Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (157)

Search Parameters:
Keywords = orthodontic resins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 468 KB  
Review
Biocompatibility and Safety of 3D Printing Resins for Orthodontic Aligners: A Critical Review of Current Evidence
by Cecilia Goracci, Utkarsh Mangal, Stevan M. Čokić, Annalisa Mazzoni, Alessandro Vichi and Uros Josic
Polymers 2025, 17(22), 3060; https://doi.org/10.3390/polym17223060 - 19 Nov 2025
Viewed by 585
Abstract
Orthodontic aligners 3D-printed in resin currently provide a viable alternative to thermoformed ones. However, concerns have been raised regarding their biocompatibility. This review addressed the available scientific evidence on the biological properties of marketed resins for 3D printing of orthodontic aligners, encompassing cytotoxicity, [...] Read more.
Orthodontic aligners 3D-printed in resin currently provide a viable alternative to thermoformed ones. However, concerns have been raised regarding their biocompatibility. This review addressed the available scientific evidence on the biological properties of marketed resins for 3D printing of orthodontic aligners, encompassing cytotoxicity, estrogenicity, biofilm formation, and oral soft tissues reactions. A comprehensive literature search of several databases was conducted and PRISMA guidelines were followed to summarize the retrieval. Eleven studies were included in the review. They provided information on only three marketed resins: Tera Harz TC-85 DAC and Tera Harz TA-28 (Graphy) and Clear-A (Senertek). For the last two materials, only one investigation has been performed. Despite the large variability in experimental protocols, the lack of cytotoxicity of Tera Harz TC-85 DAC was a consistent finding. Also, no estrogenic effect was detected for this resin, in line with the lack of any bis-phenol A precursor in its chemical composition. In two clinical studies, oral soft tissue reactions were reported as rare and non-serious occurrences. Biofilm adhesion was regarded as critical for the clinical safety of 3D-printed aligners. Standardization of in vitro protocols, also including more clinically relevant settings, chemical characterization of the resins’ eluates, and collection of additional in vivo data are advised to improve the quality of the evidence. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

16 pages, 1948 KB  
Article
Bruxism Simulation in Aligner Therapy: Effects on Restored Posterior Teeth
by Amelia Anita Boitor (Andreica), Adriana Objelean, Cristina Gasparik, Alexandru Victor Burde, Horațiu Alexandru Colosi and Diana Dudea
J. Clin. Med. 2025, 14(21), 7877; https://doi.org/10.3390/jcm14217877 - 6 Nov 2025
Viewed by 442
Abstract
Background/Objectives: Parafunctional habits such as bruxism generate high occlusal forces that can significantly compromise the performance of dental restorations during orthodontic treatment. This ex vivo study aimed to evaluate the surface wear of Class II composite restorations and the integrity of clear aligners [...] Read more.
Background/Objectives: Parafunctional habits such as bruxism generate high occlusal forces that can significantly compromise the performance of dental restorations during orthodontic treatment. This ex vivo study aimed to evaluate the surface wear of Class II composite restorations and the integrity of clear aligners (CAs) under simulated parafunctional loading. Methods: Thirty-four posterior teeth restored with composite materials were subjected to either normal masticatory forces or high-intensity cyclic forces mimicking bruxism while being fitted with orthodontic aligners. The collected experimental data were analyzed using R (version 4.3) under the Jamovi project (version 2.5.3). Differences between groups were assessed using paired samples t-tests and Wilcoxon tests for paired samples, with robust t-tests applied when data normality could not be confirmed. Statistical significance was set at α = 0.05. Results: Parafunctional loading led to significantly greater surface degradation of restorations and increased aligner wear. Compared with functional forces, RMS errors were substantially higher under parafunctional forces (33.5 vs. 21.5 units; p < 0.001), indicating reduced positional accuracy. Aligner thickness decreased more under parafunctional conditions (0.0304 mm) than under normal function (0.0122 mm), with all comparisons showing high statistical significance and large effect sizes. Conclusions: Parafunctional forces were found to significantly increase surface wear in Class 2 resin composite restorations during clear aligner therapy. Simulated bruxism also compromised aligner integrity, indicating the need for more durable materials and tailored treatment strategies for patients with bruxing habits. These findings highlight the importance of selecting durable restorative and aligner materials for bruxer patients to ensure long-term treatment success. Full article
(This article belongs to the Special Issue Orthodontics: State of the Art and Perspectives)
Show Figures

