Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,349)

Search Parameters:
Keywords = outage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 10490 KiB  
Article
A Web-Based Distribution Network Geographic Information System with Protective Coordination Functionality
by Jheng-Lun Jiang, Tung-Sheng Zhan and Ming-Tang Tsai
Energies 2025, 18(15), 4127; https://doi.org/10.3390/en18154127 - 4 Aug 2025
Viewed by 24
Abstract
In the modern era of smart grids, integrating advanced Geographic Information Systems (GISs) with protection coordination functionalities is pivotal for enhancing the reliability and efficiency of distribution networks. This paper presents an implementation of a web-based distribution network GIS platform that seamlessly integrates [...] Read more.
In the modern era of smart grids, integrating advanced Geographic Information Systems (GISs) with protection coordination functionalities is pivotal for enhancing the reliability and efficiency of distribution networks. This paper presents an implementation of a web-based distribution network GIS platform that seamlessly integrates distribution system feeder GIS monitoring with the system model file layout, fault current analysis, and coordination simulation functions. The system can provide scalable and accessible solutions for power utilities, ensuring that protective devices operate in a coordinated manner to minimize outage impacts and improve service restoration times. The proposed GIS platform has demonstrated significant improvements in fault management and relay coordination through extensive simulation and field testing. This research advances the capabilities of distribution network management and sets a foundation for future enhancements in smart grid technology. Full article
Show Figures

Figure 1

24 pages, 3980 KiB  
Article
A Two-Stage Restoration Method for Distribution Networks Considering Generator Start-Up and Load Recovery Under an Earthquake Disaster
by Lin Peng, Aihua Zhou, Junfeng Qiao, Qinghe Sun, Zhonghao Qian, Min Xu and Sen Pan
Electronics 2025, 14(15), 3049; https://doi.org/10.3390/electronics14153049 - 30 Jul 2025
Viewed by 205
Abstract
Earthquakes can severely disrupt power distribution networks, causing extensive outages and disconnection from the transmission grid. This paper proposes a two-stage restoration method tailored for post-earthquake distribution systems. First, earthquake-induced damage is modeled using ground motion prediction equations (GMPEs) and fragility curves, and [...] Read more.
Earthquakes can severely disrupt power distribution networks, causing extensive outages and disconnection from the transmission grid. This paper proposes a two-stage restoration method tailored for post-earthquake distribution systems. First, earthquake-induced damage is modeled using ground motion prediction equations (GMPEs) and fragility curves, and degraded network topologies are generated by Monte Carlo simulation. Then, a time-domain generator start-up model is developed as a mixed-integer linear program (MILP), incorporating cranking power and radial topology constraints. Further, a prioritized load recovery model is formulated as a mixed-integer second-order cone program (MISOCP), integrating power flow, voltage, and current constraints. Finally, case studies demonstrate the effectiveness and general applicability of the proposed method, confirming its capability to support resilient and adaptive distribution network restoration under various earthquake scenarios. Full article
Show Figures

Figure 1

20 pages, 1023 KiB  
Article
Joint Optimization of Radio and Computational Resource Allocation in Uplink NOMA-Based Remote State Estimation
by Rongzhen Li and Lei Xu
Sensors 2025, 25(15), 4686; https://doi.org/10.3390/s25154686 - 29 Jul 2025
Viewed by 162
Abstract
In industrial wireless networks beyond 5G and toward 6G, combining uplink non-orthogonal multiple access (NOMA) with the Kalman filter (KF) effectively reduces interruption risks and transmission delays in remote state estimation. However, the complexity of wireless environments and concurrent multi-sensor transmissions introduce significant [...] Read more.
In industrial wireless networks beyond 5G and toward 6G, combining uplink non-orthogonal multiple access (NOMA) with the Kalman filter (KF) effectively reduces interruption risks and transmission delays in remote state estimation. However, the complexity of wireless environments and concurrent multi-sensor transmissions introduce significant interference and latency, impairing the KF’s ability to continuously obtain reliable observations. Meanwhile, existing remote state estimation systems typically rely on oversimplified wireless communication models, unable to adequately handle the dynamics and interference in realistic network scenarios. To address these limitations, this paper formulates a novel dynamic wireless resource allocation problem as a mixed-integer nonlinear programming (MINLP) model. By jointly optimizing sensor grouping and power allocation—considering sensor available power and outage probability constraints—the proposed scheme minimizes both estimation outage and transmission delay. Simulation results demonstrate that, compared to conventional approaches, our method significantly improves transmission reliability and KF estimation performance, thus providing robust technical support for remote state estimation in next-generation industrial wireless networks. Full article
Show Figures

