Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (866)

Search Parameters:
Keywords = orthotopic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1468 KiB  
Article
Noninvasive Mapping of Extracellular Potassium in Breast Tumors via Multi-Wavelength Photoacoustic Imaging
by Jeff Folz, Ahmad Eido, Maria E. Gonzalez, Roberta Caruso, Xueding Wang, Celina G. Kleer and Janggun Jo
Sensors 2025, 25(15), 4724; https://doi.org/10.3390/s25154724 - 31 Jul 2025
Viewed by 201
Abstract
Elevated extracellular potassium (K+) in the tumor microenvironment (TME) of breast and other cancers is increasingly recognized as a critical factor influencing tumor progression and immune suppression. Current methods for noninvasive mapping of the potassium distribution in tumors are limited. Here, [...] Read more.
Elevated extracellular potassium (K+) in the tumor microenvironment (TME) of breast and other cancers is increasingly recognized as a critical factor influencing tumor progression and immune suppression. Current methods for noninvasive mapping of the potassium distribution in tumors are limited. Here, we employed photoacoustic chemical imaging (PACI) with a solvatochromic dye-based, potassium-sensitive nanoprobe (SDKNP) to quantitatively visualize extracellular potassium levels in an orthotopic metaplastic breast cancer mouse model, Ccn6-KO. Tumors of three distinct sizes (5 mm, 10 mm, and 20 mm) were imaged using multi-wavelength photoacoustic imaging at five laser wavelengths (560, 576, 584, 605, and 625 nm). Potassium concentration maps derived from spectral unmixing of the photoacoustic images at the five laser wavelengths revealed significantly increased potassium levels in larger tumors, confirmed independently by inductively coupled plasma mass spectrometry (ICP-MS). The PACI results matched ICP-MS measurements, validating PACI as a robust, noninvasive imaging modality for potassium mapping in tumors in vivo. This work establishes PACI as a promising tool for studying the chemical properties of the TME and provides a foundation for future studies evaluating the immunotherapy response through ionic biomarker imaging. Full article
(This article belongs to the Special Issue Advances in Photoacoustic Resonators and Sensors)
Show Figures

Figure 1

26 pages, 7715 KiB  
Article
Harnessing Nature’s Chemistry: Deciphering Olive Oil Phenolics for the Control of Invasive Breast Carcinoma
by Nehal A. Ahmed, Abu Bakar Siddique, Afsana Tajmim, Judy Ann King and Khalid A. El Sayed
Molecules 2025, 30(15), 3157; https://doi.org/10.3390/molecules30153157 - 28 Jul 2025
Viewed by 374
Abstract
Breast cancer (BC) is the most common malignancy and the second-leading cause of cancer-related mortalities in women. Epidemiological studies suggested the reduced BC incidence in Mediterranean populations due to the daily consumption of diets rich in extra-virgin olive oil (EVOO). EVOO secoiridoid phenolics [...] Read more.
Breast cancer (BC) is the most common malignancy and the second-leading cause of cancer-related mortalities in women. Epidemiological studies suggested the reduced BC incidence in Mediterranean populations due to the daily consumption of diets rich in extra-virgin olive oil (EVOO). EVOO secoiridoid phenolics are widely known for their positive outcomes on multiple cancers, including BC. The current study investigates the suppressive effects of individual and combined EVOO phenolics for BC progression and motility. Screening of a small library of EVOO phenolics at a single dose of 10 µM against the viability of the BC cell lines ZR-75-1 (luminal A) and MDA-MB-231 (triple negative BC, TNBC) identified oleocanthal (OC) and ligstroside aglycone (LA) as the most active hits. Screening of EVOO phenolics for BC cells migration inhibition identified OC, LA, and the EVOO lignans acetoxypinoresinol and pinoresinol as the most active hits. Combination studies of different olive phenolics showed that OC combined with LA had the best synergistic inhibitory effects against the TNBC MDA-MB-231 cells migration. A combination of 5 µM of each of OC and LA potently suppressed the migration and invasion of the MDA-MB-231 cells versus LA and OC individual therapies and vehicle control (VC). Animal studies using the ZR-75-1 BC cells orthotopic xenografting model in female nude mice showed significant tumor progression suppression by the combined OC-LA, 5 mg/kg each, ip, 3X/week treatments compared to individual LA and OC treatments and VC. The BC suppressive effects of the OC-LA combination were associated with the modulation of SMYD2–EZH2–STAT3 signaling pathway. A metastasis–clonogenicity animal study model using female nude mice subjected to tail vein injection of MDA-MB-231-Luc TNBC cells also revealed the effective synergy of the combined OC-LA, 5 mg/kg each, compared to their individual therapies and VC. Thus, EVOO cultivars rich in OC with optimal LA content can be useful nutraceuticals for invasive hormone-dependent BC and TNBC progression and metastasis. Full article
(This article belongs to the Special Issue Bioactive Molecules in Foods: From Sources to Functional Applications)
Show Figures