Figure 1

17 pages, 5800 KB  
Article
3D Printing of Shape Memory Resin for Orthodontic Aligners with Green Synthesized Antimicrobial ZnO Nanoparticles Coatings: Toward Bioactive Devices
by Airy Teramoto-lida, Rafael Álvarez-Chimal, Lorena Reyes-Carmona, Marco Antonio Álvarez-Pérez, Amaury Pozos-Guillen and Febe Carolina Vázquez-Vázquez
Bioengineering 2025, 12(11), 1193; https://doi.org/10.3390/bioengineering12111193 - 1 Nov 2025
Viewed by 791
Abstract
The development of bioactive dental materials with antimicrobial and biocompatible properties is important for improving clinical outcomes and reducing complications associated with intraoral devices. This study presents a novel approach that combines a 3D-printed shape-memory resin (TC-85DAC) with green-synthesized zinc oxide nanoparticles (ZnO [...] Read more.
The development of bioactive dental materials with antimicrobial and biocompatible properties is important for improving clinical outcomes and reducing complications associated with intraoral devices. This study presents a novel approach that combines a 3D-printed shape-memory resin (TC-85DAC) with green-synthesized zinc oxide nanoparticles (ZnO NPs) to enhance biological performance. ZnO NPs were synthesized using Dysphania ambrosioides extract, producing quasi-spherical particles with a crystalline hexagonal structure and sizes between 15 and 40 nm. Resin discs were coated with ZnO NPs at 10%, 20%, and 30%, then assessed for biocompatibility with human gingival fibroblasts and antibacterial activity against Porphyromonas gingivalis and Streptococcus mutans. Surface roughness was also considered with and without ZnO NPs. Biocompatibility assays revealed a concentration- and time-dependent increase in cell viability, with the highest values at 30% ZnO NPs after 72 h of exposure to the NPs. Antibacterial testing confirmed the inhibition of both species, with Porphyromonas gingivalis showing greater sensitivity. Surface roughness increased with higher ZnO NPs concentrations, significantly influencing biological interactions. The integration of green-synthesized ZnO NPs with shape-memory resin produced a multifunctional dental material with improved bioactivity. This sustainable strategy enables bioactive coatings on 3D-printed resins, with potential applications in the next generation of smart dental devices. Full article
Show Figures

Graphical abstract

13 pages, 2269 KB  
Article
The Effect of Different White Spot Lesion Treatments on the Enamel Microhardness—An In Vitro Pilot Study
by Milena Milanović, Miloš Beloica, Zoran Mandinić, Jelena Juloski, Miloš Petrović, Dušan Kosanović, Miloš Todorović, Maja Dimitrijević, Aleksandar Jakovljević, Miloš Vorkapić and Dragan Stanimirović
Dent. J. 2025, 13(11), 496; https://doi.org/10.3390/dj13110496 - 27 Oct 2025
Viewed by 520
Abstract
Background/Objectives: Dental caries, one of the most common oral diseases worldwide, represents a major public health concern. Contemporary dentistry has established several non-invasive approaches and resin infiltration, as a micro-invasive path, in the treatment of white spot lesions (WSLs). This study aimed to [...] Read more.
Background/Objectives: Dental caries, one of the most common oral diseases worldwide, represents a major public health concern. Contemporary dentistry has established several non-invasive approaches and resin infiltration, as a micro-invasive path, in the treatment of white spot lesions (WSLs). This study aimed to evaluate the effect of different WSL treatments on enamel surface microhardness. Materials and Methods: Seventy-five intact human premolars extracted upon orthodontic indication and the demineralizing solution composed of acetic acid, monopotassium phosphate and calcium chloride with pH = 4.4 and exposure time 96 h were used. The samples were randomly divided into five groups (n = 15): I—intact enamel (control group); II—artificial white spot lesion; III—artificial WSL treated with fluoride varnish; IV—artificial WSL treated with casein phosphopeptide—amorphous calcium phosphate (CPP-ACP) paste; V—resin-infiltrated artificial WSL. The surface microhardness was determined using the Oliver–Pharr method and a spherical indenter (Shimadzu Indenter, Kyoto, Japan). One-way analysis of variance (ANOVA) followed by a Post Hoc test (Bonferroni) was used with a level of significance set at p < 0.05. Results: Resin-infiltrated white spot lesions showed comparable microhardness mean value as the control group: 68.23 (±21.45) and 63.57 (±18.89), respectively (p > 0.05). Also, resin infiltration increased enamel microhardness compared to WSL values, with a statistically significant difference (p < 0.05). Fluoride varnish and CPP-ACP treatment resulted in equivalent values (50.84 ± 14.35 and 50.99 ± 15.31, respectively). Conclusions: Different WSL treatments (fluoride varnish, CPP-ACP and resin infiltration) produced comparable enamel microhardness values. Among the tested agents, resin infiltration resulted in higher microhardness values, while fluoride varnish and CPP-ACP demonstrated equivalent outcomes. Full article
(This article belongs to the Section Dental Materials)
Show Figures

