Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (59)

Search Parameters:
Keywords = optofluidic chip

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 6501 KiB  
Review
Integrated Photonic Biosensors: Enabling Next-Generation Lab-on-a-Chip Platforms
by Muhammad A. Butt, B. Imran Akca and Xavier Mateos
Nanomaterials 2025, 15(10), 731; https://doi.org/10.3390/nano15100731 - 13 May 2025
Cited by 2 | Viewed by 1919
Abstract
Integrated photonic biosensors are revolutionizing lab-on-a-chip technologies by providing highly sensitive, miniaturized, and label-free detection solutions for a wide range of biological and chemical targets. This review explores the foundational principles behind their operation, including the use of resonant photonic structures such as [...] Read more.
Integrated photonic biosensors are revolutionizing lab-on-a-chip technologies by providing highly sensitive, miniaturized, and label-free detection solutions for a wide range of biological and chemical targets. This review explores the foundational principles behind their operation, including the use of resonant photonic structures such as microring and whispering gallery mode resonators, as well as interferometric and photonic crystal-based designs. Special focus is given to the design strategies that optimize light–matter interaction, enhance sensitivity, and enable multiplexed detection. We detail state-of-the-art fabrication approaches compatible with complementary metal-oxide-semiconductor processes, including the use of silicon, silicon nitride, and hybrid material platforms, which facilitate scalable production and seamless integration with microfluidic systems. Recent advancements are highlighted, including the implementation of optofluidic photonic crystal cavities, cascaded microring arrays with subwavelength gratings, and on-chip detector arrays capable of parallel biosensing. These innovations have achieved exceptional performance, with detection limits reaching the parts-per-billion level and real-time operation across various applications such as clinical diagnostics, environmental surveillance, and food quality assessment. Although challenges persist in handling complex biological samples and achieving consistent large-scale fabrication, the emergence of novel materials, advanced nanofabrication methods, and artificial intelligence-driven data analysis is accelerating the development of next-generation photonic biosensing platforms. These technologies are poised to deliver powerful, accessible, and cost-effective diagnostic tools for practical deployment across diverse settings. Full article
Show Figures

Figure 1

9 pages, 3341 KiB  
Article
Quantum Dot Waveguide Array for Broadband Light Sources
by Dongyang Li, Yufei Chu, Qingbo Xu, Dong Liu, Junying Ruan, Hao Sun, Jianwei Li, Chengde Guo, Xiaoyun Pu and Yuanxian Zhang
Photonics 2025, 12(3), 212; https://doi.org/10.3390/photonics12030212 - 28 Feb 2025
Viewed by 548
Abstract
In this paper, we demonstrate a broadband and simultaneous waveguide array light source based on water-soluble CdSe/ZnS quantum dots (QDs). We initially measure the fluorescence intensity for various cladding solution concentrations along the fiber axis to assess their impact on the propagation loss; [...] Read more.
In this paper, we demonstrate a broadband and simultaneous waveguide array light source based on water-soluble CdSe/ZnS quantum dots (QDs). We initially measure the fluorescence intensity for various cladding solution concentrations along the fiber axis to assess their impact on the propagation loss; the experimental results show that the fluorescent intensity decreases with fiber length, with higher concentrations showing a more pronounced decrease. Then, we showcase a synchronous QD light source in an optofluidic chip that fluoresces in red, green, and blue (RGB) within a microfluidic channel. Finally, a 3 × 3 QD array of a fluorescent display on a single PDMS chip is demonstrated. The QD waveguide represents a compact and stable structure that is readily manufacturable, making it an ideal light source for advancing high-throughput biochemical sensing and on-chip spectroscopic analysis. Full article
(This article belongs to the Special Issue Optical Sensing Technologies, Devices and Their Data Applications)
Show Figures

