Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (21,985)

Search Parameters:
Keywords = overall activity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 3543 KiB  
Review
Enhancing the Performance of Active Distribution Grids: A Review Using Metaheuristic Techniques
by Jesús Daniel Dávalos Soto, Daniel Guillen, Luis Ibarra, José Ezequiel Santibañez-Aguilar, Jesús Elias Valdez-Resendiz, Juan Avilés, Meng Yen Shih and Antonio Notholt
Energies 2025, 18(15), 4180; https://doi.org/10.3390/en18154180 (registering DOI) - 6 Aug 2025
Abstract
The electrical power system is composed of three essential sectors, generation, transmission, and distribution, with the latter being crucial for the overall efficiency of the system. Enhancing the capabilities of active distribution networks involves integrating various advanced technologies such as distributed generation units, [...] Read more.
The electrical power system is composed of three essential sectors, generation, transmission, and distribution, with the latter being crucial for the overall efficiency of the system. Enhancing the capabilities of active distribution networks involves integrating various advanced technologies such as distributed generation units, energy storage systems, banks of capacitors, and electric vehicle chargers. This paper provides an in-depth review of the primary strategies for incorporating these technologies into the distribution network to improve its reliability, stability, and efficiency. It also explores the principal metaheuristic techniques employed for the optimal allocation of distributed generation units, banks of capacitors, energy storage systems, electric vehicle chargers, and network reconfiguration. These techniques are essential for effectively integrating these technologies and optimizing the active distribution network by enhancing power quality and voltage level, reducing losses, and ensuring operational indices are maintained at optimal levels. Full article
(This article belongs to the Section K: State-of-the-Art Energy Related Technologies)
Show Figures

Figure 1

19 pages, 1756 KiB  
Article
Addition of β-Cyclodextrin or Gelatin Ιmproves Organoleptic and Physicochemical Attributes of Aronia Juice
by Kalliopi Gkoutzina, Ioannis Mourtzinos and Dimitrios Gerasopoulos
Beverages 2025, 11(4), 115; https://doi.org/10.3390/beverages11040115 - 6 Aug 2025
Abstract
Aronia juice is well-known for its high nutritional and biological value, due to its polyphenol content, which has a powerful antioxidant effect. However, the high polyphenol content of aronia juice is associated with an astringent flavor, which diminishes consumer acceptance. To improve the [...] Read more.
Aronia juice is well-known for its high nutritional and biological value, due to its polyphenol content, which has a powerful antioxidant effect. However, the high polyphenol content of aronia juice is associated with an astringent flavor, which diminishes consumer acceptance. To improve the flavor of aronia juice, β-cyclodextrin (0–2% w/v) or gelatin (0–0.4 mg/L) were added before pasteurization. The juice samples were first examined organoleptically, and monitored for total phenolic compounds, antioxidant capacity, total flavonoids, total monomeric anthocyanins, polymeric color, pH, total soluble solids, and color. The organoleptic test demonstrated that both β-cyclodextrin and gelatin juice aroma reduced astringency and increased sweetness, whereas β-cyclodextrin also reduced juice aroma. β-cyclodextrin significantly increased polymeric color and total soluble solids (p < 0.05), whereas antioxidant activity, total flavonoids, and monomeric anthocyanins remained unchanged compared to the unpasteurized control. In contrast, the addition of gelatin dramatically reduced total phenolic compounds, antioxidant capacity, and total flavonoids, while enhancing polymeric color and maintaining monomeric anthocyanins with minor decreases relative to pre-pasteurization levels (p < 0.05). A consumer study was conducted with control juice and juices with 2% w/v β-cyclodextrin or 0.4 mg/L gelatin added. The results confirmed the change in flavor profile by masking or removing astringency and astringent aftertaste, as well as increasing sweetness, which significantly improved overall acceptability (p < 0.05). Full article
(This article belongs to the Section Quality, Nutrition, and Chemistry of Beverages)
Show Figures

