Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (240)

Search Parameters:
Keywords = organ baths

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1365 KiB  
Article
Generation of Formates Following 20 kHz Sonication of DSPE-mPEG2000 PEGylated Phospholipid Micelles
by Perouza Parsamian and Paul Pantano
Pharmaceutics 2025, 17(8), 1008; https://doi.org/10.3390/pharmaceutics17081008 - 1 Aug 2025
Viewed by 279
Abstract
Background: Previous research has demonstrated that 20 kHz probe or 37 kHz bath sonication of poloxamers comprising polypropylene glycol (PPG) and polyethylene glycol (PEG) blocks can generate degradation byproducts that are toxic to mammalian cells and organisms. Herein, an investigation of a [...] Read more.
Background: Previous research has demonstrated that 20 kHz probe or 37 kHz bath sonication of poloxamers comprising polypropylene glycol (PPG) and polyethylene glycol (PEG) blocks can generate degradation byproducts that are toxic to mammalian cells and organisms. Herein, an investigation of a PEGylated phospholipid micelle was undertaken to identify low-molecular-weight sonolytic degradation byproducts that could be cytotoxic. The concern here lies with the fact that sonication is a frequently employed step in drug delivery manufacturing processes, during which PEGylated phospholipids can be subjected to shear forces and other extreme oxidative and thermal conditions. Methods: Control and 20 kHz-sonicated micelles of DSPE-mPEG2000 were analyzed using dynamic light scattering (DLS) and zeta potential analyses to study colloidal properties, matrix-assisted laser desorption/ionization–time of flight (MALDI-TOF) mass spectroscopy (MS) and proton nuclear magnetic resonance (1H-NMR) spectroscopy to study the structural integrity of DSPE-mPEG2000, and 1H-NMR spectroscopy and high-performance liquid chromatography (HPLC) with ultraviolet (UV) detection to quantitate the formation of low-molecular-weight degradation byproducts. Results: MALDI-TOF-MS analyses of 20 kHz-sonicated DSPE-mPEG2000 revealed the loss of ethylene glycol moieties in accordance with depolymerization of the PEG chain; 1H-NMR spectroscopy showed the presence of formate, a known oxidative/thermal degradation product of PEG; and HPLC-UV showed that the generation of formate was dependent on 20 kHz probe sonication time between 5 and 60 min. Conclusions: It was found that 20 kHz sonication can degrade the PEG chain of DSPE-mPEG2000, altering the micelle’s PEG corona and generating formate, a known ocular toxicant. Full article
Show Figures

Graphical abstract

18 pages, 3874 KiB  
Article
Organic and Ionic Liquids Electrolyte Solutions as Versatile Media for Metallic Lithium Recovery
by Mihai Tudor Olaru, Alexandru Matei, Irina Atkinson, Adelina Ionela Matei, Elena Bacalum, Miruna Iota and Ana-Maria Popescu
Materials 2025, 18(12), 2899; https://doi.org/10.3390/ma18122899 - 19 Jun 2025
Viewed by 465
Abstract
For various applications, particularly in battery technology, there is a significant demand for uniform, high-quality lithium or lithium-coated materials. The use of electrodeposition techniques to obtain such materials has not proven practical or economical due to the low solubility of most lithium salts [...] Read more.
For various applications, particularly in battery technology, there is a significant demand for uniform, high-quality lithium or lithium-coated materials. The use of electrodeposition techniques to obtain such materials has not proven practical or economical due to the low solubility of most lithium salts in suitable solvents. In this study, we propose efficient lithium electrodeposition processes and baths that can be operated at low temperatures and relatively low costs. We utilized organic solvents such as dimethyl acetamide (DMA), dimethylforamide (DMF), and dimethyl sulfoxide (DMSO), as well as a mixture of DMSO and ionic liquid [1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide BMIMTFSI]. Lithium salts such as LiCl, Li2CO3, and LiNO3 were tested. Lithium metal was deposited on copper substrates at different temperatures and selected current densities within an argon-filled glovebox using a DC power source or a PARSTAT-4000A potentiostat. Cyclic voltammetry (CV) was employed to determine and compare the deposition processes. The obtained deposits were analyzed through visual inspection (photography) and scanning electron microscopy (SEM). Chemical analysis (ICP-OES) and XRD confirmed the presence of lithium and occasionally lithium hydroxide in the deposits. The best results were achieved with the deposition of lithium from DMSO-LiNO3 and DMSO-BMIMTFSI-LiNO3 systems. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Figure 1