Graphical abstract

21 pages, 9205 KB  
Article
Effect of Different Printing Designs and Resin Types on the Accuracy of Orthodontic Model
by Sabahattin Bor and Fırat Oğuz
Polymers 2025, 17(20), 2724; https://doi.org/10.3390/polym17202724 - 10 Oct 2025
Viewed by 1016
Abstract
This study aimed to evaluate the effect of resin type and printing design on the dimensional accuracy of three dimensional (3D) printed orthodontic models, considering their clinical relevance for applications such as in-house aligner fabrication. Since low-cost Liquid Crystal Display (LCD) printers have [...] Read more.
This study aimed to evaluate the effect of resin type and printing design on the dimensional accuracy of three dimensional (3D) printed orthodontic models, considering their clinical relevance for applications such as in-house aligner fabrication. Since low-cost Liquid Crystal Display (LCD) printers have been increasingly adopted in practice but data on their trueness and precision with different resins and print designs were limited, the study sought to provide evidence-based insights into their reliability. A mandibular model was designed using Blenderfordental (B4D, version 1.1.2024; Dubai, United Arab Emirates) software and fabricated with the Anycubic Photon Mono 7 Pro 14K (Anycubic, Shenzhen, China) LCD printer. The model was printed in vertical orientation using three different print designs at two layer thicknesses (50 µm and 100 µm). Four resins (Elegoo, Anycubic, eSUN, and Phrozen) were used, and each resin was printed with all three designs, yielding 126 models per resin and a total of 504 printed models. Dimensional deviations between the printed and reference models were assessed using root mean square (RMS) values and color-coded deviation maps. Significant differences in trueness were found among resins and print designs at both layer thicknesses (p < 0.001). At a layer thickness of 50 µm, eSUN and Anycubic showed superior trueness, whereas Phrozen exhibited the highest deviations. At a layer thickness of 100 µm, Anycubic, eSUN, and Phrozen generally performed better than Elegoo. Overall, printing at 100 µm yielded better performance than at 50 µm. Precision analysis revealed resin-dependent differences, with eSUN showing significantly higher precision than Elegoo at both layer thicknesses (p = 0.006 at 100 µm, p < 0.001 at 50 µm) and superior precision compared to Phrozen at 50 µm (p = 0.019). Both resin selection and print design significantly affect the dimensional accuracy of 3D-printed dental models. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

11 pages, 436 KB  
Article
Mutagenicity Evaluation of Orthodontic Resins Using the Ames Test
by Roberto Biagi, Gianna Dipalma, Federica Macrì, Niccolò Cenzato, Cinzia Maspero and Lucia Giannini
Appl. Sci. 2025, 15(19), 10351; https://doi.org/10.3390/app151910351 - 24 Sep 2025
Viewed by 479
Abstract
The biocompatibility of orthodontic materials is crucial for patient safety, especially concerning their possible mutagenic effects. This study aimed to assess the mutagenic potential of three commercially available orthodontic resins using the Ames test. We tested Resin A, Resin B, and Resin C, [...] Read more.
The biocompatibility of orthodontic materials is crucial for patient safety, especially concerning their possible mutagenic effects. This study aimed to assess the mutagenic potential of three commercially available orthodontic resins using the Ames test. We tested Resin A, Resin B, and Resin C, which consist of a base and an accelerator component. We used Salmonella typhimurium strains TA98, TA100, TA1535, and TA1537, along with TA1538, both with and without metabolic activation (S9 mix), following standardized protocols. After 48 h, we counted the number of revertant colonies and analyzed the data using two-way ANOVA. The Ames test revealed that Resins A and B induced significant mutagenic activity in strains TA100 and TA1535, with increases in revertant colonies up to about +145% compared with controls, while no effects were observed in TA98, TA1537, or TA1538. Resin C (both the complete mix and the base component) also showed mutagenicity in TA100 and TA1535, whereas the accelerator alone was consistently non-mutagenic. Positive controls confirmed the test system’s sensitivity. In conclusion, some orthodontic resins and their components showed mutagenic activity under the tested conditions. This highlights the need for mutagenicity testing as part of the biological safety assessment of dental materials. Full article
Show Figures

