Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (108)

Search Parameters:
Keywords = optical high-spatial resolution remote sensing imagery

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5273 KB  
Article
Assessing an Optical Tool for Identifying Tidal and Associated Mangrove Swamp Rice Fields in Guinea-Bissau, West Africa
by Jesus Céspedes, Jaime Garbanzo-León, Marina Temudo and Gabriel Garbanzo
Land 2025, 14(11), 2144; https://doi.org/10.3390/land14112144 - 28 Oct 2025
Viewed by 327
Abstract
An optical remote sensing approach was developed to identify areas with high and low salinity within the mangrove swamp rice system in West Africa. Conducted between 2019 and 2024 in Guinea-Bissau, this study examined two contrasting rice-growing environments, tidal mangrove (TM) and associated [...] Read more.
An optical remote sensing approach was developed to identify areas with high and low salinity within the mangrove swamp rice system in West Africa. Conducted between 2019 and 2024 in Guinea-Bissau, this study examined two contrasting rice-growing environments, tidal mangrove (TM) and associated mangrove (AM), to assess changes in vegetation dynamics, soil salinity concentration, and soil chemical properties. Field sampling was conducted during the dry season to avoid waterlogging, and soil analyses included texture, cation exchange capacity, micronutrients, and electrical conductivity (ECe). Meteorological stations recorded rainfall and environmental conditions over the period. Moreover, orthorectified and atmospherically corrected surface reflectance satellite imagery from PlanetScope and Sentinel-2 was selected due to their high spatial resolution and revisit frequency. From this data, vegetation dynamics were monitored using the Normalized Difference Vegetation Index (NDVI), with change detection calculated as the difference in NDVI between sequential images (ΔNDVI). Thresholds of 0.15 ≤ NDVI ≤ 0.5 and ΔNDVI > 0.1 were tested to identify significant vegetation growth, with smaller polygons (<1000 m2) removed to reduce noise. In this process, at least three temporal images per season were analyzed, and multi-year intersections were done to enhance accuracy. Our parameter optimization tests found that a locally calibrated NDVI threshold of 0.26 improved site classification. Thus, this integrated field–remote sensing approach proved to be a reproducible and cost-effective tool for detecting AM and TM environments and assessing vegetation responses to seasonal changes, contributing to improved land and water management in the salinity-affected mangrove swamp rice system. Full article
Show Figures

Figure 1

30 pages, 4855 KB  
Article
Towards Reliable High-Resolution Satellite Products for the Monitoring of Chlorophyll-a and Suspended Particulate Matter in Optically Shallow Coastal Lagoons
by Samuel Martin, Philippe Bryère, Pierre Gernez, Pannimpullath Remanan Renosh and David Doxaran
Remote Sens. 2025, 17(20), 3430; https://doi.org/10.3390/rs17203430 - 14 Oct 2025
Viewed by 389
Abstract
Coastal lagoons are fragile and dynamic ecosystems that are particularly vulnerable to climate change and anthropogenic pressures such as urbanization and eutrophication. These vulnerabilities highlight the need for frequent and spatially extensive monitoring of water quality (WQ). While satellite remote sensing offers a [...] Read more.
Coastal lagoons are fragile and dynamic ecosystems that are particularly vulnerable to climate change and anthropogenic pressures such as urbanization and eutrophication. These vulnerabilities highlight the need for frequent and spatially extensive monitoring of water quality (WQ). While satellite remote sensing offers a valuable tool to support this effort, the optical complexity and shallow depths of lagoons pose major challenges for retrieving water column biogeochemical parameters such as chlorophyll-a ([chl-a]) and suspended particulate matter ([SPM]) concentrations. In this study, we develop and evaluate a robust satellite-based processing chain using Sentinel-2 MSI imagery over two French Mediterranean lagoon systems (Berre and Thau), supported by extensive in situ radiometric and biogeochemical datasets. Our approach includes the following: (i) a comparative assessment of six atmospheric correction (AC) processors, (ii) the development of an Optically Shallow Water Probability Algorithm (OSWPA), a new semi-empirical algorithm to estimate the probability of bottom contamination (BC), and (iii) the evaluation of several [chl-a] and [SPM] inversion algorithms. Results show that the Sen2Cor AC processor combined with a near-infrared similarity correction (NIR-SC) yields relative errors below 30% across all bands for retrieving remote-sensing reflectance Rrs(λ). OSWPA provides a spatially continuous and physically consistent alternative to binary BC masks. A new [chl-a] algorithm based on a near-infrared/blue Rrs ratio improves the retrieval accuracy while the 705 nm band appears to be the most suitable for retrieving [SPM] in optically shallow lagoons. This processing chain enables high-resolution WQ monitoring of two coastal lagoon systems and supports future large-scale assessments of ecological trends under increasing climate and anthropogenic stress. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Figure 1

