “mitochondrial homeostasis disruption” and “ferroptosis” in SCI, and emphasize their importance as a synergistic therapeutic target. We not only elaborate in detail how mitochondrial homeostasis—including biogenesis, dynamics, and mitophagy—modulates the initiation and execution of ferroptosis, but also summarize recent strategies that simultaneously target both processes to achieve neuroprotection and functional recovery. Furthermore, this review highlights the translational potential of various treatments in blocking the pathological cascade driven by oxidative stress and lipid peroxidation. These insights provide a novel theoretical framework and propose combinatory therapeutic approaches, thereby laying the groundwork for designing precise and effective comprehensive treatment strategies for SCI in clinical settings. Full article
(This article belongs to the Special Issue Traumatic CNS Injury: From Bench to Bedside (2nd Edition))
Show Figures

Graphical abstract

18 pages, 4055 KB  
Article
Optimizing the Microscopic Structure of MIL-68(Al) by Co-Doping for Pollutant Removal and Mechanism
by Wenju Peng, Wenjie Yang, Meng Wang, Lin Zhang, Xianxiang Liu and Yaoyao Zhang
Catalysts 2025, 15(9), 900; https://doi.org/10.3390/catal15090900 - 17 Sep 2025
Viewed by 615
Abstract
Four different MIL-68(Al) catalysts were synthesized and characterized by XPS, SEM, TEM, XRD, DLS, Nitrogen adsorption removal, and other methods. An aluminum-based MOF (Metal Organic Framework) (MIL-68(Al))/graphite oxide (GO) composite with TiO2 showed the largest BET specific area with best adsorption performance. [...] Read more.
Four different MIL-68(Al) catalysts were synthesized and characterized by XPS, SEM, TEM, XRD, DLS, Nitrogen adsorption removal, and other methods. An aluminum-based MOF (Metal Organic Framework) (MIL-68(Al))/graphite oxide (GO) composite with TiO2 showed the largest BET specific area with best adsorption performance. Representation demonstrated that MIL-68(Al) and TiO2 nanoparticles are uniformly dispersed on the surface of the GO lamellar, and a tight heterojunction structure is formed between them. The MIL-68(Al)/GO/TiO2 exhibits good pore characteristics, structural morphology, and catalytic performance. Adsorption experiments of methyl orange can reach 99.7% with the effect of MIL-68(Al)/GO/TiO2 in water for 20 min. Moreover, the pH range can be applied to 1–13 and a high concentration of 200 mg/L methyl orange solution also worked well. In addition, this kind of catalyst can also be used for rhodamine B, methylene blue, congo red, and tetracycline in 20 min with good adsorption. Meanwhile, simple filtration can quickly recover MIL-68(Al)/GO/TiO2 and effectively reuse it. Free radical capture experiments showed a large number of •OH radicals during the adsorption of MO (Methyl Orange) solution by MIL-68(Al)/GO/TiO2. Meanwhile, the electrostatic interaction, π-π packing and hydrogen bonding make MIL-68(Al)/GO/TiO2 have a higher adsorption capacity for MO. Therefore, co-doping optimized the structure of MIL-68(Al), enhancing its stability in strong acids and bases while improving adsorption performance across a broader pH range than previously reported. This work addresses the instability of MIL-68(Al) under extreme conditions, demonstrating its significant potential for wastewater treatment applications. Full article
(This article belongs to the Special Issue TiO2 Photocatalysts: Design, Optimization and Application)
Show Figures

Figure 1

14 pages, 4771 KB  
Article
Brazed–Resin Composite Grinding Wheel with CBN Segments: Fabrication, Brazing Mechanism, and Rail Grinding Performance
by Haozhong Xiao, Shuyi Wang, Bing Xiao, Zhenwei Huang and Jingyan Zhu
Coatings 2025, 15(9), 1083; https://doi.org/10.3390/coatings15091083 - 15 Sep 2025
Viewed by 754
Abstract
To enhance the grinding performance and service life of rail grinding wheels, a novel brazed–resin composite wheel was developed by embedding brazed CBN (cubic boron nitride) segments into a resin working layer. The brazed CBN segments were fabricated using a Cu–Sn–Ti + WC [...] Read more.
To enhance the grinding performance and service life of rail grinding wheels, a novel brazed–resin composite wheel was developed by embedding brazed CBN (cubic boron nitride) segments into a resin working layer. The brazed CBN segments were fabricated using a Cu–Sn–Ti + WC (tungsten carbide) composite filler via a cold-press forming–vacuum brazing process. Microstructural and phase analyses revealed the formation of Ti–B and Ti–N compounds at the CBN–filler interface, indicating metallurgical bonding, while the incorporation of WC reduced excessive wetting, enabling precise shape retention of the segments. Comparative laboratory and field grinding tests were conducted against conventional resin-bonded wheels. Under all tested pressures, the composite wheel exhibited lower grinding temperatures, generated predominantly strip-shaped chips with lower oxygen content, and produced fewer spherical oxide-rich chips than the resin-bonded wheel, confirming reduced thermal load. Field tests demonstrated that the composite wheel matched the resin-bonded wheel in grinding efficiency, extended service life by approximately 28.8%, and achieved smoother rail surfaces free from burn-induced blue marks. These results indicate that the brazed–resin composite grinding wheel effectively leverages the superior hardness and thermal conductivity of CBN abrasives, offering improved thermal control, wear resistance, and surface quality in rail grinding applications. Full article
Show Figures