Figure 1

10 pages, 800 KB  
Article
A Comparison Between the Expansion Force Exerted by Thermo-Printed Aligners and 3D Printed Aligners: An In Vitro Study
by Samuele Avolese, Simone Parrini, Andrea Tancredi Lugas, Cristina Bignardi, Mara Terzini, Valentina Cantù, Tommaso Castroflorio, Emanuele Grifalconi, Nicola Scotti and Fabrizio Sanna
Bioengineering 2025, 12(9), 912; https://doi.org/10.3390/bioengineering12090912 - 25 Aug 2025
Viewed by 1009
Abstract
Background: The fabrication of orthodontic aligners directly via three-dimensional (3D) printing presents potential to increase the efficiency of aligner production relative to traditional workflows; however, several aspects of the 3D printing process might affect the dimensional fidelity of the fabricated appliances. The aim [...] Read more.
Background: The fabrication of orthodontic aligners directly via three-dimensional (3D) printing presents potential to increase the efficiency of aligner production relative to traditional workflows; however, several aspects of the 3D printing process might affect the dimensional fidelity of the fabricated appliances. The aim of this study is to measure the forces expressed by a 3D printed aligner made with TC-85 DAC resin (Grapy Inc., Seoul, Republic of Korea) when an expansion movement of the entire upper dental arch is programmed, comparing the measured forces with those obtained by a common thermoformed aligner (Smart Track®, Align Technology, Santa Clara, CA, USA). Materials and methods: A patient in transitional mixed dentition was selected, with the presence of all the first molars and permanent upper and lower incisors, and the canines and premolars have not started the exchange. From this patient, a virtual set up of the upper arch has been planned with an expansion of 0.2 mm and 0.4 mm per side; 3 mm horizontal rectangular attachments were added to the set up on the vestibular surface of the permanent molars, deciduous premolars, and deciduous canines. On this set up, 10 Smart Track aligners and 10 3D printed aligners with TC-85 DAC resin were produced. The fabricated aligners were mounted on the machinery used for the test (ElectroForce® Test Bench; TA Instruments, New Castle, DE, USA) by means of specific supports that simulate the upper arch of the patient (divided into two sides: right and left). To simulate the intraoral environment, the measurements were carried out in a thermostatic bath at a temperature of 37 °C. Results: The key results of this paper showed differences between Smart Track® and TC-85 DAC. In particular, the expanding force exerted by the 0.2 mm per side expanded Smart Track® aligners was on average +0.2162 N with a D.S. of ±0.0051 N during the 8 h; meanwhile, the force exerted by the 0.2 mm per side expanded TC-85 DAC 3D printed aligners was on average −0.0034 N with a D.S. of ±0.0036 N during the 8 h. The force exerted by the 0.4 mm per side expanded Smart Track® aligners was on average +0.7159 N with a D.S. of ±0.0543 N during the 8 h; meanwhile, the force exerted by the 0.4 mm per side expanded TC-85 DAC 3D printed aligners was on average +0.0141 N with a D.S. of ±0.004 N during the 8 h. Conclusions: Smart Track® aligners express a quantitatively measurable force in Newtons during the programmed movements to obtain a posterior expansion of the dental arches; on the contrary, aligners made with TC-85 DAC resin, in light of the results obtained from this study, express forces close to 0 during the realization of the movements programmed to obtain a posterior expansion of the dental arches. Full article
Show Figures