23 pages, 10835 KB  
Article
Evaluation of Post-Fire Treatments (Erosion Barriers) on Vegetation Recovery Using RPAS and Sentinel-2 Time-Series Imagery
by Fernando Pérez-Cabello, Carlos Baroja-Saenz, Raquel Montorio and Jorge Angás-Pajas
Remote Sens. 2025, 17(20), 3422; https://doi.org/10.3390/rs17203422 - 13 Oct 2025
Viewed by 382
Abstract
Post-fire soil and vegetation changes can intensify erosion and sediment yield by altering the factors controlling the runoff–infiltration balance. Erosion barriers (EBs) are widely used in hydrological and forest restoration to mitigate erosion, reduce sediment transport, and promote vegetation recovery. However, precise spatial [...] Read more.
Post-fire soil and vegetation changes can intensify erosion and sediment yield by altering the factors controlling the runoff–infiltration balance. Erosion barriers (EBs) are widely used in hydrological and forest restoration to mitigate erosion, reduce sediment transport, and promote vegetation recovery. However, precise spatial assessments of their effectiveness remain scarce, requiring validation through operational methodologies. This study evaluates the impact of EB on post-fire vegetation recovery at two temporal and spatial scales: (1) Remotely Piloted Aircraft System (RPAS) imagery, acquired at high spatial resolution but limited to a single acquisition date coinciding with the field flight. These data were captured using a MicaSense RedEdge-MX multispectral camera and an RGB optical sensor (SODA), from which NDVI and vegetation height were derived through aerial photogrammetry and digital surface models (DSMs). (2) Sentinel-2 satellite imagery, offering coarser spatial resolution but enabling multi-temporal analysis, through NDVI time series spanning four consecutive years. The study was conducted in the area of the Luna Fire (northern Spain), which burned in July 2015. A paired sampling design compared upstream and downstream areas of burned wood stacks and control sites using NDVI values and vegetation height. Results showed slightly higher NDVI values (0.45) upstream of the EB (p < 0.05), while vegetation height was, on average, ~8 cm lower than in control sites (p > 0.05). Sentinel-2 analysis revealed significant differences in NDVI distributions between treatments (p < 0.05), although mean values were similar (~0.32), both showing positive trends over four years. This study offers indirect insight into the functioning and effectiveness of EB in post-fire recovery. The findings highlight the need for continued monitoring of treated areas to better understand environmental responses over time and to inform more effective land management strategies. Full article
(This article belongs to the Special Issue Remote Sensing for Risk Assessment, Monitoring and Recovery of Fires)
Show Figures

Figure 1

21 pages, 6844 KB  
Article
MMFNet: A Mamba-Based Multimodal Fusion Network for Remote Sensing Image Semantic Segmentation
by Jingting Qiu, Wei Chang, Wei Ren, Shanshan Hou and Ronghao Yang
Sensors 2025, 25(19), 6225; https://doi.org/10.3390/s25196225 - 8 Oct 2025
Viewed by 793
Abstract
Accurate semantic segmentation of high-resolution remote sensing imagery is challenged by substantial intra-class variability, inter-class similarity, and the limitations of single-modality data. This paper proposes MMFNet, a novel multimodal fusion network that leverages the Mamba architecture to efficiently capture long-range dependencies for semantic [...] Read more.
Accurate semantic segmentation of high-resolution remote sensing imagery is challenged by substantial intra-class variability, inter-class similarity, and the limitations of single-modality data. This paper proposes MMFNet, a novel multimodal fusion network that leverages the Mamba architecture to efficiently capture long-range dependencies for semantic segmentation tasks. MMFNet adopts a dual-encoder design, combining ResNet-18 for local detail extraction and VMamba for global contextual modelling, striking a balance between segmentation accuracy and computational efficiency. A Multimodal Feature Fusion Block (MFFB) is introduced to effectively integrate complementary information from optical imagery and digital surface models (DSMs), thereby enhancing multimodal feature interaction and improving segmentation accuracy. Furthermore, a frequency-aware upsampling module (FreqFusion) is incorporated in the decoder to enhance boundary delineation and recover fine spatial details. Extensive experiments on the ISPRS Vaihingen and Potsdam benchmarks demonstrate that MMFNet achieves mean IoU scores of 83.50% and 86.06%, outperforming eight state-of-the-art methods while maintaining relatively low computational complexity. These results highlight MMFNet’s potential for efficient and accurate multimodal semantic segmentation in remote sensing applications. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