Graphical abstract

20 pages, 3657 KiB  
Article
Evaluating Therapeutic Efficacy of Intravesical Xenogeneic Urothelial Cell Treatment Alone and in Combination with Chemotherapy or Immune Checkpoint Inhibition in a Mouse Non-Muscle-Invasive Bladder Cancer Model
by Chih-Rong Shyr, Ching-Feng Wu, Kai-Cheng Yang, Wen-Lung Ma and Chi-Ping Huang
Cancers 2025, 17(15), 2448; https://doi.org/10.3390/cancers17152448 - 24 Jul 2025
Viewed by 327
Abstract
Background/Objectives: Bladder cancer is a malignant disease that causes more than 199,922 deaths a year globally, in which ~75% of all newly diagnosed cases are non-muscle-invasive bladder cancer (NMIBC). Despite a number of treatments available, most NMIBC patients with high-grade tumors eventually [...] Read more.
Background/Objectives: Bladder cancer is a malignant disease that causes more than 199,922 deaths a year globally, in which ~75% of all newly diagnosed cases are non-muscle-invasive bladder cancer (NMIBC). Despite a number of treatments available, most NMIBC patients with high-grade tumors eventually recur. To add a novel therapy to complement the deficits of the current treatments, this study assesses the antitumor activity and mechanisms of action of intravesical xenogeneic urothelial cell (XUC) treatment as monotherapy and in combination with either chemotherapy or immune checkpoint inhibition (ICI). Methods: The orthotopic NMIBC graft tumor-bearing mice were randomly assigned into different treatment groups, receiving either intravesical XUCs, gemcitabine, anti-programmed death-ligand 1 (PD-L1) antibodies alone or in combination with gemcitabine or anti-PD-1 antibodies. The tumor responses, survival, and immune reactions were analyzed. Results: Intravesical XUC treatment exhibited significantly more antitumor activity to delay tumor progression than the control group and a similar effect to chemotherapy and ICI. In addition, there were significantly higher effects in the combined groups than single treatments. Immune tumor microenvironment and immune cell proliferation, cytotoxicity, and cytokine secretion were also activated by XUC treatment. Moreover, the combined groups have the highest effects. Conclusions: In vivo and ex vivo studies showed increased antitumor efficacy and immune responses by intravesical XUC treatment in single and combined treatments, suggesting a potential utility of this xenogeneic cell immunotherapeutic agent. Intravesical XUC treatment has the potential to address the substantial unmet need in NMIBC therapy as a bladder-sparing treatment option for NMIBC. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

73 pages, 19750 KiB  
Article
Transcriptomic Profiling of the Immune Response in Orthotopic Pancreatic Tumours Exposed to Combined Boiling Histotripsy and Oncolytic Reovirus Treatment
by Petros Mouratidis, Ricardo C. Ferreira, Selvakumar Anbalagan, Ritika Chauhan, Ian Rivens and Gail ter Haar
Pharmaceutics 2025, 17(8), 949; https://doi.org/10.3390/pharmaceutics17080949 - 22 Jul 2025
Viewed by 311
Abstract
Background: Boiling histotripsy (BH) uses high-amplitude, short-pulse focused ultrasound to disrupt tissue mechanically. Oncolytic virotherapy using reovirus has shown modest clinical benefit in pancreatic cancer patients. Here, reovirus and BH were used to treat pancreatic tumours, and their effects on the immune [...] Read more.
Background: Boiling histotripsy (BH) uses high-amplitude, short-pulse focused ultrasound to disrupt tissue mechanically. Oncolytic virotherapy using reovirus has shown modest clinical benefit in pancreatic cancer patients. Here, reovirus and BH were used to treat pancreatic tumours, and their effects on the immune transcriptome of these tumours were characterised. Methods: Orthotopic syngeneic murine pancreatic KPC tumours grown in immune-competent subjects, were allocated to control, reovirus, BH and combined BH and reovirus treatment groups. Acoustic cavitation was monitored using a passive broadband cavitation sensor. Treatment effects were assessed histologically with hematoxylin and eosin staining. Single-cell multi-omics combining whole-transcriptome analysis with the expression of surface-expressed immune proteins was used to assess the effects of treatments on tumoural leukocytes. Results: Acoustic cavitation was detected in all subjects exposed to BH, causing cellular disruption in tumours 6 h after treatment. Distinct cell clusters were identified in the pancreatic tumours 24 h post-treatment. These included neutrophils and cytotoxic T cells overexpressing genes associated with an N2-like and an exhaustion phenotype, respectively. Reovirus decreased macrophages, and BH decreased regulatory T cells compared to controls. The combined treatments increased neutrophils and the ratio of various immune cells to Treg. All treatments overexpressed genes associated with an innate immune response, while ultrasound treatments downregulated genes associated with the transporter associated with antigen processing (TAP) complex. Conclusions: Our results show that the combined BH and reovirus treatments maximise the overexpression of genes associated with the innate immune response compared to that seen with each individual treatment, and illustrate the anti-immune phenotype of key immune cells in the pancreatic tumour microenvironment. Full article
Show Figures