Figure 1

16 pages, 6256 KiB  
Article
Influence of Alpha/Gamma-Stabilizing Elements on the Hot Deformation Behaviour of Ferritic Stainless Steel
by Andrés Núñez, Irene Collado, Marta Muratori, Andrés Ruiz, Juan F. Almagro and David L. Sales
J. Manuf. Mater. Process. 2025, 9(8), 265; https://doi.org/10.3390/jmmp9080265 - 6 Aug 2025
Abstract
This study investigates the hot deformation behaviour and microstructural evolution of two AISI 430 ferritic stainless steel variants: 0A (basic) and 1C (modified). These variants primarily differ in chemical composition, with 0A containing higher austenite-stabilizing elements (C, N) compared to 1C, which features [...] Read more.
This study investigates the hot deformation behaviour and microstructural evolution of two AISI 430 ferritic stainless steel variants: 0A (basic) and 1C (modified). These variants primarily differ in chemical composition, with 0A containing higher austenite-stabilizing elements (C, N) compared to 1C, which features lower interstitial content and slightly higher Si and Cr. This research aimed to optimize hot rolling conditions for enhanced forming properties. Uniaxial hot compression tests were conducted using a Gleeble thermo-mechanical system between 850 and 990 C at a strain rate of 3.3 s1, simulating industrial finishing mill conditions. Analysis of flow curves, coupled with detailed microstructural characterization using electron backscatter diffraction, revealed distinct dynamic restoration mechanisms influencing each material’s response. Thermodynamic simulations confirmed significant austenite formation in both materials within the tested temperature range, notably affecting their deformation behaviour despite their initial ferritic state. Material 0A consistently exhibited a strong tendency towards dynamic recrystallization (DRX) across a wider temperature range, particularly at 850 C. DRX led to a microstructure with a high concentration of low-angle grain boundaries and sharp deformation textures, actively reorienting grains towards energetically favourable configurations. However, under this condition, DRX did not fully complete the recrystallization process. In contrast, material 1C showed greater activity of both dynamic recovery and DRX, leading to a much more advanced state of grain refinement and recrystallization compared to 0A. This indicates that the composition of 1C helps mitigate the strong influence of the deformation temperature on the crystallographic texture, leading to a weaker texture overall than 0A. Full article
17 pages, 1800 KiB  
Article
Healing Kinetics of Sinus Lift Augmentation Using Biphasic Calcium Phosphate Granules: A Case Series in Humans
by Michele Furlani, Valentina Notarstefano, Nicole Riberti, Emira D’Amico, Tania Vanessa Pierfelice, Carlo Mangano, Elisabetta Giorgini, Giovanna Iezzi and Alessandra Giuliani
Bioengineering 2025, 12(8), 848; https://doi.org/10.3390/bioengineering12080848 (registering DOI) - 6 Aug 2025
Abstract
Sinus augmentation provides a well-established model for investigating the three-dimensional morphometry and macromolecular dynamics of bone regeneration, particularly when using biphasic calcium phosphate (BCP) graft substitutes. This case series included six biopsies from patients who underwent maxillary sinus augmentation using BCP granules composed [...] Read more.
Sinus augmentation provides a well-established model for investigating the three-dimensional morphometry and macromolecular dynamics of bone regeneration, particularly when using biphasic calcium phosphate (BCP) graft substitutes. This case series included six biopsies from patients who underwent maxillary sinus augmentation using BCP granules composed of 30% hydroxyapatite (HA) and 70% β-tricalcium phosphate (β-TCP). Bone core biopsies were obtained at healing times of 6 months, 9 months, and 12 months. Histological evaluation yielded qualitative and quantitative insights into new bone distribution, while micro-computed tomography (micro-CT) and Raman microspectroscopy (RMS) were employed to assess the three-dimensional architecture and macromolecular composition of the regenerated bone. Micro-CT analysis revealed progressive maturation of the regenerated bone microstructure over time. At 6 months, the apical regenerated area exhibited a significantly higher mineralized volume fraction (58 ± 5%) compared to the basal native bone (44 ± 11%; p = 0.0170), as well as significantly reduced trabecular spacing (Tb.Sp: 187 ± 70 µm vs. 325 ± 96 µm; p = 0.0155) and degree of anisotropy (DA: 0.37 ± 0.05 vs. 0.73 ± 0.03; p < 0.0001). By 12 months, the mineralized volume fraction in the regenerated area (53 ± 5%) was statistically comparable to basal bone (44 ± 3%; p > 0.05), while Tb.Sp (211 ± 20 µm) and DA (0.23 ± 0.09) remained significantly lower (Tb.Sp: 395 ± 41 µm, p = 0.0041; DA: 0.46 ± 0.04, p = 0.0001), indicating continued structural remodelling and organization. Raman microspectroscopy further revealed dynamic macromolecular changes during healing. Characteristic β-TCP peaks (e.g., 1315, 1380, 1483 cm−1) progressively diminished over time and were completely absent in the regenerated tissue at 12 months, contrasting with their partial presence at 6 months. Simultaneously, increased intensity of collagen-specific bands (e.g., Amide I at 1661 cm−1, Amide III at 1250 cm−1) and carbonate peaks (1065 cm−1) reflected active matrix formation and mineralization. Overall, this case series provides qualitative and quantitative evidence that bone regeneration and integration of BCP granules in sinus augmentation continues beyond 6 months, with ongoing maturation observed up to 12 months post-grafting. Full article
Show Figures