19 pages, 20899 KB  
Article
Spatiotemporal Dynamics of Roadside Water Accumulation and Its Hydrothermal Impacts on Permafrost Stability: Integrating UAV and GPR
by Minghao Liu, Bingyan Li, Yanhu Mu, Jing Luo, Fei Yin and Fan Yu
Remote Sens. 2025, 17(17), 3110; https://doi.org/10.3390/rs17173110 - 6 Sep 2025
Viewed by 911
Abstract
The Gonghe–Yushu Expressway (GYE) traverses the degrading permafrost region of the Qinghai–Xizang Plateau, where climate warming has resulted in widespread water ponding, posing significant engineering challenges. However, the spatiotemporal dynamics of this water accumulation and its impacts on permafrost embankment stability remain inadequately [...] Read more.
The Gonghe–Yushu Expressway (GYE) traverses the degrading permafrost region of the Qinghai–Xizang Plateau, where climate warming has resulted in widespread water ponding, posing significant engineering challenges. However, the spatiotemporal dynamics of this water accumulation and its impacts on permafrost embankment stability remain inadequately understood. This study integrates high-resolution unmanned aerial vehicle (UAV) remote sensing with ground-penetrating radar (GPR) to characterize the spatial patterns of water ponding and to quantify the spatial distribution, seasonal dynamics, and hydrothermal effects of roadside water on permafrost sections of the GYE. UAV-derived point cloud models, optical 3D models, and thermal infrared imagery reveal that approximately one-third of the 228 km study section of GYE exhibits water accumulation, predominantly occurring near the embankment toe in flat terrain or poorly drained areas. Seasonal monitoring showed a nearly 90% reduction in waterlogged areas from summer to winter, closely corresponding to climatic variations. Statistical analysis demonstrated significantly higher embankment distress rates in waterlogged areas (14.3%) compared to non-waterlogged areas (5.7%), indicating a strong correlation between surface water and accelerated permafrost degradation. Thermal analysis confirmed that waterlogged zones act as persistent heat sources, intensifying permafrost thaw and consequent embankment instability. GPR surveys identified notable subsurface disturbances beneath waterlogged sections, including a significant lowering of the permafrost table under the embankment and evidence of soil loosening due to hydrothermal erosion. These findings provide valuable insights into the spatiotemporal evolution of water accumulation along transportation corridors and inform the development of climate-adaptive strategies to mitigate water-induced risks in degrading permafrost regions. Full article
(This article belongs to the Special Issue Remote Sensing of Water Dynamics in Permafrost Regions)
Show Figures