Figure 1

19 pages, 2239 KiB  
Article
Winter Thermal Resilience of Lightweight and Ground-Coupled Mediumweight Buildings: An Experimental Study During Heating Outages
by Marta Gortych and Tadeusz Kuczyński
Energies 2025, 18(15), 4022; https://doi.org/10.3390/en18154022 - 29 Jul 2025
Viewed by 234
Abstract
Thermal resilience is critical for building safety in cold climates during heating outages. This study presents full-scale experimental data from two residential buildings in Poland, tested during the winter of 2024–2025 under both typical and extreme outdoor conditions. The buildings—a lightweight timber-frame structure [...] Read more.
Thermal resilience is critical for building safety in cold climates during heating outages. This study presents full-scale experimental data from two residential buildings in Poland, tested during the winter of 2024–2025 under both typical and extreme outdoor conditions. The buildings—a lightweight timber-frame structure and a mediumweight masonry structure with ground coupling—were exposed to multi-day heating blackouts, and their thermal responses were monitored at a high temporal resolution. Several resilience indicators were used, including the resistance time (RT), degree of disruption (DoD), and hours of safety threshold (HST). Additionally, two time-based metrics—the time to threshold (Tx) and temperature at X-hours (T(tx))—were introduced to improve classification in long-duration scenarios. The weighted unmet thermal performance (WUMTP) index was also implemented and validated using experimental data. The results show that thermal mass and ground coupling significantly improved passive resilience, enabling the mediumweight building to maintain temperatures above 15 °C for over 60 h without heating. This study provides new empirical evidence of passive survivability in blackout conditions and supports the development of time-sensitive assessment tools for cold climates. The findings may inform future updates to building codes and retrofit guidelines. Full article
Show Figures

Figure 1

22 pages, 6689 KiB  
Article
Design and Implementation of a Sun Outage Simulation System with High Uniformity and Stray Light Suppression Capability
by Zhen Mao, Zhaohui Li, Yong Liu, Limin Gao and Jianke Zhao
Sensors 2025, 25(15), 4655; https://doi.org/10.3390/s25154655 - 27 Jul 2025
Viewed by 354
Abstract
To enable accurate evaluation of satellite laser communication terminals under solar outage interference, this paper presents the design and implementation of a solar radiation simulation system targeting the 1540–1560 nm communication band. The system reconstructs co-propagating interference conditions through standardized and continuously tunable [...] Read more.
To enable accurate evaluation of satellite laser communication terminals under solar outage interference, this paper presents the design and implementation of a solar radiation simulation system targeting the 1540–1560 nm communication band. The system reconstructs co-propagating interference conditions through standardized and continuously tunable output, based on high irradiance and spectral uniformity. A compound beam homogenization structure—combining a multimode fiber and an apodizator—achieves 85.8% far-field uniformity over a 200 mm aperture. A power–spectrum co-optimization strategy is introduced for filter design, achieving a spectral matching degree of 78%. The system supports a tunable output from 2.5 to 130 mW with a 50× dynamic range and maintains power control accuracy within ±0.9%. To suppress internal background interference, a BRDF-based optical scattering model is established to trace primary and secondary stray light paths. Simulation results show that by maintaining the surface roughness of key mirrors below 2 nm and incorporating a U-shaped reflective light trap, stray light levels can be reduced to 5.13 × 10−12 W, ensuring stable detection of a 10−10 W signal at a 10:1 signal-to-background ratio. Experimental validation confirms that the system can faithfully reproduce solar outage conditions within a ±3° field of view, achieving consistent performance in spectrum shaping, irradiance uniformity, and background suppression. The proposed platform provides a standardized and practical testbed for ground-based anti-interference assessment of optical communication terminals. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