Figure 1

18 pages, 1057 KiB  
Review
Orthotopically Implanted Murine Lung Adenocarcinoma Cell Lines for Preclinical Investigations
by Karshana J. Kalyanaraman, Zachary Corey, Andre Navarro, Lynn E. Heasley and Raphael A. Nemenoff
Cancers 2025, 17(15), 2424; https://doi.org/10.3390/cancers17152424 - 22 Jul 2025
Viewed by 225
Abstract
The application of personalized medicine to lung adenocarcinoma has resulted in new therapies based on specific oncogenic drivers that have improved patient outcomes. However, oncogene-defined subsets of patients exhibit a significant heterogeneity of response to these agents. Defining the factors that mediate the [...] Read more.
The application of personalized medicine to lung adenocarcinoma has resulted in new therapies based on specific oncogenic drivers that have improved patient outcomes. However, oncogene-defined subsets of patients exhibit a significant heterogeneity of response to these agents. Defining the factors that mediate the varied depth and duration of response are critical to developing new therapeutic strategies. While the examination of patient samples can provide important correlations, definitive mechanistic studies require the use of relevant preclinical models. Based on a large body of data, interactions between cancer cells and the surrounding tumor microenvironment, comprised of inflammatory, immune, and vascular cells, represent a critical determinant of therapeutic response. In this review, we focus on preclinical models that can be used to explore these interactions, identify new therapeutic targets, and test combination therapies. In particular, we will describe the use of implantable orthotopic immunocompetent models employing a panel of murine lung adenocarcinoma cell lines with oncogenic drivers common to human lung adenocarcinoma as a powerful system to develop new treatment approaches. Full article
(This article belongs to the Section Cancer Immunology and Immunotherapy)
Show Figures

Figure 1

14 pages, 6653 KiB  
Article
Targeting Triple-Negative Breast Cancer with Momordicine-I for Therapeutic Gain in Preclinical Models
by Kousik Kesh, Ellen T. Tran, Ruchi A. Patel, Cynthia X. Ma and Ratna B. Ray
Cancers 2025, 17(14), 2342; https://doi.org/10.3390/cancers17142342 - 15 Jul 2025
Viewed by 367
Abstract
Background: TNBC patients respond poorly to chemotherapy, leading to high mortality rates and a worsening prognosis. Here, we investigated the effect of M-I on TNBC tumor growth suppression and its potential mechanisms. Methods: Signaling pathways were analyzed to study the effect [...] Read more.
Background: TNBC patients respond poorly to chemotherapy, leading to high mortality rates and a worsening prognosis. Here, we investigated the effect of M-I on TNBC tumor growth suppression and its potential mechanisms. Methods: Signaling pathways were analyzed to study the effect of M-I on TNBC cells (human MDA-MB-231 and mouse 4T1). We used orthotopic mouse models to examine the anti-tumor efficacy of M-I. Tumor volume and the status of tumor-associated macrophages (TAMs) were assessed by qRT-PCR or FACS analysis. Results: We found a significant dose- and time-dependent inhibition of TNBC cell proliferation following treatment with M-I. Cell cycle analysis revealed a shortened S phase in M-I-treated cells and downregulation of AURKA, PLK1, CDC25c, CDK1, and cyclinB1. Furthermore, M-I treatment reduced the expression of pSTAT3, cyclinD1, and c-Myc in TNBC cells. To evaluate the anti-tumor efficacy of M-I, we employed orthotopic TNBC mouse models and observed a significant reduction in tumor growth without measurable toxicity. Next, we analyzed RNA from control and M-I-treated tumors to further assess the status of TAMs and observed a significant decrease in M2-like macrophages in the M-I-treated group. Immortalized bone marrow-derived mouse macrophages (iMacs) exposed to conditioned media (CM) of TNBC cells with or without M-I treatment indicated that the M-I treated CM of TNBC cells significantly reduce the M2phenotype in iMacs. Mechanistically, we found that M-I specifically targets the IL-4/MAPK signaling axis to reduce immunosuppressive M2 macrophage polarization. Conclusions: Our study reveals a novel mechanism by which M-I inhibits TNBC cell proliferation by regulating intracellular signaling and altering TAMs in the tumor microenvironment and highlights its potential as a promising candidate for TNBC therapy. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