Graphical abstract

28 pages, 24868 KB  
Article
Deep Meta-Connectivity Representation for Optically-Active Water Quality Parameters Estimation Through Remote Sensing
by Fangling Pu, Ziang Luo, Yiming Yang, Hongjia Chen, Yue Dai and Xin Xu
Remote Sens. 2025, 17(16), 2782; https://doi.org/10.3390/rs17162782 - 11 Aug 2025
Viewed by 481
Abstract
Monitoring optically-active water quality (OAWQ) parameters faces key challenges, primarily due to limited in situ measurements and the restricted availability of high-resolution multispectral remote sensing imagery. While deep learning has shown promise for OAWQ estimation, existing approaches such as GeoTile2Vec, which relies on [...] Read more.
Monitoring optically-active water quality (OAWQ) parameters faces key challenges, primarily due to limited in situ measurements and the restricted availability of high-resolution multispectral remote sensing imagery. While deep learning has shown promise for OAWQ estimation, existing approaches such as GeoTile2Vec, which relies on geographic proximity, and SimCLR, a domain-agnostic contrastive learning method, fail to capture land cover-driven water quality patterns, limiting their generalizability. To address this, we present deep meta-connectivity representation (DMCR), which integrates multispectral remote sensing imagery with limited in situ measurements to estimate OAWQ parameters. Our approach constructs meta-feature vectors from land cover images to represent the water quality characteristics of each multispectral remote sensing image tile. We introduce the meta-connectivity concept to quantify the OAWQ similarity between different tiles. Building on this concept, we design a contrastive self-supervised learning framework that uses sets of quadruple tiles extracted from Sentinel-2 imagery based on their meta-connectivity to learn DMCR vectors. After the core neural network is trained, we apply a random forest model to estimate parameters such as chlorophyll-a (Chl-a) and turbidity using matched in situ measurements and DMCR vectors across time and space. We evaluate DMCR on Lake Erie and Lake Ontario, generating a series of Chl-a and turbidity distribution maps. Performance is assessed using the R2 and RMSE metrics. Results show that meta-connectivity more effectively captures water quality similarities between tiles than widely utilized geographic proximity approaches such as those used in GeoTile2Vec. Furthermore, DMCR outperforms baseline models such as SimCLR with randomly cropped tiles. The resulting distribution maps align well with known factors influencing Chl-a and turbidity levels, confirming the method’s reliability. Overall, DMCR demonstrates strong potential for large-scale OAWQ estimation and contributes to improved monitoring of inland water bodies with limited in situ measurements through meta-connectivity-informed deep learning. The temporal-spatial water quality maps can support large-scale inland water monitoring, early warning of harmful algal blooms. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Figure 1

19 pages, 3397 KB  
Article
FEMNet: A Feature-Enriched Mamba Network for Cloud Detection in Remote Sensing Imagery
by Weixing Liu, Bin Luo, Jun Liu, Han Nie and Xin Su
Remote Sens. 2025, 17(15), 2639; https://doi.org/10.3390/rs17152639 - 30 Jul 2025
Viewed by 648
Abstract
Accurate and efficient cloud detection is critical for maintaining the usability of optical remote sensing imagery, particularly in large-scale Earth observation systems. In this study, we propose FEMNet, a lightweight dual-branch network that combines state space modeling with convolutional encoding for multi-class cloud [...] Read more.
Accurate and efficient cloud detection is critical for maintaining the usability of optical remote sensing imagery, particularly in large-scale Earth observation systems. In this study, we propose FEMNet, a lightweight dual-branch network that combines state space modeling with convolutional encoding for multi-class cloud segmentation. The Mamba-based encoder captures long-range semantic dependencies with linear complexity, while a parallel CNN path preserves spatial detail. To address the semantic inconsistency across feature hierarchies and limited context perception in decoding, we introduce the following two targeted modules: a cross-stage semantic enhancement (CSSE) block that adaptively aligns low- and high-level features, and a multi-scale context aggregation (MSCA) block that integrates contextual cues at multiple resolutions. Extensive experiments on five benchmark datasets demonstrate that FEMNet achieves state-of-the-art performance across both binary and multi-class settings, while requiring only 4.4M parameters and 1.3G multiply–accumulate operations. These results highlight FEMNet’s suitability for resource-efficient deployment in real-world remote sensing applications. Full article
Show Figures