21 pages, 454 KiB  
Article
Modelling Cascading Failure in Complex CPSS to Inform Resilient Mission Assurance: An Intelligent Transport System Case Study
by Theresa Sobb and Benjamin Turnbull
Entropy 2025, 27(8), 793; https://doi.org/10.3390/e27080793 - 25 Jul 2025
Viewed by 327
Abstract
Intelligent transport systems are revolutionising all aspects of modern life, increasing the efficiency of commerce, modern living, and international travel. Intelligent transport systems are systems of systems comprised of cyber, physical, and social nodes. They represent unique opportunities but also have potential threats [...] Read more.
Intelligent transport systems are revolutionising all aspects of modern life, increasing the efficiency of commerce, modern living, and international travel. Intelligent transport systems are systems of systems comprised of cyber, physical, and social nodes. They represent unique opportunities but also have potential threats to system operation and correctness. The emergent behaviour in Complex Cyber–Physical–Social Systems (C-CPSSs), caused by events such as cyber-attacks and network outages, have the potential to have devastating effects to critical services across society. It is therefore imperative that the risk of cascading failure is minimised through the fortifying of these systems of systems to achieve resilient mission assurance. This work designs and implements a programmatic model to validate the value of cascading failure simulation and analysis, which is then tested against a C-CPSS intelligent transport system scenario. Results from the model and its implementations highlight the value in identifying both critical nodes and percolation of consequences during a cyber failure, in addition to the importance of including social nodes in models for accurate simulation results. Understanding the relationships between cyber, physical, and social nodes is key to understanding systems’ failures that occur because of or that involve cyber systems, in order to achieve cyber and system resilience. Full article
Show Figures

Figure 1

26 pages, 3405 KiB  
Article
Digital Twins for Intelligent Vehicle-to-Grid Systems: A Multi-Physics EV Model for AI-Based Energy Management
by Michela Costa and Gianluca Del Papa
Appl. Sci. 2025, 15(15), 8214; https://doi.org/10.3390/app15158214 - 23 Jul 2025
Viewed by 285
Abstract
This paper presents a high-fidelity multi-physics dynamic model for electric vehicles, serving as a fundamental building block for intelligent vehicle-to-grid (V2G) integration systems. The model accurately captures complex vehicle dynamics of the powertrain, battery, and regenerative braking, enabling precise energy consumption evaluation, including [...] Read more.
This paper presents a high-fidelity multi-physics dynamic model for electric vehicles, serving as a fundamental building block for intelligent vehicle-to-grid (V2G) integration systems. The model accurately captures complex vehicle dynamics of the powertrain, battery, and regenerative braking, enabling precise energy consumption evaluation, including in AI-driven V2G scenarios. Validated using real-world data from a Citroën Ami operating on urban routes in Naples, Italy, it achieved exceptional accuracy with a root mean square error (RMSE) of 1.28% for dynamic state of charge prediction. This robust framework provides an essential foundation for AI-driven digital twin technologies in V2G applications, significantly advancing sustainable transportation and smart grid integration through predictive simulation. Its versatility supports diverse fleet applications, from residential energy management and coordinated charging optimization to commercial car sharing operations, leveraging backup power during peak demand or grid outages, so to maximize distributed battery storage utilization. Full article
(This article belongs to the Special Issue Applications of Artificial Intelligence in the Novel Power System)
Show Figures

Figure 1

27 pages, 5938 KiB  
Article
Noise-Adaptive GNSS/INS Fusion Positioning for Autonomous Driving in Complex Environments
by Xingyang Feng, Mianhao Qiu, Tao Wang, Xinmin Yao, Hua Cong and Yu Zhang
Vehicles 2025, 7(3), 77; https://doi.org/10.3390/vehicles7030077 - 22 Jul 2025
Cited by 1 | Viewed by 400
Abstract
Accurate and reliable multi-scene positioning remains a critical challenge in autonomous driving systems, as conventional fixed-noise fusion strategies struggle to handle the dynamic error characteristics of heterogeneous sensors in complex operational environments. This paper proposes a novel noise-adaptive fusion framework integrating Global Navigation [...] Read more.
Accurate and reliable multi-scene positioning remains a critical challenge in autonomous driving systems, as conventional fixed-noise fusion strategies struggle to handle the dynamic error characteristics of heterogeneous sensors in complex operational environments. This paper proposes a novel noise-adaptive fusion framework integrating Global Navigation Satellite System (GNSS) and Inertial Navigation System (INS) measurements. Our key innovation lies in developing a dual noise estimation model that synergizes priori weighting with posterior variance compensation. Specifically, we establish an a priori weighting model for satellite pseudorange errors based on elevation angles and signal-to-noise ratios (SNRs), complemented by a Helmert variance component estimation for posterior refinement. For INS error modeling, we derive a bias instability noise accumulation model through Allan variance analysis. These adaptive noise estimates dynamically update both process and observation noise covariance matrices in our Error-State Kalman Filter (ESKF) implementation, enabling real-time calibration of GNSS and INS contributions. Comprehensive field experiments demonstrate two key advantages: (1) The proposed noise estimation model achieves 37.7% higher accuracy in quantifying GNSS single-point positioning uncertainties compared to conventional elevation-based weighting; (2) in unstructured environments with intermittent signal outages, the fusion system maintains an average absolute trajectory error (ATE) of less than 0.6 m, outperforming state-of-the-art fixed-weight fusion methods by 36.71% in positioning consistency. These results validate the framework’s capability to autonomously balance sensor reliability under dynamic environmental conditions, significantly enhancing positioning robustness for autonomous vehicles. Full article
Show Figures