Figure 1

11 pages, 1876 KiB  
Article
Blood Biomarker Detection Using Integrated Microfluidics with Optical Label-Free Biosensor
by Chiung-Hsi Li, Chen-Yuan Chang, Yan-Ru Chen and Cheng-Sheng Huang
Sensors 2024, 24(20), 6756; https://doi.org/10.3390/s24206756 - 21 Oct 2024
Cited by 1 | Viewed by 2249
Abstract
In this study, we developed an optofluidic chip consisting of a guided-mode resonance (GMR) sensor incorporated into a microfluidic chip to achieve simultaneous blood plasma separation and label-free albumin detection. A sedimentation chamber is integrated into the microfluidic chip to achieve plasma separation [...] Read more.
In this study, we developed an optofluidic chip consisting of a guided-mode resonance (GMR) sensor incorporated into a microfluidic chip to achieve simultaneous blood plasma separation and label-free albumin detection. A sedimentation chamber is integrated into the microfluidic chip to achieve plasma separation through differences in density. After a blood sample is loaded into the optofluidic chip in two stages with controlled flow rates, the blood cells are kept in the sedimentation chamber, enabling only the plasma to reach the GMR sensor for albumin detection. This GMR sensor, fabricated using plastic replica molding, achieved a bulk sensitivity of 175.66 nm/RIU. With surface-bound antibodies, the GMR sensor exhibited a limit of detection of 0.16 μg/mL for recombinant albumin in buffer solution. Overall, our findings demonstrate the potential of our integrated chip for use in clinical samples for biomarker detection in point-of-care applications. Full article
Show Figures

Graphical abstract

7 pages, 931 KiB  
Communication
Development of Lasing Silica Microsphere for High-Speed DNA Molecular Detection
by Chan Seok Jun and Wonsuk Lee
Sensors 2024, 24(18), 6088; https://doi.org/10.3390/s24186088 - 20 Sep 2024
Viewed by 924
Abstract
Laser and molecular detection techniques that have been used to overcome the limitations of fluorescent DNA labeling have presented new challenges. To address some of these challenges, we developed a DNA laser that uses a solid-state silica microsphere as a ring resonator and [...] Read more.
Laser and molecular detection techniques that have been used to overcome the limitations of fluorescent DNA labeling have presented new challenges. To address some of these challenges, we developed a DNA laser that uses a solid-state silica microsphere as a ring resonator and a site for DNA-binding reactions, as well as a platform to detect and sequence target DNA molecules. We detected target DNA using laser emission from a DNA-labeling dye and a developed solid-state silica microsphere ring resonator. The microsphere was sensitive; a single base mismatch in the DNA resulted in the absence of an optical signal. As each individual microsphere can be utilized as a parallel DNA analysis chamber, this optical digital detection scheme allows for high-throughput and rapid analysis. More importantly, the solid-state DNA laser is free from deformation, which guarantees stable lasing characteristics, and can be manipulated freely outside the solution. Thus, this promising advanced DNA laser scheme can be implemented on platforms other than optofluidic chips. Full article
(This article belongs to the Special Issue Biomedical Sensors Based on Microfluidics)
Show Figures

Figure 1

15 pages, 4804 KiB  
Article
Label-Free Continuous Cell Sorting Using Optofluidic Chip
by Yingjie Zhang, Tao Zhang, Xinchun Zhang, Jingmeng Cheng and Sixiang Zhang
Micromachines 2024, 15(7), 818; https://doi.org/10.3390/mi15070818 - 25 Jun 2024
Cited by 1 | Viewed by 1626
Abstract
In the field of biomedicine, efficiently and non-invasively isolating target cells has always been one of the core challenges. Optical fiber tweezers offer precise and non-invasive manipulation of cells within a medium and can be easily integrated with microfluidic systems. Therefore, this paper [...] Read more.
In the field of biomedicine, efficiently and non-invasively isolating target cells has always been one of the core challenges. Optical fiber tweezers offer precise and non-invasive manipulation of cells within a medium and can be easily integrated with microfluidic systems. Therefore, this paper investigated the mechanism of cell manipulation using scattering force with optical fiber tweezers. We employed flat-ended single-mode fiber to drive and sort cells and derived the corresponding scattering force formula based on the T-matrix model. A single-mode optical tweezers system for cell sorting was developed, and an optofluidic experimental platform was constructed that effectively integrates the optical system with microfluidic chips. The chip, featuring an expanded cross-channel design, successfully achieved continuous separation of yeast cells (8~10 µm in diameter) and polystyrene microspheres (15~20 µm in diameter), with a sorting efficiency of up to 86% and maintaining viability in approximately 90% of the yeast cells. Compared to other sorting systems, this system does not require labeling and can achieve continuous sorting with cell viability at a lower cost of instrumentation. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