Figure 1

14 pages, 1232 KB  
Article
Influence of Bioactive Glass Incorporation in Resin Adhesives of Orthodontic Brackets on Adhesion Properties and Calcium Release
by Ana Paula Valente Pinho Mafetano, Fernanda Alves Feitosa, Gabriela da Silva Chagas, Nathália Moreira Gomes, Marcella Batista Rocha, Mariane Cintra Mailart, Karen Cristina Kazue Yui and Cesar Rogério Pucci
Polymers 2025, 17(17), 2282; https://doi.org/10.3390/polym17172282 - 23 Aug 2025
Cited by 2 | Viewed by 1091
Abstract
This study evaluated a light-cure orthodontic adhesive with the incorporation of bioactive glass particles and its effects on shear bond strength (SBS), adhesive remnant index (ARI), degree of conversion (DC), calcium release, and particle size distribution. Bioactive glass was added to the Transbond [...] Read more.
This study evaluated a light-cure orthodontic adhesive with the incorporation of bioactive glass particles and its effects on shear bond strength (SBS), adhesive remnant index (ARI), degree of conversion (DC), calcium release, and particle size distribution. Bioactive glass was added to the Transbond XT Adhesive (3M ESPE), resulting in five groups: TXT (0% wt of bioactive glass-incorporated—negative control); TXT20 (20% wt of bioactive glass-incorporated); TXT30 (30% wt of bioactive glass-incorporated), TXT50 (50% wt of bioactive glass-incorporated), and FLB (positive control—FL BOND II adhesive system with S-PRG particles, SHOFU Inc.). Data were analyzed with one-way ANOVA followed by Tukey’s test (α = 0.05). Quantitative SEM analysis confirmed submicron particle agglomerates (median equivalent circular diameter 0.020–0.108 µm). The TXT20 exhibited the highest values of degree of conversion (p < 0.05) (73.02 ± 3.33A). For SBS (in MPa): Control Group TXT—19.50 ± 1.40A, Group TXT20 18.22 ± 1.04AB, Group FLB 17.62 ± 1.45B, Group TXT30 14.48 ± 1.46C and Group TXT50 14.13 ± 1.02C (p < 0.05). For calcium release the group TXT50 2.23 ± 0.11D showed higher values (p < 0.05). The incorporation of distinct bioactive glass particle concentrations influenced the shear bond strength, degree of conversion, and calcium release. While the 50 wt% bioactive glass group exhibited the highest calcium release, both 20 wt% of bioactive glass group and the positive control group exhibited the highest degree of conversion without compromising the bonding strength. Full article
(This article belongs to the Special Issue Designing Polymers for Emerging Applications)
Show Figures

Figure 1

12 pages, 923 KB  
Article
Effect of Ultraviolet Light on the Shear Bond Strength of Commercial Dental Adhesives
by Markus Heyder, Stefan Kranz, Johanna Sandra Woelfel, Tabea Raabe, André Guellmar, Anna Mrozinska, Michael Gottschaldt, Ulrich S. Schubert, Bernd W. Sigusch and Markus Reise
Materials 2025, 18(16), 3772; https://doi.org/10.3390/ma18163772 - 12 Aug 2025
Viewed by 629
Abstract
Background: In adhesive dentistry, debonding-on-demand is attractive for situations where no permanent attachment is required. Due to its destructive nature, ultraviolet (UV) light may be of interest for attenuating bond forces. The aim of this study was to investigate the impact of UV [...] Read more.
Background: In adhesive dentistry, debonding-on-demand is attractive for situations where no permanent attachment is required. Due to its destructive nature, ultraviolet (UV) light may be of interest for attenuating bond forces. The aim of this study was to investigate the impact of UV light on the shear bond strength (SBS) of etch-and-rinse (n = 4) and universal adhesives (n = 3). Methods: Glass-ceramic samples were bonded to bovine enamel surfaces (n = 10/adhesive) and subjected to shear bond testing before and after exposure to UV light (320–390 nm, 126 Jcm−2). Data was statistically analyzed by Mann–Whitney U test. Results: Initial photopolymerized etch-and-rinse adhesives showed superior SBS compared to universal adhesives. Highest values were recorded for iBOND® Total etch (15.48 MPa) and Syntac classic© (17.60 MPa). Lowest SBS was obtained for Ecosite Bond® (2.63 MPa). Additional UV exposure caused a significant decrease in SBS among iBOND Total etch (5.24 MPa, p = 0.009) and Solobond M© (3.65 MPa, p = 0.005), while for Syntac classic©, an increase (24.12 MPa, p = 0.047) was recorded. Among all other tested adhesives, no significant changes were observed. Conclusions: UV radiation impacted SBS of etch-and-rinse adhesives only (decrease: iBOND Total Etch, Solobond M; enhancement: Syntac classic©). Further research should focus on introducing sufficient light-triggered debonding mechanisms. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