Figure 1

54 pages, 3087 KiB  
Review
Application of Energy Storage Systems to Enhance Power System Resilience: A Critical Review
by Muhammad Usman Aslam, Md Sazal Miah, B. M. Ruhul Amin, Rakibuzzaman Shah and Nima Amjady
Energies 2025, 18(14), 3883; https://doi.org/10.3390/en18143883 - 21 Jul 2025
Viewed by 367
Abstract
The growing frequency and severity of extreme events, both natural and human-induced, have heightened concerns about the resilience of power systems. Enhancing the resilience of power systems alleviates the adverse impacts of power outages caused by unforeseen events, delivering substantial social and economic [...] Read more.
The growing frequency and severity of extreme events, both natural and human-induced, have heightened concerns about the resilience of power systems. Enhancing the resilience of power systems alleviates the adverse impacts of power outages caused by unforeseen events, delivering substantial social and economic benefits. Energy storage systems play a crucial role in enhancing the resilience of power systems. Researchers have proposed various single and hybrid energy storage systems to enhance power system resilience. However, a comprehensive review of the latest trends in utilizing energy storage systems to address the challenges related to improving power system resilience is required. This critical review, therefore, discusses various aspects of energy storage systems, such as type, capacity, and efficacy, as well as modeling and control in the context of power system resilience enhancement. Finally, this review suggests future research directions leading to optimal use of energy storage systems for enhancing resilience of power systems. Full article
Show Figures

Figure 1

27 pages, 1734 KiB  
Review
Outage Rates and Failure Removal Times for Power Lines and Transformers
by Paweł Pijarski and Adrian Belowski
Appl. Sci. 2025, 15(14), 8030; https://doi.org/10.3390/app15148030 - 18 Jul 2025
Viewed by 341
Abstract
The dynamic development of distributed sources (mainly RES) contributes to the emergence of, among others, balance and overload problems. For this reason, many RES do not receive conditions for connection to the power grid in Poland. Operators sometimes extend permits based on the [...] Read more.
The dynamic development of distributed sources (mainly RES) contributes to the emergence of, among others, balance and overload problems. For this reason, many RES do not receive conditions for connection to the power grid in Poland. Operators sometimes extend permits based on the possibility of periodic power reduction in RES in the event of the problems mentioned above. Before making a decision, investors, for economic reasons, need information on the probability of annual power reduction in their potential installation. Analyses that allow one to determine such a probability require knowledge of the reliability indicators of transmission lines and transformers, as well as failure removal times. The article analyses the available literature on the annual risk of outages of these elements and methods to determine the appropriate reliability indicators. Example calculations were performed for two networks (test and real). The values of indicators and times that can be used in practice were indicated. The unique contribution of this article lies not only in the comprehensive comparison of current, relevant transmission line and transformer reliability analysis methods but also in developing the first reliability indices for the Polish power system in more than 30 years. It is based on the relationships presented in the article and their comparison with results reported in the international literature. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