Figure 1

14 pages, 6958 KiB  
Article
A pH-Responsive Liquid Crystal-Based Sensing Platform for the Detection of Biothiols
by Xianghao Meng, Ronghua Zhang, Xinfeng Dong, Zhongxing Wang and Li Yu
Chemosensors 2025, 13(8), 291; https://doi.org/10.3390/chemosensors13080291 - 6 Aug 2025
Abstract
Biothiols, including cysteine (Cys), homocysteine (Hcy), and glutathione (GSH), are crucial for physiological regulation and their imbalance poses severe health risks. Herein, we developed a pH-responsive liquid crystal (LC)-based sensing platform for detection of biothiols by doping 4-n-pentylbiphenyl-4-carboxylic acid (PBA) into [...] Read more.
Biothiols, including cysteine (Cys), homocysteine (Hcy), and glutathione (GSH), are crucial for physiological regulation and their imbalance poses severe health risks. Herein, we developed a pH-responsive liquid crystal (LC)-based sensing platform for detection of biothiols by doping 4-n-pentylbiphenyl-4-carboxylic acid (PBA) into 4-n-pentyl-4-cyanobiphenyl (5CB). Urease catalyzed urea hydrolysis to produce OH, triggering the deprotonation of PBA, thereby inducing a vertical alignment of LC molecules at the interface corresponding to dark optical appearances. Heavy metal ions (e.g., Hg2+) could inhibit urease activity, under which condition LC presents bright optical images and LC molecules maintain a state of tilted arrangement. However, biothiols competitively bind to Hg2+, the activity of urease is maintained which enables the occurrence of urea hydrolysis. This case triggers LC molecules to align in a vertical orientation, resulting in bright optical images. This pH-driven reorientation of LCs provides a visual readout (bright-to-dark transition) correlated with biothiol concentration. The detection limits of Cys/Hcy and GSH for the PBA-doped LC platform are 0.1 μM and 0.5 μM, respectively. Overall, this study provides a simple, label-free and low-cost strategy that has a broad application prospect for the detection of biothiols. Full article
(This article belongs to the Special Issue Feature Papers on Luminescent Sensing (Second Edition))
Show Figures

Figure 1

20 pages, 1119 KiB  
Article
Smartphone-Assisted Experimentation as a Medium of Understanding Human Biology Through Inquiry-Based Learning
by Giovanna Brita Campilongo, Giovanna Tonzar-Santos, Maria Eduarda dos Santos Verginio and Camilo Lellis-Santos
Educ. Sci. 2025, 15(8), 1005; https://doi.org/10.3390/educsci15081005 - 6 Aug 2025
Abstract
The integration of Inquiry-Based Learning (IBL) and mobile technologies can transform science education, offering experimentation opportunities to students from budget-constrained schools. This study investigates the efficacy of smartphone-assisted experimentation (SAE) within IBL to enhance pre-service science teachers’ understanding of human physiology and presents [...] Read more.
The integration of Inquiry-Based Learning (IBL) and mobile technologies can transform science education, offering experimentation opportunities to students from budget-constrained schools. This study investigates the efficacy of smartphone-assisted experimentation (SAE) within IBL to enhance pre-service science teachers’ understanding of human physiology and presents a newly developed and validated rubric for assessing their scientific skills. Students (N = 286) from a Science and Mathematics Teacher Education Program participated in a summative IBL activity (“Investigating the Human Physiology”—iHPhys) where they designed experimental projects using smartphone applications to collect body sign data. The scoring rubric, assessing seven criteria including hypothesis formulation, methodological design, data presentation, and conclusion writing, was validated as substantial to almost perfect inter-rater reliability. Results reveal that students exhibited strong skills in hypothesis clarity, theoretical grounding, and experimental design, with a high degree of methodological innovation observed. However, challenges persisted in predictive reasoning and evidence-based conclusion writing. The students were strongly interested in inquiring about the cardiovascular and nervous systems. Correlational analyses suggest a positive relationship between project originality and overall academic performance. Thus, integrating SAE and IBL fosters critical scientific competencies, creativity, and epistemic cognition while democratizing access to scientific experimentation and engaging students in tech-savvy pedagogical practices. Full article
(This article belongs to the Special Issue Inquiry-Based Learning and Student Engagement)
Show Figures