Graphical abstract

31 pages, 5517 KB  
Article
Optimization of Cold Gas Dynamic Spray Coatings Using Agglomerated Al–Zn–TiO2 Powders on Steel
by Bauyrzhan Rakhadilov, Kaiyrzhan Berikkhan, Zarina Satbayeva, Ainur Zhassulan, Aibek Shynarbek and Kuanysh Ormanbekov
Metals 2025, 15(9), 1011; https://doi.org/10.3390/met15091011 - 11 Sep 2025
Viewed by 576
Abstract
Cold gas dynamic spraying (CGDS) enables the production of protective coatings without melting or oxidation. In this study, Al–Zn–TiO2 composite powders were prepared by wet agglomeration with binders and by dry mechanical mixing, and deposited onto mild steel substrates. COMSOL simulations of [...] Read more.
Cold gas dynamic spraying (CGDS) enables the production of protective coatings without melting or oxidation. In this study, Al–Zn–TiO2 composite powders were prepared by wet agglomeration with binders and by dry mechanical mixing, and deposited onto mild steel substrates. COMSOL simulations of gas dynamics and particle acceleration identified optimal parameters (0.6 MPa, 600 °C, 15 mm, 90°), which were then validated experimentally. Coatings formed under these conditions exhibited dense microstructures, minimal porosity (~0.5%), and continuous, defect-free interfaces with the substrate. SEM and XRD confirmed solid-state bonding without new phase formation. Corrosion tests in 3.5% NaCl revealed a tenfold reduction in corrosion current density compared to bare steel, resulting from synergistic sacrificial (Zn), barrier (Al), and reinforcing/passivating (TiO2) effects. Tribological tests demonstrated reduced friction (CoF ≈ 0.4–0.5) and wear volume. Compared with reported Al- or Zn-based cold- and thermal-sprayed coatings, the optimized Al–Zn–TiO2 system shows superior performance, highlighting its potential for industrial anti-corrosion and wear-resistant applications. Full article
Show Figures

Figure 1

28 pages, 4674 KB  
Article
Raman Monitoring of Staphylococcus aureus Osteomyelitis: Microbial Pathogenesis and Bone Immune Response
by Shun Fujii, Naoyuki Horie, Saki Ikegami, Hayata Imamura, Wenliang Zhu, Hiroshi Ikegaya, Osam Mazda, Giuseppe Pezzotti and Kenji Takahashi
Int. J. Mol. Sci. 2025, 26(17), 8572; https://doi.org/10.3390/ijms26178572 - 3 Sep 2025
Viewed by 1076
Abstract
Staphylococcus aureus is the most common pathogen causing osteomyelitis, a hardly recoverable bone infection that generates significant burden to patients. Osteomyelitis mouse models have long and successfully served to provide phenomenological insights into both pathogenesis and host response. However, direct in situ monitoring [...] Read more.
Staphylococcus aureus is the most common pathogen causing osteomyelitis, a hardly recoverable bone infection that generates significant burden to patients. Osteomyelitis mouse models have long and successfully served to provide phenomenological insights into both pathogenesis and host response. However, direct in situ monitoring of bone microbial pathogenesis and immune response at the cellular level is still conspicuously missing in the published literature. Here, we update a standard pyogenic osteomyelitis in Wistar rat model, in order to investigate bacterial localization and immune response in osteomyelitis of rat tibia upon adding in situ analyses by spectrally resolved Raman spectroscopy. Raman experiments were performed one and five weeks post infections upon increasing the initial dose of bacterial inoculation in rat tibia. Label-free in situ Raman spectroscopy clearly revealed the presence of Staphylococcus aureus through exploiting peculiar signals from characteristic carotenoid staphyloxanthin molecules. Data were collected as a function of both initial bacteria inoculation dose and location along the tibia. Such strong Raman signals, which relate to single and double bonds in the carbon chain backbone of carotenoids, served as efficient bacterial markers even at low levels of infection. We could also detect strong Raman signals from cytochrome c (and its oxidized form) from bone cells in response to infection and inflammatory paths. Although initial inoculation was restricted to a single location close to the medial condyle, bacteria spread along the entire bone down to the medial malleolus, independent of initial infection dose. Raman spectroscopic characterizations comprehensively and quantitatively revealed the metabolic state of bacteria through specific spectroscopic biomarkers linked to the length of staphyloxanthin carbon chain backbone. Moreover, the physiological response of eukaryotic cells could be quantified through monitoring the level of oxidation of mitochondrial cytochrome c, which featured the relative intensity of the 1644 cm−1 signal peculiar to the oxidized molecules with respect to its pyrrole ring-breathing signal at 750 cm−1, according to the previously published literature. In conclusion, we present here a novel Raman spectroscopic approach indexing bacterial concentration and immune response in bone tissue. This new approach enables locating and characterizing in situ bone infections, inflammatory host tissue reactions, and bacterial resistance/adaptation. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