24 pages, 1332 KiB  
Article
Ensuring Energy Efficiency of Air Quality Monitoring Systems Based on Internet of Things Technology
by Krzysztof Przystupa, Nataliya Bernatska, Elvira Dzhumelia, Tomasz Drzymała and Orest Kochan
Energies 2025, 18(14), 3768; https://doi.org/10.3390/en18143768 - 16 Jul 2025
Viewed by 214
Abstract
Air quality monitoring systems based on Internet of Things (IoT) technology are critical for addressing environmental and public health challenges, but their energy efficiency poses a significant challenge to their autonomous and scalable deployment. This study investigates strategies to enhance the energy efficiency [...] Read more.
Air quality monitoring systems based on Internet of Things (IoT) technology are critical for addressing environmental and public health challenges, but their energy efficiency poses a significant challenge to their autonomous and scalable deployment. This study investigates strategies to enhance the energy efficiency of IoT-based air quality monitoring systems. A comprehensive analysis of sensor types, data transmission protocols, and system architectures was conducted, focusing on their energy consumption. An energy-efficient system was designed using the Smart Air sensor, Zigbee gateway, and Mini UPS, with its performance evaluated through daily energy consumption, backup operation time, and annual energy use. An integrated efficiency index (IEI) was introduced to compare sensor models based on functionality, energy efficiency, and cost. The proposed system achieves a daily energy consumption of 72 W·h, supports up to 10 h of autonomous operation during outages, and consumes 26.28 kW·h annually. The IEI analysis identified the Ajax LifeQuality as the most energy-efficient sensor, while Smart Air offers a cost-effective alternative with broader functionality. The proposed architecture and IEI provide a scalable and sustainable framework for IoT air quality monitoring, with potential applications in smart cities and residential settings. Future research should explore renewable energy integration and predictive energy management. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

17 pages, 1396 KiB  
Article
Enhancing Disaster Resilience Through Mobile Solar–Biogas Hybrid PowerKiosks
by Seneshaw Tsegaye, Mason Lundquist, Alexis Adams, Thomas H. Culhane, Peter R. Michael, Jeffrey L. Pearson and Thomas M. Missimer
Sustainability 2025, 17(14), 6320; https://doi.org/10.3390/su17146320 - 10 Jul 2025
Viewed by 358
Abstract
Natural disasters in the United States frequently wreak havoc on critical infrastructure, affecting energy, water, transportation, and communication systems. To address these disruptions, the use of mobile power solutions like PowerKiosk trailers is a partial solution during recovery periods. PowerKiosk is a trailer [...] Read more.
Natural disasters in the United States frequently wreak havoc on critical infrastructure, affecting energy, water, transportation, and communication systems. To address these disruptions, the use of mobile power solutions like PowerKiosk trailers is a partial solution during recovery periods. PowerKiosk is a trailer equipped with renewable energy sources such as solar panels and biogas generators, offering a promising strategy for emergency power restoration. With a daily power output of 12.1 kWh, PowerKiosk trailers can support small lift stations or a few homes, providing a temporary solution during emergencies. Their key strength lies in their mobility, allowing them to quickly reach disaster-affected areas and deliver power when and where it is most needed. This flexibility is particularly valuable in regions like Florida, where hurricanes are common, and power outages can cause widespread disruption. Although the PowerKiosk might not be suitable for long-term use because of its limited capacity, it can play a critical role in disaster recovery efforts. In a community-wide power outage, deploying the PowerKiosk to a lift station ensures essential services like wastewater management, benefiting everyone. By using this mobile power solution, community resilience can be enhanced in the face of natural disasters. Full article
Show Figures

Figure 1

24 pages, 9349 KiB  
Article
Enhanced Pedestrian Navigation with Wearable IMU: Forward–Backward Navigation and RTS Smoothing Techniques
by Yilei Shen, Yiqing Yao, Chenxi Yang and Xiang Xu
Technologies 2025, 13(7), 296; https://doi.org/10.3390/technologies13070296 - 9 Jul 2025
Viewed by 553
Abstract
Accurate and reliable pedestrian positioning service is essential for providing Indoor Location-Based Services (ILBSs). Zero-Velocity Update (ZUPT)-aided Strapdown Inertial Navigation System (SINS) based on foot-mounted wearable Inertial Measurement Units (IMUs) has shown great performance in pedestrian navigation systems. Though the velocity errors will [...] Read more.
Accurate and reliable pedestrian positioning service is essential for providing Indoor Location-Based Services (ILBSs). Zero-Velocity Update (ZUPT)-aided Strapdown Inertial Navigation System (SINS) based on foot-mounted wearable Inertial Measurement Units (IMUs) has shown great performance in pedestrian navigation systems. Though the velocity errors will be corrected once zero-velocity measurement is available, the navigation system errors accumulated during measurement outages are yet to be further optimized by utilizing historical data during both stance and swing phases of pedestrian gait. Thus, in this paper, a novel Forward–Backward navigation and Rauch–Tung–Striebel smoothing (FB-RTS) navigation scheme is proposed. First, to efficiently re-estimate past system state and reduce accumulated navigation error once zero-velocity measurement is available, both the forward and backward integration method and the corresponding error equations are constructed. Second, to further improve navigation accuracy and reliability by exploiting historical observation information, both backward and forward RTS algorithms are established, where the system model and observation model are built under the output correction mode. Finally, both navigation results are combined to achieve the final estimation of attitude and velocity, where the position is recalculated by the optimized data. Through simulation experiments and two sets of field tests, the FB-RTS algorithm demonstrated superior performance in reducing navigation errors and smoothing pedestrian trajectories compared to traditional ZUPT method and both the FB and the RTS method, whose advantage becomes more pronounced over longer navigation periods than the traditional methods, offering a robust solution for positioning applications in smart buildings, indoor wayfinding, and emergency response operations. Full article
Show Figures