16 pages, 3418 KB  
Article
Forces and Moments Generated by Direct Printed Aligners During Bodily Movement of a Maxillary Central Incisor
by Michael Lee, Gabriel Miranda, Julie McCray, Mitchell Levine and Ki Beom Kim
Appl. Sci. 2025, 15(15), 8554; https://doi.org/10.3390/app15158554 - 1 Aug 2025
Viewed by 1312
Abstract
The aim of this study was to compare the forces and moments exerted by thermoformed aligners (TFMs) and direct printed aligners (DPAs) on the maxillary left central incisor (21) and adjacent teeth (11, 22) during lingual bodily movement of tooth 21. Methods: An [...] Read more.
The aim of this study was to compare the forces and moments exerted by thermoformed aligners (TFMs) and direct printed aligners (DPAs) on the maxillary left central incisor (21) and adjacent teeth (11, 22) during lingual bodily movement of tooth 21. Methods: An in vitro setup was used to quantify forces and moments on three incisors, which were segmented and fixed onto multi-axis force/moment transducers. TFM were fabricated using 0.76 mm-thick single-layer PET-G foils (ATMOS; American Orthodontics, Sheboygan, WI, USA) and multi-layer TPU foils (Zendura FLX; Bay Materials LLC, Fremont, CA, USA). DPAs were fabricated using TC-85 photopolymer resin (Graphy Inc., Seoul, Republic of Korea). Tooth 21 was planned for bodily displacement by 0.25 mm and 0.50 mm, and six force and moment components were measured on it and the adjacent teeth. Results: TC-85 generated lower forces and moments with fewer unintended forces and moments on the three teeth. TC-85 exerted 0.99 N and 1.53 N of mean lingual force on tooth 21 for 0.25 mm and 0.50 mm activations, respectively; ATMOS produced 3.82 N and 7.70 N, and Zendura FLX produced 3.00 N and 8.23 N of mean lingual force for the same activations, respectively. Bodily movement could not be achieved. Conclusions: The force systems generated by clear aligners are complex and unpredictable. DPA using TC-85 produced lower, more physiological force levels with fewer side effects, which may increase the predictability of tooth movement and enhance treatment outcome. The force levels generated by TFM were considered excessive and not physiologically compatible. Full article
(This article belongs to the Special Issue Advances in Orthodontics and Dentofacial Orthopedics)
Show Figures

Figure 1

12 pages, 1313 KB  
Article
Chair-Time During Polishing with Different Burs and Drills After Cement Customized Brackets Bonding: An In Vitro Comparative Study
by Javier Flores-Fraile, Alba Belanche Monterde, Oscar Alonso-Ezpeleta, Cosimo Galletti and Álvaro Zubizarreta-Macho
Dent. J. 2025, 13(8), 347; https://doi.org/10.3390/dj13080347 - 28 Jul 2025
Viewed by 618
Abstract
Introduction: Digital planning and evolution of technology is allowing dentistry to be more efficient in time than before. In orthodontics the main purpose is to obtain fewer patient visits and to reduce the bonding time. For that, indirect bonding planned with CAD-CAM softwares [...] Read more.
Introduction: Digital planning and evolution of technology is allowing dentistry to be more efficient in time than before. In orthodontics the main purpose is to obtain fewer patient visits and to reduce the bonding time. For that, indirect bonding planned with CAD-CAM softwares is used to obtain a shorter treatment period, in general, and less chair-time. This waste of chair-time should also be reduced in other fields of dentistry such as endodontics, surgery, prosthodontics, and aesthetics. Methods: A total of 504 teeth were embedded into epoxy resin models mounted as a dental arch. Customized lingual multibracket appliances were bonded by a current adhesion protocol. After that, they were debonded, the polishing of cement remnants was performed with three different burs and two drills. The polishing time of each group was recorded by an iPhone 14 chronometer. Results: Descriptive and comparative statistical analyses were performed with the different study groups. Statistical differences (p < 0.005) between diamond bur and tungsten carbide and white stone burs and turbine were obtained, with the first being the slowest of them. Discussion: Enamel roughness was widely studied in orthodontics polishing protocol as the main variable for protocols establishment. However, in lingual orthodontics, due the difficulty of the access to the enamel surfaces, the protocol is not clear and efficiency should be considered. It was observed that the tungsten carbide bur is the safest bur. It was also recommended that a two-step protocol of polishing by tungsten carbide bur be followed by polishers. Conclusions: A tungsten carbide bur mounted in a turbine was the most efficient protocol for polishing after lingual bracket debonding. Full article
(This article belongs to the Special Issue Malocclusion: Treatments and Rehabilitation)
Show Figures