Figure 1

24 pages, 1684 KiB  
Article
Beyond Assistance: Embracing AI as a Collaborative Co-Agent in Education
by Rena Katsenou, Konstantinos Kotsidis, Agnes Papadopoulou, Panagiotis Anastasiadis and Ioannis Deliyannis
Educ. Sci. 2025, 15(8), 1006; https://doi.org/10.3390/educsci15081006 - 6 Aug 2025
Abstract
The integration of artificial intelligence (AI) in education offers novel opportunities to enhance critical thinking while also posing challenges to independent cognitive development. In particular, Human-Centered Artificial Intelligence (HCAI) in education aims to enhance human experience by providing a supportive and collaborative learning [...] Read more.
The integration of artificial intelligence (AI) in education offers novel opportunities to enhance critical thinking while also posing challenges to independent cognitive development. In particular, Human-Centered Artificial Intelligence (HCAI) in education aims to enhance human experience by providing a supportive and collaborative learning environment. Rather than replacing the educator, HCAI serves as a tool that empowers both students and teachers, fostering critical thinking and autonomy in learning. This study investigates the potential for AI to become a collaborative partner that assists learning and enriches academic engagement. The research was conducted during the 2024–2025 winter semester within the Pedagogical and Teaching Sufficiency Program offered by the Audio and Visual Arts Department, Ionian University, Corfu, Greece. The research employs a hybrid ethnographic methodology that blends digital interactions—where students use AI tools to create artistic representations—with physical classroom engagement. Data was collected through student projects, reflective journals, and questionnaires, revealing that structured dialog with AI not only facilitates deeper critical inquiry and analytical reasoning but also induces a state of flow, characterized by intense focus and heightened creativity. The findings highlight a dialectic between individual agency and collaborative co-agency, demonstrating that while automated AI responses may diminish active cognitive engagement, meaningful interactions can transform AI into an intellectual partner that enriches the learning experience. These insights suggest promising directions for future pedagogical strategies that balance digital innovation with traditional teaching methods, ultimately enhancing the overall quality of education. Furthermore, the study underscores the importance of integrating reflective practices and adaptive frameworks to support evolving student needs, ensuring a sustainable model. Full article
(This article belongs to the Special Issue Unleashing the Potential of E-learning in Higher Education)
Show Figures

Figure 1

22 pages, 9028 KiB  
Article
Mechanochemical Activation of Basic Oxygen Furnace Slag: Insights into Particle Modification, Hydration Behavior, and Microstructural Development
by Maochun Xu, Liuchao Guo, Junshan Wen, Xiaodong Hu, Lei Wang and Liwu Mo
Materials 2025, 18(15), 3687; https://doi.org/10.3390/ma18153687 - 6 Aug 2025
Abstract
This study proposed a mechanochemical activation strategy using ethanol-diisopropanolamine (EDIPA) to improve the grindability and hydration reactivity of basic oxygen furnace slag (BOFS), aiming for its large-scale industrial utilization. The incorporation of EDIPA significantly refined the particle size distribution and reduced the repose [...] Read more.
This study proposed a mechanochemical activation strategy using ethanol-diisopropanolamine (EDIPA) to improve the grindability and hydration reactivity of basic oxygen furnace slag (BOFS), aiming for its large-scale industrial utilization. The incorporation of EDIPA significantly refined the particle size distribution and reduced the repose angle. As a result, the compressive strength of BOFS paste increased by 25.4 MPa at 28 d with only 0.08 wt.% EDIPA. Conductivity tests demonstrated that EDIPA strongly complexes with Ca2+, Al3+, and Fe3+, facilitating the dissolution of active mineral phases, such as C12A7 and C2F, and accelerating hydration reactions. XRD and TG analyses confirmed that the incorporation of EDIPA facilitated the formation of Mc (C4(A,F)ČH11) and increased the content of C-S-H, both of which contributed to microstructural densification. Microstructural observations further revealed that EDIPA refined Ca(OH)2 crystals, increasing their specific surface area from 4.7 m2/g to 35.2 m2/g. The combined effect of crystal refinement and enhanced hydration product formation resulted in reduced porosity and improved mechanical properties. Overall, the results demonstrated that EDIPA provided an economical, effective, and scalable means of activating BOFS, thereby promoting its high-value utilization in low-carbon construction materials. Full article
(This article belongs to the Special Issue Advances in Sustainable Construction Materials, Third Edition)
Show Figures