11 pages, 1671 KiB  
Article
The Preparation of Stable MoS2 Dispersions by Using Well-Defined Polymers with Pendant Sulfide Moieties
by Jin Motoyanagi, Kohei Kawade and Masahiko Minoda
Chemistry 2025, 7(3), 84; https://doi.org/10.3390/chemistry7030084 - 23 May 2025
Viewed by 578
Abstract
The preparation of stable dispersions of MoS2 by ultrasonic aqueous and/or organic media containing amphiphilic molecules is an attractive and widely applicable method to form MoS2 fine particles while suppressing its aggregation. In this study, we developed a series of polymers [...] Read more.
The preparation of stable dispersions of MoS2 by ultrasonic aqueous and/or organic media containing amphiphilic molecules is an attractive and widely applicable method to form MoS2 fine particles while suppressing its aggregation. In this study, we developed a series of polymers with pendant sulfide moieties as a new dispersant, under the hypothesis that it would interact with sulfur atoms on MoS2 surfaces. First, we designed a sulfide group-substituted methacrylate derivative (ESMA) with the hypothesis that it would interact with the MoS2 surface through sulfur-sulfur interactions. Then, we synthesized well-defined polymers with pendant sulfide groups by living radical polymerization (ATRP). Next, 0.5 wt% MoS2 was added to a DMSO solution containing 1 wt% of the obtained polymer (polyESMA), and the mixture was treated with a bath-type ultrasonicator for 3 h to obtain a MoS2 dispersion. We found that stable dispersions of MoS2 in a fine particle state, although not in the form of single-layer or few-layer nanosheets, could be readily formed in DMSO using polyESMA as a polymeric dispersant. Furthermore, we synthesized polymeric dispersants with different molecular weights and investigated the relationship between the structure of the dispersant and the dispersion stability. Full article
(This article belongs to the Section Chemistry of Materials)
Show Figures

Figure 1

20 pages, 1867 KiB  
Article
Indomethacin Abolishes the Potentiation Effect of Testosterone on the Relaxation Induced by Salbutamol and Theophylline by Directly Blocking the K+ Channels in Airway Smooth Muscle
by Jorge Reyes-García, Abril Carbajal-García, Verónica Díaz-Hernández, María F. Casas-Hernández and Luis M. Montaño
Molecules 2025, 30(11), 2259; https://doi.org/10.3390/molecules30112259 - 22 May 2025
Viewed by 535
Abstract
Indomethacin, ibuprofen, and acetylsalicylic acid (ASA) are non-steroidal anti-inflammatory drugs (NSAIDs) that inhibit prostaglandin (PG) synthesis. Previous studies in airway smooth muscle demonstrated that chronic exposure to testosterone (TES, 40 nM) enhances the relaxation induced by salbutamol and theophylline due to K+ [...] Read more.
Indomethacin, ibuprofen, and acetylsalicylic acid (ASA) are non-steroidal anti-inflammatory drugs (NSAIDs) that inhibit prostaglandin (PG) synthesis. Previous studies in airway smooth muscle demonstrated that chronic exposure to testosterone (TES, 40 nM) enhances the relaxation induced by salbutamol and theophylline due to K+ channel increment, without modifying cyclooxygenase expression. This study examines how indomethacin, ibuprofen, and ASA affect K+ currents and the relaxation response to these bronchodilators. In organ baths, tracheas from young male guinea pigs chronically (48 h) treated with 40 nM TES showed increased relaxation to salbutamol and theophylline, which was completely abolished by indomethacin. Patch-clamp recordings revealed that TES increased salbutamol- and theophylline-induced K+ currents, and only indomethacin fully inhibited this potentiation; ibuprofen and ASA had partial effects. The involved currents included voltage-dependent K+ (KV) and high-conductance Ca2+-activated K+ (BKCa) channels. Our results demonstrate that indomethacin exerts a dual action, inhibiting K+ channel activity and PG synthesis, unlike ibuprofen and ASA. This dual mechanism explains its stronger inhibitory effect on TES-enhanced ASM relaxation. These findings suggest that indomethacin may counteract the protective effects of TES, which promotes anti-inflammatory and smooth muscle-relaxing states. Therefore, it is advisable to exercise caution when prescribing indomethacin to young males with asthma, as the protective role of TES may diminish, potentially resulting in an exacerbation of asthma symptoms. Full article
Show Figures