Figure 1

13 pages, 516 KB  
Systematic Review
The Role of Casein Phosphopeptide-Amorphous Calcium Phosphate (CPP-ACP) in White Spot Lesion Remineralization—A Systematic Review
by Valentina Baccolini, Lígia Pereira da Silva, Liliana Teixeira, Raquel Teixeira de Sousa and Patrícia Manarte-Monteiro
J. Funct. Biomater. 2025, 16(8), 272; https://doi.org/10.3390/jfb16080272 - 25 Jul 2025
Cited by 1 | Viewed by 6130
Abstract
Amorphous calcium phosphate (ACP) is a well-established bioceramic material known to promote the remineralization of dental hard tissues. White spot lesions (WSLs) represent the initial stage of enamel demineralization and are frequently observed in patients with fixed orthodontic appliances or inadequate oral hygiene. [...] Read more.
Amorphous calcium phosphate (ACP) is a well-established bioceramic material known to promote the remineralization of dental hard tissues. White spot lesions (WSLs) represent the initial stage of enamel demineralization and are frequently observed in patients with fixed orthodontic appliances or inadequate oral hygiene. Although recommendations for remineralizing agents include both the prevention of lesion progression and the stimulation of tissue remineralization, the clinical efficacy of ACP-based materials remains under debate. This systematic review, registered in the PROSPERO database (CRD42024540595), aims to evaluate the clinical efficacy of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP)-based products in the remineralization of WSLs and to compare these outcomes with those achieved using non-bioceramic approaches. Inclusion criteria comprised randomized clinical trials, prospective cohort studies, and pilot studies conducted on human subjects with WSLs affecting permanent teeth. Studies involving artificial WSLs or non-cariogenic enamel lesions were excluded. The quality of the included studies was assessed using the Cochrane Risk of Bias 2 (RoB 2) tool. Fourteen articles met the inclusion criteria and were analyzed. The main findings indicate that CPP-ACP is clinically effective in promoting the remineralization of WSLs, although the results were inconsistent across studies. Comparisons with placebo and resin infiltration treatments revealed greater efficacy for CPP-ACP. The combination of CPP-ACP with fluoride appeared to further enhance the remineralizing effect on WSLs. Additional standardized clinical studies with longer follow-up periods are warranted to confirm these outcomes. Full article
Show Figures

Figure 1

16 pages, 2558 KB  
Article
Bonding Orthodontic Attachments to 3D-Printed Photosensitive Definitive Resin: An In Vitro Study
by Omaika Victoria Criollo-Barrios, Carlos Roberto Luna-Domínguez, Carlos Alberto Luna-Lara, Ricardo de Jesus Figueroa-López, Ronaldo Câmara Cozza and Jorge Humberto Luna-Domínguez
Dent. J. 2025, 13(8), 341; https://doi.org/10.3390/dj13080341 - 24 Jul 2025
Viewed by 975
Abstract
Background/Objectives: The increasing clinical integration of 3D-printed definitive resins requires a comprehensive understanding of their physicochemical properties and adhesive behavior. However, there is limited evidence regarding the optimal surface treatment and bonding strategies for clear aligner composite attachments on these materials. This [...] Read more.
Background/Objectives: The increasing clinical integration of 3D-printed definitive resins requires a comprehensive understanding of their physicochemical properties and adhesive behavior. However, there is limited evidence regarding the optimal surface treatment and bonding strategies for clear aligner composite attachments on these materials. This study aimed to characterize a 3D-printed definitive resin, evaluate the effects of surface treatments on its surface topography, and compare the shear bond strength (SBS) of the bonded attachments using different adhesive systems, both before and after thermocycling. Methods: A total of 120 rectangular specimens were fabricated from a 3D printed dental resin (Crowntec®, SAREMCO Dental AG—Mexico City, Mexico). For physicochemical characterization, six samples underwent scanning electron microscopy/energy-dispersive spectroscopy, X-ray diffraction, and thermogravimetric analysis. To evaluate surface topography, 42 polished specimens were assigned to three groups: untreated (control), etched with 4% hydrofluoric acid (HFA), or sandblasted with 50 µm Al2O3 (AA). Each group was subdivided for SEM observation and surface roughness (Ra) measurement. For SBS testing, 72 additional samples received the same surface treatments and were further subdivided according to the adhesive system: Transbond™ XT Primer (TXT) or Single Bond Universal (SBU). Results: The AA group showed the highest Ra (2.21 ± 0.30 µm), followed by HFA (0.81 ± 0.20 µm) and control (0.07 ± 0.30 µm) (p < 0.001). The highest SBS was observed in the AA + SBU group, followed by AA + TXT. Conclusions: Sandblasting with Al2O3 particles, combined with a universal adhesive, significantly improved bond strength, suggesting a viable protocol for 3D printed definitive composites in aligner attachment applications. Full article
(This article belongs to the Section Dental Materials)
Show Figures