Figure 1

20 pages, 941 KiB  
Article
Bioanalytical Method Validations of Three Alpha1-Antitrypsin Measurement Methods Required for Clinical Sample Analysis
by Andrea Engelmaier, Martin Zimmermann, Harald A. Butterweck and Alfred Weber
Pharmaceuticals 2025, 18(8), 1165; https://doi.org/10.3390/ph18081165 - 6 Aug 2025
Abstract
Background/Objectives: The quality of clinical studies is largely determined by the bioanalytical methods used for testing study samples. Rigorous assay validation following defined criteria, for example, the European Medicines Agency guideline for bioanalytical method validation, is a prerequisite for such assays. Alpha1-antitrypsin [...] Read more.
Background/Objectives: The quality of clinical studies is largely determined by the bioanalytical methods used for testing study samples. Rigorous assay validation following defined criteria, for example, the European Medicines Agency guideline for bioanalytical method validation, is a prerequisite for such assays. Alpha1-antitrypsin (AAT) measurement, i.e., the specific measurement of AAT protein and its associated elastase-inhibitory activity, is an integral part of assay panels for clinical studies addressing AAT deficiency. Specifically, AAT must be measured in the matrix of citrated human plasma as well as in diluted solutions with high salt concentrations obtained through bronchoalveolar lavage (BAL). Sensitive and selective measurement methods are required, as BAL has a low level of AAT. Methods: We present the validation data obtained for three AAT measurement methods. Two of them, nephelometry and the enzyme-linked immunosorbent assay, which clearly differ in their sensitivity, provide AAT protein concentrations. The third is the highly sensitive, newly developed elastase complex formation immunosorbent assay that specifically measures the inhibitory activity of AAT against its pivotal target, protease neutrophil elastase. Using samples with relevant AAT concentrations, we addressed the assays’ characteristics: accuracy, precision, linearity, selectivity, specificity, limit of quantification and short-term analyte stability Results: Overall, the three methods demonstrated low total errors, a combined measure reflecting accuracy and precision, even at low analyte concentrations of less than 0.5 µg/mL; adequate linearity over the required assay range; and acceptable selectivity and specificity. Furthermore, the short-time stability of the analyte was also demonstrated. Conclusions: All three AAT measurement methods met the acceptance criteria defined by the guidelines on bioanalytical assay validation, qualifying these methods for clinical sample analysis. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Graphical abstract