12 pages, 2310 KiB  
Article
Handheld Biosensor System Based on a Gradient Grating Period Guided-Mode Resonance Device
by Chien Chieh Chiang, Wen-Chun Tseng, Wen-Tsung Tsai and Cheng-Sheng Huang
Biosensors 2024, 14(1), 21; https://doi.org/10.3390/bios14010021 - 30 Dec 2023
Cited by 3 | Viewed by 2280
Abstract
Handheld biosensors have attracted substantial attention for numerous applications, including disease diagnosis, drug dosage monitoring, and environmental sensing. This study presents a novel handheld biosensor based on a gradient grating period guided-mode resonance (GGP-GMR) sensor. Unlike conventional GMR sensors, the proposed sensor’s grating [...] Read more.
Handheld biosensors have attracted substantial attention for numerous applications, including disease diagnosis, drug dosage monitoring, and environmental sensing. This study presents a novel handheld biosensor based on a gradient grating period guided-mode resonance (GGP-GMR) sensor. Unlike conventional GMR sensors, the proposed sensor’s grating period varies along the device length; hence, the resonant wavelength varies linearly along the device length. If a GGP-GMR sensor is illuminated with a narrow band of light at normal incidence, the light resonates and reflects at a specific period but transmits at other periods; this can be observed as a dark band by using a complementary metal oxide semiconductor (CMOS) underneath the sensor. The concentration of a target analyte can be determined by monitoring the shift of this dark band. We designed and fabricated a handheld device incorporating a light-emitting diode (LED) light source, the necessary optics, an optofluidic chip with an embedded GGP-GMR sensor, and a CMOS. LEDs with different beam angles and bandpass filters with different full width at half maximum values were investigated to optimize the dark band quality and improve the accuracy of the subsequent image analysis. Substrate materials with different refractive indices and waveguide thicknesses were also investigated to maximize the GGP-GMR sensor’s figure of merit. Experiments were performed to validate the proposed handheld biosensor, which achieved a limit of detection (LOD) of 1.09 × 10−3 RIU for bulk solution measurement. The sensor’s performance in the multiplexed detection of albumin and creatinine solutions at concentrations of 0–500 μg/mL and 0–10 mg/mL, respectively, was investigated; the corresponding LODs were 0.66 and 0.61 μg/mL. Full article
(This article belongs to the Section Optical and Photonic Biosensors)
Show Figures