Figure 1

12 pages, 1809 KB  
Article
Integrating 3D Digital Technology Advancements in the Fabrication of Orthodontic Aligner Attachments: An In Vitro Study
by Riham Nagib, Andrei Chircu and Camelia Szuhanek
J. Clin. Med. 2025, 14(14), 5093; https://doi.org/10.3390/jcm14145093 - 17 Jul 2025
Viewed by 937
Abstract
Background/Objectives: The introduction of composite attachments has greatly improved orthodontic aligner therapy, through better force delivery, more predictable movements, and enhanced retention. This in vitro study aims to present and investigate an innovative digital protocol for aligner attachment fabrication incorporating the latest [...] Read more.
Background/Objectives: The introduction of composite attachments has greatly improved orthodontic aligner therapy, through better force delivery, more predictable movements, and enhanced retention. This in vitro study aims to present and investigate an innovative digital protocol for aligner attachment fabrication incorporating the latest 3D technology used in dentistry. Methods: A virtual attachment measuring 2.5 × 2 × 2 mm was designed using computer-aided design (CAD) software (Meshmixer, Autodesk Inc., San Francisco, CA, USA) and exported as an individual STL file. The attachments were fabricated using a digital light processing (DLP) 3D printer (model: Elegoo 4 DLP, Shenzhen, China) and a dental-grade biocompatible resin. A custom 3D-printed placement guide was used to ensure precise positioning of the attachments on the printed maxillary dental models. A flowable resin was applied to secure the attachments in place. Following attachment placement, the models were scanned using a laboratory desktop scanner (Optical 3D Smart Big, Open Technologies, Milano, Italy) and three intraoral scanners: iTero Element (Align Technology, Tempe, AZ, USA), Aoral 2, and Aoral 3 (Shining 3D, Hangzhou, China). Results: Upon comparison, the scans revealed that the iTero Element exhibited the highest precision, particularly in the attachment, with an RMSE of 0.022 mm and 95.04% of measurements falling within a ±100 µm tolerance. The Aoral 2 scanner showed greater variability, with the highest RMSE (0.041 mm) in the incisor area and wider deviation margins. Despite this, all scanners produced results within clinically acceptable limits. Conclusions: In the future, custom attachments made by 3D printing could be a valid alternative to the traditional composite attachments when it comes to improving aligner attachment production. While these preliminary findings support the potential applicability of such workflows, further in vivo research is necessary to confirm clinical usability. Full article
(This article belongs to the Special Issue Orthodontics: State of the Art and Perspectives)
Show Figures

Figure 1

37 pages, 438 KB  
Review
Three-Dimensionally Printed Splints in Dentistry: A Comprehensive Review
by Luka Šimunović, Samir Čimić and Senka Meštrović
Dent. J. 2025, 13(7), 312; https://doi.org/10.3390/dj13070312 - 10 Jul 2025
Cited by 1 | Viewed by 4510
Abstract
Three-dimensional (3D) printing has emerged as a transformative technology in dental splint fabrication, offering significant advancements in customization, production speed, material efficiency, and patient comfort. This comprehensive review synthesizes the current literature on the clinical use, benefits, limitations, and future directions of 3D-printed [...] Read more.
Three-dimensional (3D) printing has emerged as a transformative technology in dental splint fabrication, offering significant advancements in customization, production speed, material efficiency, and patient comfort. This comprehensive review synthesizes the current literature on the clinical use, benefits, limitations, and future directions of 3D-printed dental splints across various disciplines, including prosthodontics, orthodontics, oral surgery, and restorative dentistry. Key 3D printing technologies such as stereolithography (SLA), digital light processing (DLP), and material jetting are discussed, along with the properties of contemporary photopolymer resins used in splint fabrication. Evidence indicates that while 3D-printed splints generally meet ISO standards for flexural strength and wear resistance, their mechanical properties are often 15–30% lower than those of heat-cured PMMA in head-to-head tests (flexural strength range 50–100 MPa vs. PMMA 100–130 MPa), and study-to-study variability is high. Some reports even show significantly reduced hardness and fatigue resistance in certain resins, underscoring material-specific heterogeneity. Clinical applications reviewed include occlusal stabilization for bruxism and temporomandibular disorders, surgical wafers for orthognathic procedures, orthodontic retainers, and endodontic guides. While current limitations include material aging, post-processing complexity, and variability in long-term outcomes, ongoing innovations—such as flexible resins, multi-material printing, and AI-driven design—hold promise for broader adoption. The review concludes with evidence-based clinical recommendations and identifies critical research gaps, particularly regarding long-term durability, pediatric applications, and quality control standards. This review supports the growing role of 3D printing as an efficient and versatile tool for delivering high-quality splint therapy in modern dental practice. Full article
(This article belongs to the Special Issue Digital Dentures: 2nd Edition)
Back to TopTop