30 pages, 2414 KiB  
Review
Melittin-Based Nanoparticles for Cancer Therapy: Mechanisms, Applications, and Future Perspectives
by Joe Rizkallah, Nicole Charbel, Abdallah Yassine, Amal El Masri, Chris Raffoul, Omar El Sardouk, Malak Ghezzawi, Therese Abou Nasr and Firas Kreidieh
Pharmaceutics 2025, 17(8), 1019; https://doi.org/10.3390/pharmaceutics17081019 - 6 Aug 2025
Abstract
Melittin, a cytolytic peptide derived from honeybee venom, has demonstrated potent anticancer activity through mechanisms such as membrane disruption, apoptosis induction, and modulation of key signaling pathways. Melittin exerts its anticancer activity by interacting with key molecular targets, including downregulation of the PI3K/Akt [...] Read more.
Melittin, a cytolytic peptide derived from honeybee venom, has demonstrated potent anticancer activity through mechanisms such as membrane disruption, apoptosis induction, and modulation of key signaling pathways. Melittin exerts its anticancer activity by interacting with key molecular targets, including downregulation of the PI3K/Akt and NF-κB signaling pathways, and by inducing mitochondrial apoptosis through reactive oxygen species generation and cytochrome c release. However, its clinical application is hindered by its systemic and hemolytic toxicity, rapid degradation in plasma, poor pharmacokinetics, and immunogenicity, necessitating the development of targeted delivery strategies to enable safe and effective treatment. Nanoparticle-based delivery systems have emerged as a promising strategy for overcoming these challenges, offering improved tumor targeting, reduced off-target effects, and enhanced stability. This review provides a comprehensive overview of the mechanisms through which melittin exerts its anticancer effects and evaluates the development of various melittin-loaded nanocarriers, including liposomes, polymeric nanoparticles, dendrimers, micelles, and inorganic systems. It also summarizes the preclinical evidence for melittin nanotherapy across a wide range of cancer types, highlighting both its cytotoxic and immunomodulatory effects. The potential of melittin nanoparticles to overcome multidrug resistance and synergize with chemotherapy, immunotherapy, photothermal therapy, and radiotherapy is discussed. Despite promising in vitro and in vivo findings, its clinical translation remains limited. Key barriers include toxicity, manufacturing scalability, regulatory approval, and the need for more extensive in vivo validation. A key future direction is the application of computational tools, such as physiologically based pharmacokinetic modeling and artificial-intelligence-based modeling, to streamline development and guide its clinical translation. Addressing these challenges through focused research and interdisciplinary collaboration will be essential to realizing the full therapeutic potential of melittin-based nanomedicines in oncology. Overall, this review synthesizes the findings from over 100 peer-reviewed studies published between 2008 and 2025, providing an up-to-date assessment of melittin-based nanomedicine strategies across diverse cancer types. Full article
(This article belongs to the Special Issue Development of Novel Tumor-Targeting Nanoparticles, 2nd Edition)
Show Figures

Figure 1

11 pages, 1359 KiB  
Communication
Temporal Distribution of Milking Events in a Dairy Herd with an Automatic Milking System
by Vanessa Lambrecht Szambelan, Marcos Busanello, Mariani Schmalz Lindorfer, Rômulo Batista Rodrigues and Juliana Sarubbi
Animals 2025, 15(15), 2293; https://doi.org/10.3390/ani15152293 - 6 Aug 2025
Abstract
This study aimed to evaluate daily patterns of hourly milking frequency (MF) in dairy cows milked with an automatic milking system (AMSs), considering the effects of season, parity order (PO), days in milk (DIM), and milk yield (MY). A retrospective longitudinal study was [...] Read more.
This study aimed to evaluate daily patterns of hourly milking frequency (MF) in dairy cows milked with an automatic milking system (AMSs), considering the effects of season, parity order (PO), days in milk (DIM), and milk yield (MY). A retrospective longitudinal study was conducted on a commercial dairy farm in southern Brazil over one year using data from 130 Holstein cows and 94,611 milking events. MF data were analyzed using general linear models. Overall, hourly MF followed a consistent daily pattern, with peaks between 4:00 and 11:00 a.m. and between 2:00 and 6:00 p.m., regardless of season, PO, DIM, or MY category. MF was higher in primiparous (2.84/day, p = 0.0013), early-lactation (<106 DIM; 3.00/day, p < 0.0001), and high-yielding cows (≥45 L/day; 3.09/day, p < 0.0001). High-yielding cows also showed sustained milking activity into the late nighttime. Although seasonal and individual factors significantly affected MF, they had limited influence on the overall daily distribution of milkings. These results suggest stable behavioral patterns within the specific AMS management conditions observed in this study and suggest that adjusting milking permissions and feeding strategies based on cow characteristics may improve system efficiency. Full article
(This article belongs to the Special Issue Sustainability of Local Dairy Farming Systems)
Show Figures