Figure 1

22 pages, 4380 KB  
Article
Utilization of Multisensor Satellite Data for Developing Spatial Distribution of Methane Emission on Rice Paddy Field in Subang, West Java
by Khalifah Insan Nur Rahmi, Parwati Sofan, Hilda Ayu Pratikasiwi, Terry Ayu Adriany, Dandy Aditya Novresiandi, Rendi Handika, Rahmat Arief, Helena Lina Susilawati, Wage Ratna Rohaeni, Destika Cahyana, Vidya Nahdhiyatul Fikriyah, Iman Muhardiono, Asmarhansyah, Shinichi Sobue, Kei Oyoshi, Goh Segami and Pegah Hashemvand Khiabani
Remote Sens. 2025, 17(13), 2154; https://doi.org/10.3390/rs17132154 - 23 Jun 2025
Viewed by 1566
Abstract
Intergovernmental Panel on Climate Change (IPCC) guidelines have been standardized and widely used to calculate methane (CH4) emissions from paddy fields. The emission factor (EF) is a key parameter in these guidelines, and it is different for each location globally and [...] Read more.
Intergovernmental Panel on Climate Change (IPCC) guidelines have been standardized and widely used to calculate methane (CH4) emissions from paddy fields. The emission factor (EF) is a key parameter in these guidelines, and it is different for each location globally and regionally. However, limited studies have been conducted to measure locally specific EFs (EFlocal) through on-site assessments and modeling their spatial distribution effectively. This study aims to investigate the potential of multisensor satellite data to develop a spatial model of CH4 emission estimation on rice paddy fields under different water management practices, i.e., continuous flooding (CF) and alternate wetting and drying (AWD) in Subang, West Java, Indonesia. The model employed the national EF (EFnational) and EFlocal using the IPCC guidelines. In this study, we employed the multisensor satellite data to derive the key parameters for estimating CH4 emission, i.e., rice cultivation area, rice age, and EF. Optical high-resolution images were used to delineate the rice cultivation area, Sentinel-1 SAR imagery was used for identifying transplanting and harvesting dates for rice age estimation, and ALOS-2/PALSAR-2 was used to map the water regime for determining the scaling factor of the EF. The closed-chamber method has been used to measure the daily CH4 flux rate on the local sites. The results revealed spatial variability in CH4 emissions, ranging from 1–5 kg/crop/season to 20–30 kg/crop/season, depending on the water regime. Fields under CF exhibited higher CH4 emissions than those under AWD, underscoring the critical role of water management in mitigating CH4 emissions. This study demonstrates the feasibility of combining remote sensing data with the IPCC model to spatially estimate CH4 emissions, providing a robust framework for sustainable rice cultivation and greenhouse gas (GHG) mitigation strategies. Full article
Show Figures

Figure 1

27 pages, 1354 KB  
Review
High-Resolution Global Land Cover Maps and Their Assessment Strategies
by Qiongjie Xu, Vasil Yordanov, Lorenzo Bruzzone and Maria Antonia Brovelli
ISPRS Int. J. Geo-Inf. 2025, 14(6), 235; https://doi.org/10.3390/ijgi14060235 - 18 Jun 2025
Cited by 1 | Viewed by 3083
Abstract
Global High-Resolution Land Cover Maps (GHRLCs), characterized by spatial resolutions higher than 30 m per pixel, have become essential tools for environmental monitoring, urban planning, and climate modeling. Over the past two decades, new GHRLCs have emerged, offering increasingly detailed and timely representations [...] Read more.
Global High-Resolution Land Cover Maps (GHRLCs), characterized by spatial resolutions higher than 30 m per pixel, have become essential tools for environmental monitoring, urban planning, and climate modeling. Over the past two decades, new GHRLCs have emerged, offering increasingly detailed and timely representations of Earth’s surface. This review provides an in-depth analysis of recent developments by examining the data sources, methodologies, and validation techniques utilized in 19 global binary and multi-class land cover products. The evolution of GHRLC production techniques is analyzed, starting from the use of singular source input data, such as multi-temporal remotely sensed optical imagery, to the integration of satellite radar and other geospatial data. The article highlights significant advances in data pre-processing and processing, showcasing a shift from classical methods to modern approaches, including machine learning (ML) and deep learning techniques (e.g., neural networks and transformers), and their direct application on powerful cloud-computing platforms. A comprehensive analysis of the temporal dimension of land cover products, where available, is conducted, highlighting a shift from decadal intervals to production intervals of less than a month. This review also addresses the ongoing challenge of land cover legend harmonization, a topic that remains crucial for ensuring consistency and comparability across datasets. Validation remains another critical aspect of GHRLC production. The methods used to assess map accuracy and reliability, including statistical techniques and visual inspections, are briefly discussed. The validation approaches adopted in recent studies are summarized, with an emphasis on their importance in maintaining data integrity and addressing emerging needs, such as the development of common validation datasets. Ultimately, this review aims to provide a comprehensive overview of the current state and future directions of GHRLC production and validation, highlighting the advancements that have shaped this rapidly evolving field. Full article
Show Figures