35 pages, 10190 KiB  
Article
Molecular Mechanisms of Lobelia nummularia Extract in Breast Cancer: Targeting EGFR/TP53 and PI3K-AKT-mTOR Signaling via ROS-Mediated Apoptosis
by Fahu Yuan, Yu Qiao, Zhongqiang Chen, Huihuang He, Fuyan Wang and Jiangyuan Chen
Curr. Issues Mol. Biol. 2025, 47(7), 546; https://doi.org/10.3390/cimb47070546 - 14 Jul 2025
Viewed by 405
Abstract
Lobelia nummularia Lam. is a traditional medicinal herb of which the anticancer mechanisms remain largely unexplored. Here, we demonstrated that its ethanolic extract (LNE) exerts potent anti-breast cancer activity by inducing ROS-dependent mitochondrial apoptosis in MDA-MB-231 cells, a mechanism confirmed via rescue experiments [...] Read more.
Lobelia nummularia Lam. is a traditional medicinal herb of which the anticancer mechanisms remain largely unexplored. Here, we demonstrated that its ethanolic extract (LNE) exerts potent anti-breast cancer activity by inducing ROS-dependent mitochondrial apoptosis in MDA-MB-231 cells, a mechanism confirmed via rescue experiments with the antioxidant N-acetylcysteine (NAC). This pro-apoptotic program is driven by a dual mechanism: potent suppression of the pro-survival EGFR/PI3K/AKT signaling pathway and simultaneous activation of the TP53-mediated apoptotic cascade, culminating in the cleavage of executor caspase-3. Phytochemical analysis identified numerous flavonoids, and quantitative HPLC confirmed that key bioactive compounds, including luteolin and apigenin, are substantially present in the extract. These mechanisms translated to significant in vivo efficacy, where LNE administration suppressed primary tumor growth and lung metastasis in a 4T1 orthotopic model in BALB/c mice. Furthermore, a validated molecular docking protocol provided a plausible structural basis for these multi-target interactions. Collectively, this study provides a comprehensive, multi-layered validation of LNE’s therapeutic potential, establishing it as a mechanistically well-defined candidate for natural product-based anticancer drug discovery. Full article
Show Figures

Figure 1

29 pages, 7767 KiB  
Article
Therapeutic Efficacy of CD34-Derived Allogeneic Dendritic Cells Engineered to Express CD93, CD40L, and CXCL13 in Humanized Mouse Models of Pancreatic Cancer
by Sara Huerta-Yepez, Jose D. Gonzalez, Neha Sheik, Senay Beraki, Elango Kathirvel, Ariel Rodriguez-Frandsen, Po-Chun Chen, Tiran Sargsyan, Saleemulla Mahammad, Mark R. Dybul, Lu Chen, Francois Binette and Anahid Jewett
Vaccines 2025, 13(7), 749; https://doi.org/10.3390/vaccines13070749 - 12 Jul 2025
Viewed by 884
Abstract
Background/Objectives: Pancreatic cancer remains the fourth leading cause of cancer-related deaths. While peripheral blood-derived mature dendritic cell (mDC) vaccines have shown potential in eliciting anti-tumor immune responses, clinical efficacy has been limited. This study aimed to enhance the potency and scalability of [...] Read more.
Background/Objectives: Pancreatic cancer remains the fourth leading cause of cancer-related deaths. While peripheral blood-derived mature dendritic cell (mDC) vaccines have shown potential in eliciting anti-tumor immune responses, clinical efficacy has been limited. This study aimed to enhance the potency and scalability of DC-based immunotherapy by developing an allogeneic DC platform derived from CD34+ hematopoietic stem cells (HSCs), genetically engineered to overexpress CD93, CD40L, and CXCL13, followed by maturation and tumor antigen pulsing. Methods: Engineered DCs were generated from CD34+ HSCs and matured in vitro after lentiviral transduction of CD93, CD40L, and CXCL13. Tumor lysates were used for antigen pulsing. A scrambled-sequence control DC was used for comparison. In vitro assays were performed to assess T cell activation and tumor cell killing. In vivo efficacy was evaluated using orthotopic pancreatic tumors in BLT and PBMC-humanized NSG mice established with the MiaPaca-2 (MP2) cell line. Results: Engineered DCs significantly enhanced T cell activation and tumor-specific cytotoxicity in vitro compared to control DCs. Antigen pulsing further amplified immune activation. In vivo, treated humanized mice showed increased CD4+, CD8+, and NK cell frequencies in peripheral blood and within tumors, correlating with reduced tumor burden. Conclusions: Our data shows that the antigen-pulsed, engineered DCs have the potency to activate immune cells, which leads to a significant reduction in pancreatic tumors and therefore could potentially provide an effective therapeutic opportunity for the treatment of pancreatic cancer and other solid tumors. Full article
(This article belongs to the Section Vaccination Against Cancer and Chronic Diseases)
Show Figures