Figure 1

23 pages, 2651 KiB  
Article
Thermo-Catalytic Persulfate Activation in Tubular Microreactors for Advanced Oxidation of Safranin O: Insights into Process Benefits and Limitations
by Abderrahmane Talbi, Slimane Merouani, Aissa Dehane, Hana Bouchoucha, Ala Abdessemed and Mohamed S. O. Belahmadi
Processes 2025, 13(5), 1494; https://doi.org/10.3390/pr13051494 - 13 May 2025
Cited by 2 | Viewed by 481
Abstract
This study examines the use of a1 mm-diameter tubular microreactor submerged in a temperature-controlled water bath to activate potassium persulfate (KPS) via thermal, Fe2+-catalyzed, and combined thermo-catalytic processes for degrading the persistent textile dye Safranin O (SO). The efficiency of these [...] Read more.
This study examines the use of a1 mm-diameter tubular microreactor submerged in a temperature-controlled water bath to activate potassium persulfate (KPS) via thermal, Fe2+-catalyzed, and combined thermo-catalytic processes for degrading the persistent textile dye Safranin O (SO). The efficiency of these methods was evaluated under varying conditions, including KPS, dye, and Fe2⁺ flow rates, solution pH, reactor length, and water matrix quality (deionized water, tap water, seawater, and secondary effluent from a wastewater treatment plant (SEWWTP)) across bath temperatures of 30–80 °C. Total organic carbon (TOC) analysis validated the results. Maximum dye conversion (up to 89%) occurred at 70 °C, with no improvement beyond this temperature, mainly due to radical-radical recombination. Longer reactors (2–6 m) enhanced conversion, though this effect diminished at higher temperatures due to efficient thermal activation. Increasing dye flow rates reduced removal efficiency, particularly above 50 °C, highlighting kinetic and mass transfer limitations. Persulfate flow rate increases improved conversion, but a plateau emerged at 80 °C. At lower temperatures (30–40 °C), Fe2+ addition significantly boosted SO conversion in deionized water. Between 40 and 50 °C, conversion rose from 30.27% (0 mM Fe2+) to 85.91% (0.2 mM Fe2+) at 50 °C. At higher temperatures (60–80 °C), conversion peaked at 70 °C for lower Fe2+ concentrations (100% for 0.01–0.05 mM Fe2+), but higher Fe2+ levels (0.1–0.2 mM) caused a decline above 60 °C, dropping to 68.44% for 0.2 mM Fe2+ at 80 °C. Deionized, tap, and mineral water showed similar performance, while river water, secondary effluent, and seawater inhibited SO conversion at lower temperatures (30–60 °C). At 70–80 °C, all matrices achieved efficiencies comparable to deionized water for both thermal and thermo-catalytic activation. The thermo-catalytic system achieved >50% TOC reduction, indicating significant organic matter mineralization. The results were comprehensively analyzed in relation to thermal and kinetic factors influencing the performance of continuous-flow reactors. Full article
(This article belongs to the Special Issue Treatment and Remediation of Organic and Inorganic Pollutants)
Show Figures