Figure 1

15 pages, 29925 KB  
Article
Enhanced Color Nighttime Light Remote Sensing Imagery Using Dual-Sampling Adjustment
by Yaqi Huang, Yanling Lu, Li Zhang and Min Yin
Sensors 2025, 25(7), 2002; https://doi.org/10.3390/s25072002 - 22 Mar 2025
Viewed by 771
Abstract
Nighttime light remote sensing imagery is limited by its single band and low spatial resolution, hindering its ability to accurately capture ground information. To address this, a dual-sampling adjustment method is proposed to enhance nighttime light remote sensing imagery by fusing daytime optical [...] Read more.
Nighttime light remote sensing imagery is limited by its single band and low spatial resolution, hindering its ability to accurately capture ground information. To address this, a dual-sampling adjustment method is proposed to enhance nighttime light remote sensing imagery by fusing daytime optical images with nighttime light remote sensing imagery, generating high-quality color nighttime light remote sensing imagery. The results are as follows: (1) Compared to traditional nighttime light remote sensing imagery, the spatial resolution of the fusion images is improved from 500 m to 15 m while better retaining the ground features of daytime optical images and the distribution of nighttime light. (2) Quality evaluations confirm that color nighttime light remote sensing imagery enhanced by dual-sampling adjustment can effectively balance optical fidelity and spatial texture features. (3) In Beijing’s central business district, color nighttime light brightness exhibits the strongest correlation with business, especially in Dongcheng District, with r = 0.7221, providing a visual tool for assessing urban economic vitality at night. This study overcomes the limitations of fusing day–night remote sensing imagery, expanding the application field of color nighttime light remote sensing imagery and providing critical decision support for refined urban management. Full article
(This article belongs to the Special Issue Smart Image Recognition and Detection Sensors)
Show Figures

Figure 1

28 pages, 60546 KB  
Article
Adapting Cross-Sensor High-Resolution Remote Sensing Imagery for Land Use Classification
by Wangbin Li, Kaimin Sun and Jinjiang Wei
Remote Sens. 2025, 17(5), 927; https://doi.org/10.3390/rs17050927 - 5 Mar 2025
Cited by 2 | Viewed by 2105
Abstract
High-resolution visible remote sensing imagery, as a fundamental contributor to Earth observation, has found extensive application in land use classification. However, the heterogeneous array of optical sensors, distinguished by their unique design architectures, exhibit disparate spectral responses and spatial distributions when observing ground [...] Read more.
High-resolution visible remote sensing imagery, as a fundamental contributor to Earth observation, has found extensive application in land use classification. However, the heterogeneous array of optical sensors, distinguished by their unique design architectures, exhibit disparate spectral responses and spatial distributions when observing ground objects. These discrepancies between multi-sensor data present a significant obstacle to the widespread application of intelligent methods. In this paper, we propose a method tailored to accommodate these disparities, with the aim of achieving a smooth transfer for the model across diverse sets of images captured by different sensors. Specifically, to address the discrepancies in spatial resolution, a novel positional encoding has been incorporated to capture the correlation between the spatial resolution details and the characteristics of ground objects. To tackle spectral disparities, random amplitude mixup augmentation is introduced to mitigate the impact of feature anisotropy resulting from discrepancies in low-level features between multi-sensor images. Additionally, we integrate convolutional neural networks and Transformers to enhance the model’s feature extraction capabilities, and employ a fine-tuning strategy with dynamic pseudo-labels to reduce the reliance on annotated data from the target domain. In the experimental section, the Gaofen-2 images (4 m) and the Sentinel-2 images (10 m) were selected as training and test datasets to simulate cross-sensor model transfer scenarios. Also, Google Earth images of Suzhou City, Jiangsu Province, were utilized for further validation. The results indicate that our approach effectively mitigates the degradation in model performance attributed to image source inconsistencies. Full article
Show Figures