Graphical abstract

16 pages, 3527 KiB  
Article
Treatment-Induced Gene Expression Changes in Metastatic Renal Cell Carcinoma: Insights from a Syngeneic Mouse Model
by Ko Okabe, Toshiaki Tanaka, Tetsuya Shindo, Yuki Kyoda, Sachiyo Nishida, Kohei Hashimoto, Ko Kobayashi and Naoya Masumori
Curr. Oncol. 2025, 32(7), 391; https://doi.org/10.3390/curroncol32070391 - 8 Jul 2025
Viewed by 475
Abstract
This study aimed to clarify the alterations in gene expression in metastatic renal cell carcinoma (mRCC) during disease progression and in response to treatment with immune checkpoint inhibitors using a syngeneic mouse mRCC model. RENCA cells were orthotopically implanted in BALB/c mice. Mice [...] Read more.
This study aimed to clarify the alterations in gene expression in metastatic renal cell carcinoma (mRCC) during disease progression and in response to treatment with immune checkpoint inhibitors using a syngeneic mouse mRCC model. RENCA cells were orthotopically implanted in BALB/c mice. Mice received first-line treatment with cabozantinib, anti-PD-1 antibody, or a combination. Tumor progression was monitored using serial micro-computed tomography. Lung metastasis samples were collected, and RNA sequencing was performed. Mice with apparent disease progression received second-line treatment with axitinib, everolimus, or lenvatinib after combination therapy. The median overall survival was 28, 34, 34, and 49 days in untreated mice and those treated with cabozantinib, anti-PD-1, or their combination, respectively (p < 0.05). RNA sequencing revealed upregulation of the fibroblast growth factor pathway in lung metastases after monotherapy, whereas mTOR pathway activation was observed only after combination therapy. Treatment-specific gene expression changes occur in mRCC, suggesting that the optimal target for sequential therapy in mRCC varies depending on prior treatment. Full article
Show Figures

Figure 1

14 pages, 2179 KiB  
Article
Hepatic Artery Thrombosis After Orthotopic Liver Transplant: A 20-Year Monocentric Series
by Vincenzo Tondolo, Gianluca Rizzo, Giovanni Pacini, Luca Emanuele Amodio, Federica Marzi, Giada Livadoti, Giuseppe Quero and Fausto Zamboni
J. Clin. Med. 2025, 14(13), 4804; https://doi.org/10.3390/jcm14134804 - 7 Jul 2025
Viewed by 422
Abstract
Background/Objectives: Hepatic artery thrombosis (HAT) is a serious vascular complication in patients undergoing orthotopic liver transplantation (OLT). It is associated with a high risk of graft loss, re-transplantation (re-OLT), and mortality. This study aimed to evaluate the incidence and management of HAT, [...] Read more.
Background/Objectives: Hepatic artery thrombosis (HAT) is a serious vascular complication in patients undergoing orthotopic liver transplantation (OLT). It is associated with a high risk of graft loss, re-transplantation (re-OLT), and mortality. This study aimed to evaluate the incidence and management of HAT, analyzing potential risk factors. The secondary objectives included quantifying 90-day postoperative morbidity and mortality rates. Methods: In this retrospective, observational, single-center study, data from liver transplant donors and recipients who underwent OLT between 2004 and 2024 were analyzed. HAT was classified as early (e-HAT, ≤30 days) or late (l-HAT, >30 days). Univariate statistical analysis was performed to identify the risk factors associated with HAT occurrence. Multivariate analysis was not performed due to the small number of HAT events, which would increase the risk of model overfitting. Results: In the 20 year study period, a total of 532 OLTs were performed, including 37 re-OLTs. The rates of major morbidity, reoperation, and mortality within 90 days were 44.5%, 22.3%, and 7.1%, respectively. HAT occurred in 2.4% of cases (e-HAT: 1.6%; l-HAT: 0.7%). Among e-HAT cases, 66.6% were asymptomatic and identified through routine postoperative Doppler ultrasound. All e-HAT cases were surgically treated, with a re-OLT rate of 33.3%. Three l-HAT cases required re-OLT. Overall, the HAT-related mortality and re-OLT rates were 7.6% and 46.1%, respectively. At a follow-up of 86 months, the rate of graft loss was 9.2%, and the rate of post-OLT survival was 77%. Patients who developed HAT had a higher donor-to-recipient body weight ratio and longer warm ischemia times (WITs). Additionally, patients undergoing re-OLT had a higher risk of developing HAT. Conclusions: Although the incidence of HAT is low, its clinical consequences are severe. Early Doppler ultrasound surveillance is crucial for detecting e-HAT and preventing graft loss. A high donor-to-recipient body weight ratio, a prolonged warm ischemia time, and re-OLT seem to be associated with a high risk of HAT. Full article
(This article belongs to the Section General Surgery)
Show Figures