Figure 1

26 pages, 3368 KiB  
Article
Effective Ciprofloxacin Removal from Deionized and Salt Water by Sulfonated Pentablock Copolymer (NexarTM)
by Simona Filice, Simona Crispi, Viviana Scuderi, Daniela Iannazzo, Consuelo Celesti and Silvia Scalese
Molecules 2025, 30(15), 3275; https://doi.org/10.3390/molecules30153275 - 5 Aug 2025
Abstract
The presence of ciprofloxacin antibiotic in water is a threat to humans and aquatic life since antibiotics are currently regarded as emerging contaminants of major concern. This work reported the use of NexarTM film, a sulfonated pentablock copolymer, to effectively remove ciprofloxacin [...] Read more.
The presence of ciprofloxacin antibiotic in water is a threat to humans and aquatic life since antibiotics are currently regarded as emerging contaminants of major concern. This work reported the use of NexarTM film, a sulfonated pentablock copolymer, to effectively remove ciprofloxacin antibiotic from water in a sustainable approach. The removal efficiency of Nexar film was evaluated in aqueous or salty (NaCl 0.5 M) ciprofloxacin solutions as a function of contact time and the initial ciprofloxacin concentration. In the investigated conditions, the polymeric film totally removed ciprofloxacin in MilliQ solution while its removal efficiency in salty solution was approximately 73%. This lower value is due to the presence of Na+ ions that compete with antibiotic molecules for adsorption on active surface sites of the polymeric film. No further release of adsorbed antibiotic molecules occurred. The kinetic studies, conducted for ciprofloxacin adsorption on Nexar film in both MilliQ and salty solutions, revealed that the overall sorption process is controlled by the rate of surface reaction between ciprofloxacin molecules and active sites on Nexar surface. Furthermore, at equilibrium conditions, the isotherm model that best fits experimental parameters was not linear. This indicates that the competition between the solute and the solvent for binding sites on the adsorbent should be considered to describe adsorption processes in both MilliQ and salty solutions. Full article
(This article belongs to the Special Issue Materials for Environmental Remediation and Catalysis)
Show Figures

Figure 1

25 pages, 2042 KiB  
Article
Transcriptomic Profiling of Mouse Mesenchymal Stem Cells Exposed to Metal-Based Nanoparticles
by Michal Sima, Helena Libalova, Zuzana Simova, Barbora Echalar, Katerina Palacka, Tereza Cervena, Jiri Klema, Zdenek Krejcik, Vladimir Holan and Pavel Rossner
Int. J. Mol. Sci. 2025, 26(15), 7583; https://doi.org/10.3390/ijms26157583 - 5 Aug 2025
Abstract
Mesenchymal stem cells (MSCs), i.e., adult stem cells with immunomodulatory and secretory properties, contribute to tissue growth and regeneration, including healing processes. Some metal nanoparticles (NPs) are known to exhibit antimicrobial activity and may further potentiate tissue healing. We studied the effect of [...] Read more.
Mesenchymal stem cells (MSCs), i.e., adult stem cells with immunomodulatory and secretory properties, contribute to tissue growth and regeneration, including healing processes. Some metal nanoparticles (NPs) are known to exhibit antimicrobial activity and may further potentiate tissue healing. We studied the effect of Ag, CuO, and ZnO NPs after in vitro exposure of mouse MSCs at the transcriptional level in order to reveal the potential toxicity as well as modulation of other processes that may modify the activity of MSCs. mRNA–miRNA interactions were further investigated to explore the epigenetic regulation of gene expression. All the tested NPs mediated immunomodulatory effects on MSCs, generation of extracellular vesicles, inhibition of osteogenesis, and enhancement of adipogenesis. Ag NPs exhibited the most pronounced response; they impacted the expression of the highest number of mRNAs, including those encoding interferon-γ-stimulated genes and genes involved in drug metabolism/cytochrome P450 activity, suggesting a response to the potential toxicity of Ag NPs (oxidative stress). Highly interacting MiR-126 was upregulated by all NPs, while downregulation of MiR-92a was observed after the ZnO NP treatment only, and both effects might be associated with the improvement of MSCs’ healing potency. Overall, our results demonstrate positive effects of NPs on MSCs, although increased oxidative stress caused by Ag NPs may limit the therapeutical potential of the combined MSC+NP treatment. Full article
(This article belongs to the Section Molecular Nanoscience)
Show Figures