Figure 1

28 pages, 710 KiB  
Review
Greywater Reuse: Contaminant Profile, Health Implications, and Sustainable Solutions
by Phumudzo Budeli and Linda Lunga Sibali
Int. J. Environ. Res. Public Health 2025, 22(5), 740; https://doi.org/10.3390/ijerph22050740 - 7 May 2025
Viewed by 1337
Abstract
Global water scarcity is becoming an increasingly critical issue; greywater reuse presents a promising solution to alleviate pressure on freshwater resources, particularly in arid and water-scarce regions. Greywater typically sourced from household activities such as laundry, bathing, and dishwashing, constitutes a significant portion [...] Read more.
Global water scarcity is becoming an increasingly critical issue; greywater reuse presents a promising solution to alleviate pressure on freshwater resources, particularly in arid and water-scarce regions. Greywater typically sourced from household activities such as laundry, bathing, and dishwashing, constitutes a significant portion of domestic wastewater. However, the reuse of greywater raises concerns about the potential risks posed by its complex composition. Despite the growing body of literature on greywater reuse, most studies only focus on specific contaminants, thus there is a limited understanding of the comprehensive profile of contaminants, health, and environmental effects associated with these pollutants. This review adds new knowledge through a holistic exploration of the composition and physico-chemical characteristics of greywater, with a focus on its organic and inorganic pollutants, heavy metals, EDCs, emerging microplastics, nanoparticles, and microbial agents such as bacteria, fungi, viruses, and protozoa. This review sheds light on the current state of knowledge regarding greywater pollutants and their associated risks while highlighting the importance of safe reuse. Additionally, this review highlights the removal of contaminants from greywater and the sustainable use of grey water for addressing water scarcity in affected regions. Full article
Show Figures

Figure 1

16 pages, 1571 KiB  
Article
Benzyl Benzoate Isolation from Acridocarpus smeathmannii (DC.) Guill. & Perr Roots and Its Bioactivity on Human Prostate Smooth Muscle Contractions
by Oluwafemi Ezekiel Kale, Iskander Rauanov, Claudia Huber, Alexander Tamalunas, Christian G. Stief, Wolfgang Eisenreich and Martin Hennenberg
Pharmaceuticals 2025, 18(5), 687; https://doi.org/10.3390/ph18050687 - 6 May 2025
Cited by 1 | Viewed by 580
Abstract
Background/Objectives: This study is the first report on isolating a natural benzyl benzoate (nBB) from Acridocarpus smeathmannii (DC.) Guill. & Perr roots. Methods: The structure was verified using GC-MS, HPLC-UV-VIS, and two-dimensional NMR. Since it is known for its vasodilatory and anti-spasmolytic [...] Read more.
Background/Objectives: This study is the first report on isolating a natural benzyl benzoate (nBB) from Acridocarpus smeathmannii (DC.) Guill. & Perr roots. Methods: The structure was verified using GC-MS, HPLC-UV-VIS, and two-dimensional NMR. Since it is known for its vasodilatory and anti-spasmolytic actions, we investigated the biological effects of nBB on human prostate smooth tissue (rPx) obtained from a radical prostatectomy. For this purpose, rPx was incubated with nBB (0.05, 0.25, or 0.5 µM) in an organ bath, and then cumulative concentration–response curves were constructed for adrenergic agonists and electrical field stimulation (EFS). Results: Adding the various concentrations, nBB showed potential inhibition during agonist-induced contractions (0.1–100 µM). Also, neurogenic contractions of rPx by EFS (2–32 Hz) were reduced by up to 57%. Conclusions: Overall, this study reports on an efficient protocol of nBB isolation from A. smeathmannii and its contractility effects on human prostate smooth muscle. Potentially, this could contribute to the natural production of BB from A. smeathmannii species while giving it evolutionary recognition. However, since BB influences prostate smooth muscle contractility, caution in patients taking herbal supplements containing nBB is essential, as this may play a role in contributing to the symptoms of urinary tract conditions. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