Figure 1

9 pages, 1972 KiB  
Article
Highly Accurate Pneumatically Tunable Optofluidic Distributed Feedback Dye Lasers
by Hongtao Feng, Jiaxin Zhang, Weiliang Shu, Xiaosong Bai, Liang Song and Yan Chen
Micromachines 2024, 15(1), 68; https://doi.org/10.3390/mi15010068 - 29 Dec 2023
Cited by 2 | Viewed by 1874
Abstract
Optofluidic dye lasers integrated into microfluidic chips are promising miniature coherent light sources for biosensing. However, achieving the accurate and efficient tuning of lasers remains challenging. This study introduces a novel pneumatically tunable optofluidic distributed feedback (DFB) dye laser in a multilayer microfluidic [...] Read more.
Optofluidic dye lasers integrated into microfluidic chips are promising miniature coherent light sources for biosensing. However, achieving the accurate and efficient tuning of lasers remains challenging. This study introduces a novel pneumatically tunable optofluidic distributed feedback (DFB) dye laser in a multilayer microfluidic chip. The dye laser device integrates microfluidic channels, grating structures, and vacuum chambers. A second-order DFB grating configuration is utilized to ensure single-mode lasing. The application of vacuum pressure to the chambers stretches the soft grating layer, enabling the sensitive tuning of the lasing wavelength at a high resolution of 0.25 nm within a 7.84 nm range. The precise control of pressure and laser tuning is achieved through an electronic regulator. Additionally, the integrated microfluidic channels and optimized waveguide structure facilitate efficient dye excitation, resulting in a low pump threshold of 164 nJ/pulse. This pneumatically tunable optofluidic DFB laser, with its high-resolution wavelength tuning range, offers new possibilities for the development of integrated portable devices for biosensing and spectroscopy. Full article
(This article belongs to the Collection Lab-on-a-Chip)
Show Figures

Figure 1

21 pages, 7654 KiB  
Article
A 3D-Printed Micro-Optofluidic Chamber for Fluid Characterization and Microparticle Velocity Detection
by Emanuela Cutuli, Dario Sanalitro, Giovanna Stella, Lorena Saitta and Maide Bucolo
Micromachines 2023, 14(11), 2115; https://doi.org/10.3390/mi14112115 - 18 Nov 2023
Cited by 8 | Viewed by 2293
Abstract
This work proposes a multi-objective polydimethylsiloxane (PDMS) micro-optofluidic (MoF) device suitably designed and manufactured through a 3D-printed-based master–slave approach. It exploits optical detection techniques to characterize immiscible fluids or microparticles in suspension inside a compartment specifically designed at the core of the device [...] Read more.
This work proposes a multi-objective polydimethylsiloxane (PDMS) micro-optofluidic (MoF) device suitably designed and manufactured through a 3D-printed-based master–slave approach. It exploits optical detection techniques to characterize immiscible fluids or microparticles in suspension inside a compartment specifically designed at the core of the device referred to as the MoF chamber. In addition, we show our novel, fast, and cost-effective methodology, dual-slit particle signal velocimetry (DPSV), for fluids and microparticle velocity detection. Different from the standard state-of-the-art approaches, the methodology focuses on signal processing rather than image processing. This alternative has several advantages, including the ability to circumvent the requirement of complex and extensive setups and cost reduction. Additionally, its rapid processing speed allows for real-time sample manipulations in ongoing image-based analyses. For our specific design, optical signals have been detected from the micro-optics components placed in two slots designed ad hoc in the device. To show the devices’ multipurpose capabilities, the device has been tested with fluids of various colors and densities and the inclusion of synthetic microparticles. Additionally, several experiments have been conducted to prove the effectiveness of the DPSV approach in estimating microparticle velocities. A digital particle image velocimetry (DPIV)-based approach has been used as a baseline against which the outcomes of our methods have been evaluated. The combination of the suitability of the micro-optical components for integration, along with the MoF chamber device and the DPSV approach, demonstrates a proof of concept towards the challenge of real-time total-on-chip analysis. Full article
(This article belongs to the Special Issue Micro/Nanostructures in Sensors and Actuators)
Show Figures