Figure 1

15 pages, 1701 KiB  
Article
Enhanced Named Entity Recognition and Event Extraction for Power Grid Outage Scheduling Using a Universal Information Extraction Framework
by Wei Tang, Yue Zhang, Xun Mao, Mingqi Shan, Kai Lv, Xun Sun and Zhenhuan Ding
Energies 2025, 18(14), 3617; https://doi.org/10.3390/en18143617 - 9 Jul 2025
Viewed by 255
Abstract
To enhance online dispatch decision support capabilities for power grid outage planning, this study proposes a Universal Information Extraction (UIE)-based method for enhanced named entity recognition and event extraction from outage documents. First, a Structured Extraction Language (SEL) framework is developed that unifies [...] Read more.
To enhance online dispatch decision support capabilities for power grid outage planning, this study proposes a Universal Information Extraction (UIE)-based method for enhanced named entity recognition and event extraction from outage documents. First, a Structured Extraction Language (SEL) framework is developed that unifies the semantic modeling of outage information to generate standardized representations for dual-task parsing of events and entities. Subsequently, a trigger-centric event extraction model is developed through feature learning of outage plan triggers and syntactic pattern entities. Finally, the event extraction model is employed to identify operational objects and action triggers, while the entity recognition model detects seven critical equipment entities within these operational objects. Validated on real-world outage plans from a provincial-level power dispatch center, the methodology demonstrates reliable detection capabilities for both named entity recognition and event extraction. Relative to conventional techniques, the F1 score increases by 1.08% for event extraction and 2.48% for named entity recognition. Full article
(This article belongs to the Special Issue Digital Modeling, Operation and Control of Sustainable Energy Systems)
Show Figures

Figure 1

17 pages, 2928 KiB  
Article
Hybrid Machine Learning Model for Hurricane Power Outage Estimation from Satellite Night Light Data
by Laiyin Zhu and Steven M. Quiring
Remote Sens. 2025, 17(14), 2347; https://doi.org/10.3390/rs17142347 - 9 Jul 2025
Viewed by 341
Abstract
Hurricanes can cause massive power outages and pose significant disruptions to society. Accurately monitoring hurricane power outages will improve predictive models and guide disaster emergency management. However, many challenges exist in obtaining high-quality data on hurricane power outages. We systematically evaluated machine learning [...] Read more.
Hurricanes can cause massive power outages and pose significant disruptions to society. Accurately monitoring hurricane power outages will improve predictive models and guide disaster emergency management. However, many challenges exist in obtaining high-quality data on hurricane power outages. We systematically evaluated machine learning (ML) approaches to reconstruct historical hurricane power outages based on high-resolution (1 km) satellite night light observations from the Defense Meteorological Satellite Program (DMSP) and other ancillary information. We found that the two-step hybrid model significantly improved model prediction performance by capturing a substantial portion of the uncertainty in the zero-inflated data. In general, the classification and regression tree-based machine learning models (XGBoost and random forest) demonstrated better performance than the logistic and CNN models in both binary classification and regression models. For example, the xgb+xgb model has 14% less RMSE than the log+cnn model, and the R-squared value is 25 times larger. The Interpretable ML (SHAP value) identified geographic locations, population, and stable and hurricane night light values as important variables in the XGBoost power outage model. These variables also exhibit meaningful physical relationships with power outages. Our study lays the groundwork for monitoring power outages caused by natural disasters using satellite data and machine learning (ML) approaches. Future work should aim to improve the accuracy of power outage estimations and incorporate more hurricanes from the recently available Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) data. Full article
Show Figures

Figure 1

Back to TopTop