13 pages, 12303 KiB  
Article
Electrodeposition of Alloy Nanostructures (Co-Ni) in the Presence of Sodium Benzene Sulfonate (SBS) and Their Application in Alkaline Hydrogen Evolution
by Aleksandra J. Domańska and Piotr M. Skitał
Molecules 2025, 30(8), 1771; https://doi.org/10.3390/molecules30081771 - 15 Apr 2025
Viewed by 517
Abstract
The galvanostatic electrodeposition of cobalt–nickel alloy coatings performed out on a 304 stainless steel substrate. The electrolyte baths contained metals salts, along with boric acid and sodium benzene sulfonate (SBS) as an organic additive in the deposition process. Structural and topographic analyses were [...] Read more.
The galvanostatic electrodeposition of cobalt–nickel alloy coatings performed out on a 304 stainless steel substrate. The electrolyte baths contained metals salts, along with boric acid and sodium benzene sulfonate (SBS) as an organic additive in the deposition process. Structural and topographic analyses were performed using SEM-EDS and AFM techniques, respectively. The findings confirm the formation of nanostructured coatings. The images depicting various stages of coating formation indicated the inhibitory role of the organic additive. The presence of SBS enabled the formation of a coating composed of grains with diverse geometries and significantly reduced surface roughness. Hydrogen evolution was conducted in an alkaline environment (1 M NaOH). Overpotentials for the different structures were recorded at 10 mA/cm2, yielding 196 mV and 225 mV for the coatings deposited with and without SBS, respectively. Additionally, experiments were performed in a laboratory-designed electrolyzer, which allowed for the measurement of gas volumes (H2 and O2) generated under constant voltage and current conditions. The results demonstrated that the obtained coatings perform more effectively as hydrogen evolution cathodes than currently used materials, particularly under higher current densities. Electrolysis was conducted for 8 h, revealing improved stability of the coating deposited in the presence of SBS. Full article
(This article belongs to the Special Issue Advances in Water Electrolysis Technology)
Show Figures

Figure 1

21 pages, 8811 KiB  
Article
Empagliflozin Plays Vasoprotective Role in Spontaneously Hypertensive Rats via Activation of the SIRT1/AMPK Pathway
by Monika Kloza, Anna Krzyżewska, Hanna Kozłowska, Sandra Budziak and Marta Baranowska-Kuczko
Cells 2025, 14(7), 507; https://doi.org/10.3390/cells14070507 - 29 Mar 2025
Viewed by 753
Abstract
Empagliflozin (EMPA), a sodium-glucose co-transporter 2 (SGLT2) inhibitor, prevents endothelial dysfunction, but its effects on vascular tone in hypertension remain unclear. This study investigated whether EMPA modulates vasomotor tone via sirtuin 1 (SIRT1) and AMP-activated protein kinase (AMPK) pathways in spontaneously hypertensive rats [...] Read more.
Empagliflozin (EMPA), a sodium-glucose co-transporter 2 (SGLT2) inhibitor, prevents endothelial dysfunction, but its effects on vascular tone in hypertension remain unclear. This study investigated whether EMPA modulates vasomotor tone via sirtuin 1 (SIRT1) and AMP-activated protein kinase (AMPK) pathways in spontaneously hypertensive rats (SHR) and controls (Wistar Kyoto rats, WKY). Functional (wire myography, organ bath) and biochemical (Western blot) studies were conducted on the third-order of the superior mesenteric arteries (sMAs) and/or aortas. EMPA induced concentration-dependent relaxation of preconstricted sMAs in both groups. In SHR, EMPA enhanced acetylcholine (Ach)-induced relaxation in sMAs and aortas and reduced constriction induced by phenylephrine (Phe) and U46619 in sMAs. The SIRT1 inhibitor (EX527) abolished EMPA’s effects on Ach-mediated relaxation and U46619-induced vasoconstriction, while AMPK inhibition reduced Ach-mediated relaxation and Phe-induced vasoconstriction. SHR showed increased SGLT2 and SIRT1 expression and decreased pAMPK/AMPK levels in sMAs. In conclusion, EMPA might exert vasoprotective effects in hypertension by enhancing endothelium-dependent relaxation and reducing constriction via AMPK/SIRT1 pathways. These properties could improve vascular health in patients with hypertension and related conditions. Further studies are needed to explore new indications for SGLT2 inhibitors. Full article
Show Figures