Figure 1

13 pages, 5425 KiB  
Article
Optofluidic Flow Cytometer with In-Plane Spherical Mirror for Signal Enhancement
by Filippo Zorzi, Silvio Bonfadini, Ludovico Aloisio, Matteo Moschetta, Filippo Storti, Francesco Simoni, Guglielmo Lanzani and Luigino Criante
Sensors 2023, 23(22), 9191; https://doi.org/10.3390/s23229191 - 15 Nov 2023
Cited by 7 | Viewed by 2266
Abstract
Statistical analysis of the properties of single microparticles, such as cells, bacteria or plastic slivers, has attracted increasing interest in recent years. In this regard, field flow cytometry is considered the gold standard technique, but commercially available instruments are bulky, expensive, and not [...] Read more.
Statistical analysis of the properties of single microparticles, such as cells, bacteria or plastic slivers, has attracted increasing interest in recent years. In this regard, field flow cytometry is considered the gold standard technique, but commercially available instruments are bulky, expensive, and not suitable for use in point-of-care (PoC) testing. Microfluidic flow cytometers, on the other hand, are small, cheap and can be used for on-site analyses. However, in order to detect small particles, they require complex geometries and the aid of external optical components. To overcome these limitations, here, we present an opto-fluidic flow cytometer with an integrated 3D in-plane spherical mirror for enhanced optical signal collection. As a result, the signal-to-noise ratio is increased by a factor of six, enabling the detection of particle sizes down to 1.5 µm. The proposed optofluidic detection scheme enables the simultaneous collection of particle fluorescence and scattering using a single optical fiber, which is crucial to easily distinguishing particle populations with different optical properties. The devices have been fully characterized using fluorescent polystyrene beads of different sizes. As a proof of concept for potential real-world applications, signals from fluorescent HEK cells and Escherichia coli bacteria were analyzed. Full article
(This article belongs to the Special Issue Optofluidic Sensors)
Show Figures

Figure 1

25 pages, 2839 KiB  
Review
Optofluidic Tweezers: Efficient and Versatile Micro/Nano-Manipulation Tools
by Yuchen Zhu, Minmin You, Yuzhi Shi, Haiyang Huang, Zeyong Wei, Tao He, Sha Xiong, Zhanshan Wang and Xinbin Cheng
Micromachines 2023, 14(7), 1326; https://doi.org/10.3390/mi14071326 - 28 Jun 2023
Cited by 22 | Viewed by 4598
Abstract
Optical tweezers (OTs) can transfer light momentum to particles, achieving the precise manipulation of particles through optical forces. Due to the properties of non-contact and precise control, OTs have provided a gateway for exploring the mysteries behind nonlinear optics, soft-condensed-matter physics, molecular biology, [...] Read more.
Optical tweezers (OTs) can transfer light momentum to particles, achieving the precise manipulation of particles through optical forces. Due to the properties of non-contact and precise control, OTs have provided a gateway for exploring the mysteries behind nonlinear optics, soft-condensed-matter physics, molecular biology, and analytical chemistry. In recent years, OTs have been combined with microfluidic chips to overcome their limitations in, for instance, speed and efficiency, creating a technology known as “optofluidic tweezers.” This paper describes static OTs briefly first. Next, we overview recent developments in optofluidic tweezers, summarizing advancements in capture, manipulation, sorting, and measurement based on different technologies. The focus is on various kinds of optofluidic tweezers, such as holographic optical tweezers, photonic-crystal optical tweezers, and waveguide optical tweezers. Moreover, there is a continuing trend of combining optofluidic tweezers with other techniques to achieve greater functionality, such as antigen–antibody interactions and Raman tweezers. We conclude by summarizing the main challenges and future directions in this research field. Full article
Show Figures

Graphical abstract

14 pages, 3890 KiB  
Article
Comparison of Illumination Methods for Flow-Through Optofluidic Biosensors
by Matthew Hamblin, Joel Wright, Holger Schmidt and Aaron R. Hawkins
Micromachines 2023, 14(4), 723; https://doi.org/10.3390/mi14040723 - 24 Mar 2023
Viewed by 1556
Abstract
Optofluidic biosensors have become an important medical diagnostic tool because they allow for rapid, high-sensitivity testing of small samples compared to standard lab testing. For these devices, the practicality of use in a medical setting depends heavily on both the sensitivity of the [...] Read more.
Optofluidic biosensors have become an important medical diagnostic tool because they allow for rapid, high-sensitivity testing of small samples compared to standard lab testing. For these devices, the practicality of use in a medical setting depends heavily on both the sensitivity of the device and the ease of alignment of passive chips to a light source. This paper uses a model previously validated by comparison to physical devices to compare alignment, power loss, and signal quality for windowed, laser line, and laser spot methods of top-down illumination. Full article
(This article belongs to the Special Issue Micro and Smart Devices and Systems, 2nd Edition)
Show Figures