Graphical abstract

42 pages, 11529 KB  
Article
A Novel Evolutionary Deep Learning Approach for PM2.5 Prediction Using Remote Sensing and Spatial–Temporal Data: A Case Study of Tehran
by Mehrdad Kaveh, Mohammad Saadi Mesgari and Masoud Kaveh
ISPRS Int. J. Geo-Inf. 2025, 14(2), 42; https://doi.org/10.3390/ijgi14020042 - 23 Jan 2025
Cited by 6 | Viewed by 2077
Abstract
Forecasting particulate matter with a diameter of 2.5 μm (PM2.5) is critical due to its significant effects on both human health and the environment. While ground-based pollution measurement stations provide highly accurate PM2.5 data, their limited number and geographic coverage [...] Read more.
Forecasting particulate matter with a diameter of 2.5 μm (PM2.5) is critical due to its significant effects on both human health and the environment. While ground-based pollution measurement stations provide highly accurate PM2.5 data, their limited number and geographic coverage present significant challenges. Recently, the use of aerosol optical depth (AOD) has emerged as a viable alternative for estimating PM2.5 levels, offering a broader spatial coverage and higher resolution. Concurrently, long short-term memory (LSTM) models have shown considerable promise in enhancing air quality predictions, often outperforming other prediction techniques. To address these challenges, this study leverages geographic information systems (GIS), remote sensing (RS), and a hybrid LSTM architecture to predict PM2.5 concentrations. Training LSTM models, however, is an NP-hard problem, with gradient-based methods facing limitations such as getting trapped in local minima, high computational costs, and the need for continuous objective functions. To overcome these issues, we propose integrating the novel orchard algorithm (OA) with LSTM to optimize air pollution forecasting. This paper utilizes meteorological data, topographical features, PM2.5 pollution levels, and satellite imagery from the city of Tehran. Data preparation processes include noise reduction, spatial interpolation, and addressing missing data. The performance of the proposed OA-LSTM model is compared to five advanced machine learning (ML) algorithms. The proposed OA-LSTM model achieved the lowest root mean square error (RMSE) value of 3.01 µg/m3 and the highest coefficient of determination (R2) value of 0.88, underscoring its effectiveness compared to other models. This paper employs a binary OA method for sensitivity analysis, optimizing feature selection by minimizing prediction error while retaining critical predictors through a penalty-based objective function. The generated maps reveal higher PM2.5 concentrations in autumn and winter compared to spring and summer, with northern and central areas showing the highest pollution levels. Full article
Show Figures

Figure 1

19 pages, 20524 KB  
Article
Comparison of Multiple Methods for Supraglacial Melt-Lake Volume Estimation in Western Greenland During the 2021 Summer Melt Season
by Nathan Rowley, Wesley Rancher and Christopher Karmosky
Glacies 2024, 1(2), 92-110; https://doi.org/10.3390/glacies1020007 - 6 Nov 2024
Cited by 1 | Viewed by 1597
Abstract
Supraglacial melt-lakes form and evolve along the western edge of the Greenland Ice Sheet and have proven to play a significant role in ice sheet surface hydrology and mass balance. Prior methods to quantify melt-lake volume have relied upon Landsat-8 optical imagery, available [...] Read more.
Supraglacial melt-lakes form and evolve along the western edge of the Greenland Ice Sheet and have proven to play a significant role in ice sheet surface hydrology and mass balance. Prior methods to quantify melt-lake volume have relied upon Landsat-8 optical imagery, available at 30 m spatial resolution but with temporal resolution limited by satellite overpass times and cloud cover. We propose two novel methods to quantify the volume of meltwater stored in these lakes, including a high-resolution surface DEM (ArcticDEM) and an ablation model using daily averaged automated weather station data. We compare our methods to the depth-reflectance method for five supraglacial melt-lakes during the 2021 summer melt season. We find agreement between the depth-reflectance and DEM lake infilling methods, within +/−15% for most cases, but our ablation model underproduces by 0.5–2 orders of magnitude the volumetric melt needed to match our other methods, and with a significant lag in meltwater onset for routing into the lake basin. Further information regarding energy balance parameters, including insolation and liquid precipitation amounts, is needed for adequate ablation modelling. Despite the differences in melt-lake volume estimates, our approach in combining remote sensing and meteorological methods provides a framework for analysis of seasonal melt-lake evolution at significantly higher spatial and temporal scales, to understand the drivers of meltwater production and its influence on the spatial distribution and extent of meltwater volume stored on the ice sheet surface. Full article
Show Figures