Graphical abstract

12 pages, 3278 KiB  
Article
Diabetes Differentially Affects Vascular Reactivity in Isolated Human Arterial and Venous Bypass Grafts
by Aylin Vidin Şen, Birsel Sönmez Uydeş Doğan, Uğur Kısa, Cevdet Uğur Koçoğulları, Önder Teskin and Fatoş İlkay Alp Yıldırım
Life 2025, 15(3), 454; https://doi.org/10.3390/life15030454 - 13 Mar 2025
Viewed by 641
Abstract
Arterial and venous graft spasm can occur during harvesting or immediately after coronary artery bypass grafting (CABG), leading to increased perioperative morbidity and affecting graft patency rates. Bypass grafts harvested from diabetic patients are particularly prone to spasm. This study aimed to elucidate [...] Read more.
Arterial and venous graft spasm can occur during harvesting or immediately after coronary artery bypass grafting (CABG), leading to increased perioperative morbidity and affecting graft patency rates. Bypass grafts harvested from diabetic patients are particularly prone to spasm. This study aimed to elucidate the functional characteristics of human bypass grafts for the internal mammary artery (IMA) and saphenous vein (SV), from both diabetic and non-diabetic patients, and to determine how diabetes affected their responses to spasmogenic and relaxant agents. SV and IMA graft rings isolated from diabetic and non-diabetic patients during CABG were placed in an isolated organ bath system. Contractions to potassium chloride (10–100 mM) and phenylephrine (10−8–10−4 M) were evaluated, and relaxation responses to acetylcholine (10−9–10−4 M) and sodium nitroprusside (10−8–10−4 M) were assessed to evaluate endothelial and smooth muscle function, respectively. We observed increased responses to phenylephrine, an alpha-1 adrenoceptor agonist, in both IMAs and SVs, as well as an increased responses to potassium chloride, a non-receptor agonist, in SVs in diabetic patients compared to non-diabetic patients. We did not observe any deterioration in endothelium-dependent relaxations in either SV or IMA grafts under diabetic conditions. This study is the first to demonstrate that diabetes exacerbates potassium chloride-induced contractions in human SV grafts. Understanding the differences in potassium chloride-induced contraction profiles between arterial and venous grafts is essential in optimizing graft spasm management and improving the patency rates of bypass grafts. Full article
Show Figures

Figure 1

32 pages, 5767 KiB  
Article
Green Synthesis of Silver Nanoparticles Using Paullinia cupana Kunth Leaf Extract Collected in Different Seasons: Biological Studies and Catalytic Properties
by Alan Kelbis Oliveira Lima, Ítalo Rennan Sousa Vieira, Lucas Marcelino dos Santos Souza, Isadora Florêncio, Ingrid Gracielle Martins da Silva, Alberto Gomes Tavares Junior, Yasmin Alves Aires Machado, Lucas Carvalho dos Santos, Paulo Sérgio Taube, Gerson Nakazato, Laila Salmen Espindola, Lorena Carneiro Albernaz, Klinger Antônio da França Rodrigues, Marlus Chorilli, Hugo de Campos Braga, Dayane Batista Tada, Sônia Nair Báo, Luís Alexandre Muehlmann and Mônica Pereira Garcia
Pharmaceutics 2025, 17(3), 356; https://doi.org/10.3390/pharmaceutics17030356 - 10 Mar 2025
Cited by 4 | Viewed by 1550
Abstract
Background: Paullinia cupana Kunth, popularly known as guarana, a native Amazonian shrub cultivated by the Sateré-Mawé ethnic group, has been used in traditional medicine for various purposes, including stimulant and therapeutic actions, due to its chemical composition, which is rich in bioactive [...] Read more.
Background: Paullinia cupana Kunth, popularly known as guarana, a native Amazonian shrub cultivated by the Sateré-Mawé ethnic group, has been used in traditional medicine for various purposes, including stimulant and therapeutic actions, due to its chemical composition, which is rich in bioactive compounds. This study explored the reductive potential of guarana with nanobiotechnology and aimed to synthesize silver nanoparticles (AgNPs) using the aqueous extract of leaves collected during the dry and rainy seasons, assessing their biological and catalytic activities. Methods: The AgNPs were synthesized in a water bath at 70 °C for three hours and then characterized using techniques such as UV-Vis spectroscopy, DLS, zeta potential, MET, NTA, and EDX and had their effects on various biological systems assessed in vitro, as well as in catalytic tests aimed at indicating the probable influence of the time when the plant material was collected on the properties of the nanostructures. Results: The AgNPs had an average diameter between 39.33 and 126.2 nm, spherical morphology, absorption bands between 410 and 450 nm, and high colloidal stability over two years. The biological results showed antibacterial activity against all the species tested, as well as remarkable antioxidant action against DPPH and ABTS free radicals, in the same way as the aqueous leaf extracts of P. cupana, in addition to cytotoxic properties against cancerous (A431 and A549) and non-cancerous (HaCaT and HNTMC) cells. The AgNPs were active against promastigote forms of Leishmania (Leishmania) amazonensis while not affecting the viability of macrophages, and from the LC50 and LC90 values, the AgNPs were more effective than the metal salt solution in controlling Aedes aegypti larvae and pupae. We also reported that the catalytic degradation of the organic dyes methylene blue (MB) and methyl orange (MO) by AgNPs was over 90% after 40 or 14 min, respectively. Conclusions: Thus, our results support the potential of seasonal extracts of guarana leaves to produce AgNPs with diverse application possibilities for the health, industrial, and environmental sectors. Full article
Show Figures