Figure 1

16 pages, 1965 KiB  
Article
Establishment of an Orthotopic and Metastatic Colorectal Cancer Mouse Model Using a Tissue Adhesive-Based Implantation Method
by Sang Bong Lee, Hui-Jeon Jeon, Hoon Hyun and Yong Hyun Jeon
Cancers 2025, 17(13), 2266; https://doi.org/10.3390/cancers17132266 - 7 Jul 2025
Viewed by 567
Abstract
Background: To overcome the limitations of conventional CRC (colorectal cancer) mouse models in replicating metastasis and enabling efficient therapeutic evaluation, we developed a novel implantation method using tissue adhesive to establish reproducible orthotopic and metastatic tumors. Conventional models using injection or suturing techniques [...] Read more.
Background: To overcome the limitations of conventional CRC (colorectal cancer) mouse models in replicating metastasis and enabling efficient therapeutic evaluation, we developed a novel implantation method using tissue adhesive to establish reproducible orthotopic and metastatic tumors. Conventional models using injection or suturing techniques often suffer from technical complexity, inconsistent tumor establishment, and limited metastatic reliability. Methods: We developed and validated a novel orthotopic and metastatic CRC model utilizing tissue adhesive for tumor transplantation. Uniform tumor fragments derived from bioluminescent HCT116/Luc xenografts were affixed to the cecum of nude mice. Tumor growth and metastasis were monitored through bioluminescence imaging and confirmed by the results of histological analysis of metastatic lesions. The model’s utility for therapeutic testing was evaluated using MK801, an NMDA receptor antagonist. Results: The biological-based model demonstrated rapid and reproducible tumor implantation (<5 min), consistent primary tumor growth, and robust metastasis to the liver and lungs. The biological-based approach achieved 80% tumor engraftment (4/5), with consistent metastasis to the liver and lungs in all mice, compared with lower and variable metastasis rates in injection (0%, 0/5) and suturing (20%, 1/5) methods. MK801 treatment significantly suppressed both primary tumor growth and metastasis, validating the model’s suitability for preclinical drug evaluation. Conclusions: By enabling rapid, reproducible, and spontaneous formation of metastatic lesions using a minimally invasive tissue adhesive technique, our model represents a significant methodological advancement that supports high-throughput therapeutic screening and bridges the gap between experimental modeling and clinical relevance in colorectal cancer research. Full article
(This article belongs to the Special Issue Colorectal Cancer Liver Metastases)
Show Figures

Figure 1

15 pages, 4150 KiB  
Article
PRMT5 Identified as a Viable Target for Combination Therapy in Preclinical Models of Pancreatic Cancer
by Xiaolong Wei, William J. Kane, Sara J. Adair, Sarbajeet Nagdas, Denis Liu and Todd W. Bauer
Biomolecules 2025, 15(7), 948; https://doi.org/10.3390/biom15070948 - 30 Jun 2025
Viewed by 472
Abstract
Pancreatic cancer is the third leading cause of cancer-related death in the US. First-line chemotherapy regimens for pancreatic ductal adenocarcinoma (PDAC) include FOLFIRINOX or gemcitabine (Gem) with or without paclitaxel (Ptx); however, 5-year survival with these regimens remains poor. Previous work has demonstrated [...] Read more.
Pancreatic cancer is the third leading cause of cancer-related death in the US. First-line chemotherapy regimens for pancreatic ductal adenocarcinoma (PDAC) include FOLFIRINOX or gemcitabine (Gem) with or without paclitaxel (Ptx); however, 5-year survival with these regimens remains poor. Previous work has demonstrated protein arginine methyltransferase 5 (PRMT5) to be a promising therapeutic target in combination with Gem for the treatment of PDAC; however, these findings have yet to be confirmed in relevant preclinical models of PDAC. To test the possibility of PRMT5 as a viable therapeutic target, clinically relevant orthotopic and metastatic patient-derived xenograft (PDX) mouse models of PDAC growth were utilized to evaluate the effect of PRMT5 knockout (KO) or pharmacologic inhibition on treatment with Gem alone or Gem with Ptx. Primary endpoints included tumor volume, tumor weight, or metastatic tumor burden as appropriate. The results showed that Gem-treated PRMT5 KO tumors exhibited decreased growth and were smaller in size compared to Gem-treated wild-type (WT) tumors. Similarly, the Gem-treated PRMT5 KO metastatic burden was lower than the Gem-treated WT metastatic burden. The addition of a PRMT5 pharmacologic inhibitor to Gem and Ptx therapy resulted in a lower final tumor weight and fewer metastatic tumors. The depletion of PRMT5 results in increased DNA damage in response to Gem and Ptx treatment. Thus, PRMT5 genetic depletion or inhibition in combination with Gem-based therapy improved the response in primary and metastatic PDAC in clinically relevant mouse models, suggesting that PRMT5 is a viable therapeutic target for combination therapy in PDAC. Full article
Show Figures