Figure 1

13 pages, 1801 KiB  
Article
Design and Fabrication of a Fully-Integrated, Miniaturised Fluidic System for the Analysis of Enzyme Kinetics
by Andreas Tsiamis, Anthony Buchoux, Stephen T. Mahon, Anthony J. Walton, Stewart Smith, David J. Clarke and Adam A. Stokes
Micromachines 2023, 14(3), 537; https://doi.org/10.3390/mi14030537 - 25 Feb 2023
Cited by 4 | Viewed by 2743
Abstract
The lab-on-a-chip concept, enabled by microfluidic technology, promises the integration of multiple discrete laboratory techniques into a miniaturised system. Research into microfluidics has generally focused on the development of individual elements of the total system (often with relatively limited functionality), without full consideration [...] Read more.
The lab-on-a-chip concept, enabled by microfluidic technology, promises the integration of multiple discrete laboratory techniques into a miniaturised system. Research into microfluidics has generally focused on the development of individual elements of the total system (often with relatively limited functionality), without full consideration for integration into a complete fully optimised and miniaturised system. Typically, the operation of many of the reported lab-on-a-chip devices is dependent on the support of a laboratory framework. In this paper, a demonstrator platform for routine laboratory analysis is designed and built, which fully integrates a number of technologies into a single device with multiple domains such as fluidics, electronics, pneumatics, hydraulics, and photonics. This facilitates the delivery of breakthroughs in research, by incorporating all physical requirements into a single device. To highlight this proposed approach, this demonstrator microsystem acts as a fully integrated biochemical assay reaction system. The resulting design determines enzyme kinetics in an automated process and combines reservoirs, three-dimensional fluidic channels, optical sensing, and electronics in a low-cost, low-power and portable package. Full article
Show Figures

Figure 1

9 pages, 5386 KiB  
Article
Manufacture of Three-Dimensional Optofluidic Spot-Size Converters in Fused Silica Using Hybrid Laser Microfabrication
by Jianping Yu, Jian Xu, Aodong Zhang, Yunpeng Song, Jia Qi, Qiaonan Dong, Jianfang Chen, Zhaoxiang Liu, Wei Chen and Ya Cheng
Sensors 2022, 22(23), 9449; https://doi.org/10.3390/s22239449 - 2 Dec 2022
Cited by 12 | Viewed by 2764
Abstract
We propose a hybrid laser microfabrication approach for the manufacture of three-dimensional (3D) optofluidic spot-size converters in fused silica glass by a combination of femtosecond (fs) laser microfabrication and carbon dioxide laser irradiation. Spatially shaped fs laser-assisted chemical etching was first performed to [...] Read more.
We propose a hybrid laser microfabrication approach for the manufacture of three-dimensional (3D) optofluidic spot-size converters in fused silica glass by a combination of femtosecond (fs) laser microfabrication and carbon dioxide laser irradiation. Spatially shaped fs laser-assisted chemical etching was first performed to form 3D hollow microchannels in glass, which were composed of embedded straight channels, tapered channels, and vertical channels connected to the glass surface. Then, carbon dioxide laser-induced thermal reflow was carried out for the internal polishing of the whole microchannels and sealing parts of the vertical channels. Finally, 3D optofluidic spot-size converters (SSC) were formed by filling a liquid-core waveguide solution into laser-polished microchannels. With a fabricated SSC structure, the mode spot size of the optofluidic waveguide was expanded from ~8 μm to ~23 μm with a conversion efficiency of ~84.1%. Further measurement of the waveguide-to-waveguide coupling devices in the glass showed that the total insertion loss of two symmetric SSC structures through two ~50 μm-diameter coupling ports was ~6.73 dB at 1310 nm, which was only about half that of non-SSC structures with diameters of ~9 μm at the same coupling distance. The proposed approach holds great potential for developing novel 3D fluid-based photonic devices for mode conversion, optical manipulation, and lab-on-a-chip sensing. Full article
(This article belongs to the Special Issue Feature Papers in Optical Sensors 2022)
Show Figures