Graphical abstract

10 pages, 3294 KiB  
Communication
First Appraisal of Effective Microplastics Removal from the Textile Manufacturing Processes
by Estefanía Bonnail, Sebastián Vera, Julián Blasco and T. Ángel DelValls
Appl. Sci. 2025, 15(5), 2630; https://doi.org/10.3390/app15052630 - 28 Feb 2025
Viewed by 831
Abstract
The textile industry consumes large volumes of freshwater, producing enormous wastewater containing chemicals from dyeing and bathing, but also microplastics concentrations that have not been deeply studied. Liquid wastes from the synthetic and natural textile manufacturers were treated with a new disruptive technology [...] Read more.
The textile industry consumes large volumes of freshwater, producing enormous wastewater containing chemicals from dyeing and bathing, but also microplastics concentrations that have not been deeply studied. Liquid wastes from the synthetic and natural textile manufacturers were treated with a new disruptive technology (Adiabatic Sonic Evaporation and Crystallization, ASEC), which completely removed contaminants from water, providing distilled water and crystallized solids. The current study presents the characterization of the industrial residues and the obtained by-products: microplastics and organic matter contained in the solid residue were analyzed and characterized through chromatography. The results of the analyses displayed that compounds such as benzene, benzoic acid and 2,4-dymethyl-1-heptene were found in the synthetic industry water samples as degraded compounds of polyester and polypropylene. Meanwhile, the natural industry water also contained polyester, nylon and PMM polymer. After the depuration of samples, microplastics were completely retained in the solid phase, together with the organic matter (sulfate and surfactants) resulting on clean water. This is the first study focused on the study of microplastics generated by the textile industry and their prevention by removing them as solid waste. Full article
Show Figures

Figure 1

16 pages, 4752 KiB  
Article
Elaboration and Characterization of n-Type Organic Semiconductor (Fullerene C60) Deposed by Ultrasonic Technique for Sustainable OTFT Fabrication
by Nora Amele Abdeslam, Aya Latif, Zahia Tigrine, Nadia Lehraki, Lobna Messeddek and Seif El Islam Lebouachera
Appl. Sci. 2025, 15(5), 2402; https://doi.org/10.3390/app15052402 - 24 Feb 2025
Viewed by 1003
Abstract
This study focuses on the deposition of fullerene (C60) as thin film on glass substrate by ultrasonic chemical bath deposition (UCBD) processing, under ambient temperature. Highly effective results were obtained from the films based on the solution of C60 dissolved [...] Read more.
This study focuses on the deposition of fullerene (C60) as thin film on glass substrate by ultrasonic chemical bath deposition (UCBD) processing, under ambient temperature. Highly effective results were obtained from the films based on the solution of C60 dissolved in toluene mixed with 2-methoxyethanol. The obtained films were characterized by X-ray diffraction (XRD), infrared spectroscopy (IR), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS). The XRD examination of the thin films reveals the presence of the C60 cubic phase compared to the powder reference. The molecular structure obtained by Rietveld refinement shows no bonding between the molecules in C60 powder, while in the deposed thin film the bonding is established. The molecules are bonded between them by pentagons of the right and left molecule. Each four neighbor molecules bond between them and they are all able to geometrically tie to the neighboring molecules under a crystalline FCC structure. The Sherrer and W-H methods were used to investigate microstructural parameters. The lattice parameter and the crystallite size show the same variation tendency. The average lattice parameter for the powder and the deposed films C60-3h, C60-5h, and C60-8h is 14.0652, 14.1901, 14.0529, and 14.1848 Å, respectively, and the crystallite size calculated by the Sherrer method is 37.51, 38.98, 34.35, and 41.54 nm, respectively, as well. The IR spectrum indicated the presence of chemical π bonds (c=c) that are very suitable for enhancing the electronic properties of the material, and SEM analysis illustrated a dense, homogeneous without pinhole structures in the film morphology. Moreover, EDS emphasizes the presence of high carbon concentration and fewer stranger atoms. As a result, despite the UCBD technique being old and not very often applied in the field of organic materials, it is still a cost effective and good alternative method for organic thin film deposition. Full article
Show Figures