Graphical abstract

15 pages, 961 KiB  
Article
Analysis of Chemical Composition and Odor Characteristics in Particleboards Decorated by Resin-Impregnated Paper, Polypropylene Film and Polyvinyl Chloride Film
by Liming Zhu, Minghui Yang, Lina Tang, Qian Chen, Xiaorui Liu, Xianwu Zou, Yuejin Fu and Bo Liu
Polymers 2025, 17(15), 2145; https://doi.org/10.3390/polym17152145 - 5 Aug 2025
Abstract
Analysis of changes in TVOC and VOCs chemical composition or odor characteristics of particleboard before and after decoration treatment with resin-impregnated paper (RIP), polypropylene (PP) film and polyvinyl chloride (PVC) film were studied. The effects of these three decoration treatments on masking or [...] Read more.
Analysis of changes in TVOC and VOCs chemical composition or odor characteristics of particleboard before and after decoration treatment with resin-impregnated paper (RIP), polypropylene (PP) film and polyvinyl chloride (PVC) film were studied. The effects of these three decoration treatments on masking or suppressing the release of VOCs and odorants from particleboard were explored. The substances that were covered or suppressed and newly introduced before and after processing were identified to provide a basis for reducing the odor emissions of PVC-, PP- and RIP-decorated particleboard. Taking undecorated particleboard and particleboard treated by three types of decorative materials as research subjects, the air permeability of the three decorative materials was tested using the Gurley Permeability Tester. TVOC emissions from the boards were evaluated using the 1 m3 environmental chamber method. Qualitative and quantitative analyses of the samples were conducted via thermal desorption–gas chromatography–mass spectrometry (TD-GCMS). The contribution of odor substances was determined using odor activity value (OAV). The results indicated that the permeability from high to low was PVC film, PP film and RIP. Compared with undecorated particleboard, the TVOC emissions of PVC-decorated boards decreased by 93%, PP-decorated particleboard by 83% but the TVOC emissions of RIP-decorated particleboard increased by 67%. PP decoration treatment masked or suppressed the release of 20 odor substances but introduced xylene, which can increase potentially the health risks for PP-decorated particleboard. PVC decoration treatment masked or suppressed 19 odor substances, but it introduced 12 new compounds, resulting in an overall increase in TVOC emissions. RIP treatment did not introduce new odor substances. After PP film and RIP treatments, both the variety of VOCs released and the number of key odor-contributing compounds and modifying odorants decreased. In contrast, the number of modifying odorants and potential odorants increased after PVC treatment. VOC emissions were effectively masked or suppressed by three decoration treatments, same as the release of substances contributing to overall odor of particleboard was reduced. Among them, PP and RIP decorative materials demonstrate better effects. Full article
(This article belongs to the Special Issue Eco-Friendly Supramolecular Polymeric Materials, 2nd Edition)
Show Figures

Figure 1

40 pages, 6580 KiB  
Review
Shear Behavior of Reinforced Concrete Two-Way Slabs with Openings
by Ahmed Ashteyat, Mousa Shhabat, Ahmad Al-Khreisat and Salem Aldawsari
Buildings 2025, 15(15), 2765; https://doi.org/10.3390/buildings15152765 - 5 Aug 2025
Abstract
Openings in two-way reinforced concrete (RC) slabs are frequently incorporated for architectural and functional purposes, such as providing pathways for mechanical, electrical, and plumbing services. While necessary, these openings can significantly compromise the structural performance of slabs, particularly by reducing their capacity to [...] Read more.
Openings in two-way reinforced concrete (RC) slabs are frequently incorporated for architectural and functional purposes, such as providing pathways for mechanical, electrical, and plumbing services. While necessary, these openings can significantly compromise the structural performance of slabs, particularly by reducing their capacity to resist punching shear, an effect that is especially critical when the openings are located near column–slab connections. This paper provides a detailed review of the existing research, examining how various opening parameters such as their size, shape, and position affect key structural performance metrics including their stiffness, ductility, and failure modes. The findings highlight that opening geometry is a major determinant of a slab’s overall behavior. Notably, the proximity of openings to column faces is identified as a critical factor that can substantially influence the extent of strength degradation and failure mechanisms. Furthermore, this review identifies a significant research gap concerning the behavior of slabs with openings under non-standard loading conditions, such as seismic activity, blasts, and impact loads. It also emphasizes the need for further investigation into the long-term performance of such slabs under adverse environmental influences, including elevated temperatures, corrosion, and material degradation. By consolidating the current knowledge and identifying unresolved challenges, this review aims to guide engineers and researchers in developing more robust design strategies and performance-based solutions for RC slabs with openings, ultimately contributing to safer and more resilient structural systems. Full article
Show Figures

Figure 1

Back to TopTop