Figure 1

8 pages, 2157 KiB  
Article
Real-Time Measurement of Refractive Index Using 3D-Printed Optofluidic Fiber Sensor
by João M. Leça, Yannis Magalhães, Paulo Antunes, Vanda Pereira and Marta S. Ferreira
Sensors 2022, 22(23), 9377; https://doi.org/10.3390/s22239377 - 1 Dec 2022
Cited by 6 | Viewed by 3008
Abstract
This work describes a 3D-printed optofluidic fiber sensor to measure refractive index in real time, combining a microfluidic system with an optical fiber extrinsic Fabry–Perot interferometer. The microfluidic chip platform was developed for this purpose through 3D printing. The Fabry–Perot cavity was incorporated [...] Read more.
This work describes a 3D-printed optofluidic fiber sensor to measure refractive index in real time, combining a microfluidic system with an optical fiber extrinsic Fabry–Perot interferometer. The microfluidic chip platform was developed for this purpose through 3D printing. The Fabry–Perot cavity was incorporated in the microfluidic chip perpendicularly to the sample flow, which was of approximately 3.7 µL/s. The optofluidic fiber sensor platform coupled with a low-cost optical power meter detector was characterized using different concentrations of glucose solutions. In the linear regression analysis, the optical power shift was correlated with the refractive index and a sensitivity of −86.6 dB/RIU (r2 = 0.996) was obtained. Good results were obtained in terms of stability with a maximum standard deviation of 0.03 dB and a sensor resolution of 5.2 × 10−4 RIU. The feasibility of the optofluidic fiber sensor for dynamic analyses of refractive index with low sample usage was confirmed through real-time measurements. Full article
(This article belongs to the Special Issue Micro and Nanodevices for Sensing Technology)
Show Figures

Figure 1

13 pages, 3510 KiB  
Article
Optofluidic Particle Manipulation: Optical Trapping in a Thin-Membrane Microchannel
by Zachary J. Walker, Tanner Wells, Ethan Belliston, Seth B. Walker, Carson Zeller, Mohammad Julker Neyen Sampad, S. M. Saiduzzaman, Holger Schmidt and Aaron R. Hawkins
Biosensors 2022, 12(9), 690; https://doi.org/10.3390/bios12090690 - 27 Aug 2022
Cited by 10 | Viewed by 3148
Abstract
We demonstrate an optofluidic device which utilizes the optical scattering and gradient forces for particle trapping in microchannels featuring 300 nm thick membranes. On-chip waveguides are used to direct light into microfluidic trapping channels. Radiation pressure is used to push particles into a [...] Read more.
We demonstrate an optofluidic device which utilizes the optical scattering and gradient forces for particle trapping in microchannels featuring 300 nm thick membranes. On-chip waveguides are used to direct light into microfluidic trapping channels. Radiation pressure is used to push particles into a protrusion cavity, isolating the particles from liquid flow. Two different designs are presented: the first exclusively uses the optical scattering force for particle manipulation, and the second uses both scattering and gradient forces. Trapping performance is modeled for both cases. The first design, referred to as the orthogonal force design, is shown to have a 80% capture efficiency under typical operating conditions. The second design, referred to as the gradient force design, is shown to have 98% efficiency under the same conditions. Full article
(This article belongs to the Section Optical and Photonic Biosensors)
Show Figures

Figure 1

Back to TopTop