Figure 1

8 pages, 868 KiB  
Brief Report
Environmental Stability of the Simulated Forest Immersion Therapy (SFIT) Intervention
by Amy Miner Ross, Reo J. F. Jones, Kylee Deterding and Ella Rasmussen
Forests 2025, 16(3), 399; https://doi.org/10.3390/f16030399 - 23 Feb 2025
Viewed by 651
Abstract
Background: Shinrin-yoku, forest bathing, has been shown to improve the pain experience in arthritis patients and the immune system in normal healthy patients. Yet, a simulated forest immersion therapy (SFIT) experience has not been tested in these two populations and specifically not in [...] Read more.
Background: Shinrin-yoku, forest bathing, has been shown to improve the pain experience in arthritis patients and the immune system in normal healthy patients. Yet, a simulated forest immersion therapy (SFIT) experience has not been tested in these two populations and specifically not in cancer patients. If SFIT complementary therapy in these two populations progresses, the intervention environment as designed needs to be tested. The purpose of this paper is to describe the SFIT setting and test the stability of the interventional environment. Methods: To operationalize SFIT, a protocol of dose delivery was designed and measured. Ambient and surface room temperatures, relative humidity, ambient ultrafine particulate matter, and volatile organic compounds, specifically terpenes, were measured prior to terpene dose delivery, every 15 min for 1 h, ending with the conclusion of terpene delivery. Results: There were nearly imperceptible differences within session means for ambient and surface room temperatures, relative humidity, ambient ultrafine particulate matter, and volatile organic compounds showing no practical significance. Room temperature and surface temperature were moderately correlated, as expected. Conclusions: The intervention room environment for the diffusion of terpenes remained stable throughout two studies. The next steps proposal to employ SFIT in the home setting is warranted, with precautions. Full article
Show Figures

Figure 1

24 pages, 3541 KiB  
Review
Electrochemical Corrosion Properties and Protective Performance of Coatings Electrodeposited from Deep Eutectic Solvent-Based Electrolytes: A Review
by Vyacheslav S. Protsenko
Materials 2025, 18(3), 558; https://doi.org/10.3390/ma18030558 - 26 Jan 2025
Viewed by 1245
Abstract
The application of deep eutectic solvents (DESs) as an innovative class of environmentally friendly liquid media represents a significant advancement in materials science, especially for the development and enhancement of structural materials. Among the promising applications, DESs are particularly attractive for the electrodeposition [...] Read more.
The application of deep eutectic solvents (DESs) as an innovative class of environmentally friendly liquid media represents a significant advancement in materials science, especially for the development and enhancement of structural materials. Among the promising applications, DESs are particularly attractive for the electrodeposition of corrosion-resistant coatings. It is established that corrosion-resistant and protective coatings, including those based on metals, alloys, and composite materials, can be synthesized using both traditional aqueous electrolytes and non-aqueous systems, such as organic solvents and ionic liquids. The integration of DESs in electroplating introduces a unique capacity for precise control over microstructure, chemical composition, and morphology, thereby improving the electrochemical corrosion resistance and protective performance of coatings. This review focuses on the electrodeposition of corrosion-resistant and protective coatings from DES-based electrolytes, emphasizing their environmental, technological, and economic benefits relative to traditional aqueous and organic solvent systems. Detailed descriptions are provided for the electrodeposition processes of coatings based on zinc, nickel, and chromium from DES-based baths. The corrosion–electrochemical behavior and protective characteristics of the resulting coatings are thoroughly analyzed, highlighting the potential and future directions for developing anti-corrosion and protective coatings using DES-assisted electroplating techniques. Full article
Show Figures

Graphical abstract

Back to TopTop