Figure 1

20 pages, 3490 KiB  
Article
Isocitrate Dehydrogenase-Wildtype Glioma Adapts Toward Mutant Phenotypes and Enhanced Therapy Sensitivity Under D-2-Hydroxyglutarate Exposure
by Geraldine Rocha, Clara Francés-Gómez, Javier Megías, Lisandra Muñoz-Hidalgo, Pilar Casanova, Jose F. Haro-Estevez, Vicent Teruel-Martí, Daniel Monleón and Teresa San-Miguel
Biomedicines 2025, 13(7), 1584; https://doi.org/10.3390/biomedicines13071584 - 28 Jun 2025
Viewed by 564
Abstract
Background/Objectives: Isocitrate dehydrogenase (IDH) mutations are hallmark features in subsets of gliomas, producing the oncometabolite D-2-hydroxyglutarate (2HG). Although IDH mutations are associated with better clinical outcomes, their relationship with tumor progression is complex. This study aimed to investigate, in vitro [...] Read more.
Background/Objectives: Isocitrate dehydrogenase (IDH) mutations are hallmark features in subsets of gliomas, producing the oncometabolite D-2-hydroxyglutarate (2HG). Although IDH mutations are associated with better clinical outcomes, their relationship with tumor progression is complex. This study aimed to investigate, in vitro and in vivo, the phenotypic consequences of IDH mutation and 2HG exposure in glioblastoma (GBM) under normoxic and hypoxic conditions and under temozolomide (TMZ) and radiation exposure. Methods: Experiments were conducted using IDH-wildtype (IDH-wt) and IDH-mutant (IDH-mut) glioma cell lines under controlled oxygen conditions. Functional assays included cell viability, cell cycle analysis, apoptosis profiling, migration, and surface marker expression via flow cytometry. Orthotopic xenografts were established in immunocompromised mice to assess in vivo tumor growth and morphology, followed by MRI and histological analysis. Treatments included TMZ, radiation, and 2HG at varying concentrations. Statistical analyses were performed using SPSS and RStudio. Results:IDH-wt cells exhibited faster proliferation and greater adaptability under hypoxia, while IDH-mut cells showed cell cycle arrest and limited growth. 2HG recapitulated IDH-mut features in IDH-wt cells, including increased apoptosis under TMZ, reduced proliferation, and altered CD24/CD44 expression. In vivo, IDH-wt tumors were larger and more infiltrative, while 2HG administration reduced tumor volume and promoted compact morphology. Notably, migration was initially similar across genotypes but increased in IDH-mut and 2HG-treated IDH-wt cells over time, though suppressed under therapeutic stress. Conclusions: IDH mutation and 2HG modulate glioma cell biology, including cell cycle dynamics, proliferation rates, migration, and apoptosis. While the IDH mutation and its metabolic product confer initial growth advantages, they enhance treatment sensitivity and reduce invasiveness, highlighting potential vulnerabilities for targeted therapy. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Therapy of Gliomas)
Show Figures