Figure 1

29 pages, 6780 KB  
Article
Phenological and Biophysical Mediterranean Orchard Assessment Using Ground-Based Methods and Sentinel 2 Data
by Pierre Rouault, Dominique Courault, Guillaume Pouget, Fabrice Flamain, Papa-Khaly Diop, Véronique Desfonds, Claude Doussan, André Chanzy, Marta Debolini, Matthew McCabe and Raul Lopez-Lozano
Remote Sens. 2024, 16(18), 3393; https://doi.org/10.3390/rs16183393 - 12 Sep 2024
Cited by 4 | Viewed by 3046
Abstract
A range of remote sensing platforms provide high spatial and temporal resolution insights which are useful for monitoring vegetation growth. Very few studies have focused on fruit orchards, largely due to the inherent complexity of their structure. Fruit trees are mixed with inter-rows [...] Read more.
A range of remote sensing platforms provide high spatial and temporal resolution insights which are useful for monitoring vegetation growth. Very few studies have focused on fruit orchards, largely due to the inherent complexity of their structure. Fruit trees are mixed with inter-rows that can be grassed or non-grassed, and there are no standard protocols for ground measurements suitable for the range of crops. The assessment of biophysical variables (BVs) for fruit orchards from optical satellites remains a significant challenge. The objectives of this study are as follows: (1) to address the challenges of extracting and better interpreting biophysical variables from optical data by proposing new ground measurements protocols tailored to various orchards with differing inter-row management practices, (2) to quantify the impact of the inter-row at the Sentinel pixel scale, and (3) to evaluate the potential of Sentinel 2 data on BVs for orchard development monitoring and the detection of key phenological stages, such as the flowering and fruit set stages. Several orchards in two pedo-climatic zones in southeast France were monitored for three years: four apricot and nectarine orchards under different management systems and nine cherry orchards with differing tree densities and inter-row surfaces. We provide the first comparison of three established ground-based methods of assessing BVs in orchards: (1) hemispherical photographs, (2) a ceptometer, and (3) the Viticanopy smartphone app. The major phenological stages, from budburst to fruit growth, were also determined by in situ annotations on the same fields monitored using Viticanopy. In parallel, Sentinel 2 images from the two study sites were processed using a Biophysical Variable Neural Network (BVNET) model to extract the main BVs, including the leaf area index (LAI), fraction of absorbed photosynthetically active radiation (FAPAR), and fraction of green vegetation cover (FCOVER). The temporal dynamics of the normalised FAPAR were analysed, enabling the detection of the fruit set stage. A new aggregative model was applied to data from hemispherical photographs taken under trees and within inter-rows, enabling us to quantify the impact of the inter-row at the Sentinel 2 pixel scale. The resulting value compared to BVs computed from Sentinel 2 gave statistically significant correlations (0.57 for FCOVER and 0.45 for FAPAR, with respective RMSE values of 0.12 and 0.11). Viticanopy appears promising for assessing the PAI (plant area index) and FCOVER for orchards with grassed inter-rows, showing significant correlations with the Sentinel 2 LAI (R2 of 0.72, RMSE 0.41) and FCOVER (R2 0.66 and RMSE 0.08). Overall, our results suggest that Sentinel 2 imagery can support orchard monitoring via indicators of development and inter-row management, offering data that are useful to quantify production and enhance resource management. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Show Figures

Figure 1

26 pages, 6325 KB  
Article
Acquisition of Bathymetry for Inland Shallow and Ultra-Shallow Water Bodies Using PlanetScope Satellite Imagery
by Aleksander Kulbacki, Jacek Lubczonek and Grzegorz Zaniewicz
Remote Sens. 2024, 16(17), 3165; https://doi.org/10.3390/rs16173165 - 27 Aug 2024
Cited by 4 | Viewed by 2844
Abstract
This study is structured to address the problem of mapping the bottom of shallow and ultra-shallow inland water bodies using high-resolution satellite imagery. These environments, with their diverse distribution of optically relevant components, pose a challenge to traditional mapping methods. The study was [...] Read more.
This study is structured to address the problem of mapping the bottom of shallow and ultra-shallow inland water bodies using high-resolution satellite imagery. These environments, with their diverse distribution of optically relevant components, pose a challenge to traditional mapping methods. The study was conducted on several research issues, each focusing on a specific aspect of the SDB, related to the selection of spectral bands and regression models, regression models creation, evaluation of the influence of the number and spatial distribution of reference soundings, and assessment of the quality of the bathymetric surface, with a focus on microtopography. The study utilized basic empirical techniques, incorporating high-precision reference data acquired via an unmanned surface vessel (USV) integrated with a single-beam echosounder (SBES), and Global Navigation Satellite System (GNSS) receiver measurements. The performed investigation allowed the optimization of a methodology for bathymetry acquisition of such areas by identifying the impact of individual processing components. The first results indicated the usefulness of the proposed approach, which can be confirmed by the values of the obtained RMS errors of elaborated bathymetric surfaces in the range of up to several centimeters in some study cases. The work also points to the problematic nature of this type of study, which can contribute to further research into the application of remote sensing techniques for bathymetry, especially during acquisition in optically complex waters. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

Back to TopTop