13 pages, 2239 KB  
Article
Biocatalytic Detoxification of Ochratoxins A/B by a Fungal Dye-Decolorizing Peroxidase: Mechanistic Insights and Toxicity Assessment
by Wenjing Xia, Nianqing Zhu, Jie Mei, Yueqin Peng, Fanglin Song, Shuai Ding, Fei Li and Xue Zhou
Toxins 2025, 17(9), 438; https://doi.org/10.3390/toxins17090438 - 2 Sep 2025
Viewed by 775
Abstract
Mycotoxin contamination in agricultural products poses severe global health risks, with ochratoxins (particularly OTA and OTB) exhibiting marked nephrotoxicity and classified as Group 2B carcinogens by IARC. Conventional physical/chemical detoxification methods often impair food nutritional quality, highlighting the need for enzymatic alternatives. Herein, [...] Read more.
Mycotoxin contamination in agricultural products poses severe global health risks, with ochratoxins (particularly OTA and OTB) exhibiting marked nephrotoxicity and classified as Group 2B carcinogens by IARC. Conventional physical/chemical detoxification methods often impair food nutritional quality, highlighting the need for enzymatic alternatives. Herein, we systematically investigated the degradation mechanisms of ochratoxin A (OTA) and ochratoxin B (OTB) using Pleurotus ostreatus dye-decolorizing peroxidase (PoDyP4) coupled with redox mediators. Remarkably, hydroxybenzotriazole (HBT) enhanced degradation efficiency 26.7-fold for OTA and 10.6-fold for OTB compared to mediator-free systems, establishing it as the optimal catalytic enhancer. Through LC-MS/MS analysis, we identified five key degradation products, including 6-OH-OTA and OTB-quinone, elucidating a putative oxidative degradation pathway. In vitro cytotoxicological evaluation in HK-2 cells demonstrated that PoDyP4-treated ochratoxins significantly attenuated cytotoxicity, reducing malondialdehyde (MDA) levels by 48.7% (OTA) and 42.3% (OTB) (p < 0.01) and suppressing ROS generation. Molecular docking revealed strong binding affinities between PoDyP4 and ochratoxins, with calculated binding energies of −7.6 kcal/mol (OTA) and −8.6 kcal/mol (OTB), stabilized by hydrogen bond networks (1.9–3.4 Å). These findings position PoDyP4 as a promising biocatalyst for mycotoxin mitigation in food systems, offering a sustainable alternative to traditional detoxification methods. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

27 pages, 4649 KB  
Review
A Review of Novel Die Attach Materials for High-Temperature WBG Power Electronic Applications
by Na Wu and Yuxiang Li
Materials 2025, 18(16), 3841; https://doi.org/10.3390/ma18163841 - 15 Aug 2025
Viewed by 1159
Abstract
Third-generation wide-bandgap (WBG) semiconductor power electronics exhibit excellent workability, but high-temperature packaging technology limits their applications. TLP, TLPS, and nanoparticle sintering have the potential to achieve a high-temperature-resistant joint at a lower bonding temperature. However, a long bonding time, voids in the joint, [...] Read more.
Third-generation wide-bandgap (WBG) semiconductor power electronics exhibit excellent workability, but high-temperature packaging technology limits their applications. TLP, TLPS, and nanoparticle sintering have the potential to achieve a high-temperature-resistant joint at a lower bonding temperature. However, a long bonding time, voids in the joint, powder oxidation, and organic solvent residues impede their application. A novel interlayer and other approaches have been proposed, such as preformed Sn-coated Cu foam (CF@Sn), a Cu-Sn nanocomposite interlayer, self-reducible Cu nanoparticle paste, bimodal-sized Cu nanoparticle pastes, organic-free nanoparticle films, and high-thermal-conductivity and low-CTE composite paste. Their preparation, bonding processes, and joint properties are compared in this paper. Full article
Show Figures

Figure 1

Back to TopTop