Figure 1

21 pages, 4035 KiB  
Article
Exploring the Role of Peripheral Macrophages in Glioma Progression: The Metabolic Significance of Cyclooxygenase-2 (COX-2)
by Jens Pietzsch, Magali Toussaint, Cornelius Kurt Donat, Alina Doctor, Sebastian Meister, Johanna Wodtke, Markus Laube, Frank Hofheinz, Jan Rix, Winnie Deuther-Conrad and Cathleen Haase-Kohn
Int. J. Mol. Sci. 2025, 26(13), 6198; https://doi.org/10.3390/ijms26136198 - 27 Jun 2025
Viewed by 518
Abstract
Glioblastoma (GBM) is the most aggressive form of malignant gliomas, with the eicosanoid-synthesizing enzyme cyclooxygenase-2 (COX-2) playing a pivotal role in its progression via the COX-2/prostaglandin E2/4 axis. COX-2 upregulations in tumor cells induces a pro-inflammatory tumor microenvironment (TME), affecting the behavior of [...] Read more.
Glioblastoma (GBM) is the most aggressive form of malignant gliomas, with the eicosanoid-synthesizing enzyme cyclooxygenase-2 (COX-2) playing a pivotal role in its progression via the COX-2/prostaglandin E2/4 axis. COX-2 upregulations in tumor cells induces a pro-inflammatory tumor microenvironment (TME), affecting the behavior of invading bone marrow-derived macrophages (Mϕ) and brain-resident microglia (MG) through unclear autocrine and paracrine mechanisms. Using CRISPR/Cas9 technology, we generated COX-2 knockout U87 glioblastoma cells. In spheroids and in vivo xenografts, this resulted in a significant inhibition of tumorigenic properties, while not observed in standard adherent monolayer culture. Here, the knockout induced a G1 cell cycle arrest in adherent cells, accompanied by increased ROS, mitochondrial activity, and cytochrome c-mediated apoptosis. In spheroids and xenograft models, COX-2 knockout led to notable growth delays and increased cell death, characterized by features of both apoptosis and autophagy. Interestingly, these effects were partially reversed in subcutaneous xenografts after co-culture with Mϕ, while co-culture with MG enhanced the growth-suppressive effects. In an orthotopic model, COX-2 knockout tumors displayed reduced proliferation (fewer Ki-67 positive cells), increased numbers of GFAP-positive astrocytes, and signs of membrane blebbing. These findings highlight the potential of COX-2 knockout and suppression as a therapeutic strategy in GBM, particularly when combined with suppression of infiltrating macrophages and stabilization of resident microglia populations to enhance anti-tumor effects. Full article
Show Figures

Graphical abstract

13 pages, 996 KiB  
Article
Factors Affecting Health-Related Quality of Life in Patients After a Liver Transplant: A Cross-Sectional, Single-Centre, Large-Cohort Study
by Katarzyna Kotarska, Ewa Wunsch, Jerzy Przedlacki, Maciej Wójcicki, Joanna Raszeja-Wyszomirska, Jolanta Małyszko and Piotr Milkiewicz
J. Clin. Med. 2025, 14(13), 4507; https://doi.org/10.3390/jcm14134507 - 25 Jun 2025
Viewed by 371
Abstract
Background/Objectives: Over the past decades there has been a remarkable improvement in the clinical outcomes and prognoses after orthotopic liver transplantation (OLTx). Health-related quality of life (HRQoL) has emerged as an important concept for assessing the success of this procedure. We aimed [...] Read more.
Background/Objectives: Over the past decades there has been a remarkable improvement in the clinical outcomes and prognoses after orthotopic liver transplantation (OLTx). Health-related quality of life (HRQoL) has emerged as an important concept for assessing the success of this procedure. We aimed to assess critical aspects of HRQoL in patients transplanted at our centre. Methods: We recruited 420 OLTx recipients and divided them into three groups based on the time since surgery. Two hundred and seventy-five controls were matched for age and gender. The Medical Outcomes Study Short Form (SF-36), International Physical Activity Questionnaire, Patient Health Questionnaire-9 (PHQ-9), and the Modified Fatigue Impact Scale (MFIS) were used to assess HRQoL, physical activity levels, depression, and chronic fatigue, respectively. Results: Compared to controls, OLTx patients exhibited grossly comparable HRQoL except for the physical component score (PCS) and mental domains of the SF-36. There was a significant correlation between the impairment of the PCS and depression and between the PCS and chronic fatigue. Physically active patients scored significantly lower in the MFIS, and there was a strong correlation between depression and chronic fatigue. Females exhibited more pronounced symptoms of depression and chronic fatigue than males but comparable physical activity levels and general QoL. Unemployed patients had significantly higher scores in the PHQ-9/MFIS. Conclusions: The general HRQoL of OLTx patients was similar to controls. However, patients were less physically active and more frequently unemployed. As depression and chronic fatigue occurred more often in females, particular attention should be paid to their psychiatric assessment. Full article
(This article belongs to the Special Issue Current Challenges and Perspectives in Liver Transplantation)
Show Figures

Figure 1

Back to TopTop