Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (50)

Search Parameters:
Keywords = optical fronthaul

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2652 KB  
Article
Optimized Multi-Antenna MRC for 16-QAM Transmission in a Photonics-Aided Millimeter-Wave System
by Rahim Uddin, Weiping Li and Jianjun Yu
Sensors 2025, 25(16), 5010; https://doi.org/10.3390/s25165010 - 13 Aug 2025
Cited by 1 | Viewed by 842
Abstract
This work presents an 80 Gbps photonics-aided millimeter-wave (mm Wave) wireless communication system employing 16-Quadrature Amplitude Modulation (16-QAM) and a 1 × 2 single-input multiple-output (SIMO) architecture with maximum ratio combining (MRC) to achieve robust 87.5 GHz transmission over 4.6 km. By utilizing [...] Read more.
This work presents an 80 Gbps photonics-aided millimeter-wave (mm Wave) wireless communication system employing 16-Quadrature Amplitude Modulation (16-QAM) and a 1 × 2 single-input multiple-output (SIMO) architecture with maximum ratio combining (MRC) to achieve robust 87.5 GHz transmission over 4.6 km. By utilizing polarization-diverse optical heterodyne generation and spatial diversity reception, the system enhances spectral efficiency while addressing the low signal-to-noise ratio (SNR) and channel distortions inherent in long-haul links. A blind equalization scheme combining the constant modulus algorithm (CMA) and decision-directed least mean squares (DD-LMS) filtering enables rapid convergence and suppresses residual inter-symbol interference, effectively mitigating polarization drift and phase noise. The experimental results demonstrate an SNR gain of approximately 3 dB and a significant bit error rate (BER) reduction with MRC compared to single-antenna reception, along with improved SNR performance in multi-antenna configurations. The synergy of photonic mm Wave generation, adaptive spatial diversity, and pilot-free digital signal processing (DSP) establishes a robust framework for high-capacity wireless fronthaul, overcoming atmospheric attenuation and dynamic impairments. This approach highlights the viability of 16-QAM in next-generation ultra-high-speed networks (6G/7G), balancing high data rates with resilient performance under channel degradation. Full article
Show Figures

Figure 1

12 pages, 1072 KB  
Article
Performance Evaluation of IM/DD FSO Communication System Under Dust Storm Conditions
by Maged Abdullah Esmail
Technologies 2025, 13(7), 288; https://doi.org/10.3390/technologies13070288 - 7 Jul 2025
Cited by 1 | Viewed by 701
Abstract
Free-space optical (FSO) communication is a promising high-capacity solution for future wireless networks, particularly for backhaul and fronthaul links in 5G and emerging 6G systems. However, it remains highly vulnerable to environmental impairment, especially in arid regions prone to dust storms. While prior [...] Read more.
Free-space optical (FSO) communication is a promising high-capacity solution for future wireless networks, particularly for backhaul and fronthaul links in 5G and emerging 6G systems. However, it remains highly vulnerable to environmental impairment, especially in arid regions prone to dust storms. While prior studies have addressed atmospheric effects such as fog and turbulence, the specific impact of dust on signal performance remains insufficiently explored. This work presents a probabilistic modeling framework for evaluating the performance of an intensity modulation/direct detection (IM/DD) FSO system under dust storm conditions. Using a controlled laboratory environment, we conducted measurements of the optical signal under dust-induced channel conditions using real-world dust samples collected from an actual dust storm. We identified the Beta distribution as the most accurate model for the measured signal fluctuations. Closed-form expressions were derived for average bit error rate (BER), outage probability, and channel capacity. The close agreement between the analytical, approximate, and simulated results validates the proposed model as a reliable tool for evaluating FSO system performance. The results show that the forward error correction (FEC) BER threshold of 103 is achieved at approximately 10.5 dB, and the outage probability drops below 103 at 10 dB average SNR. Full article
(This article belongs to the Section Information and Communication Technologies)
Show Figures

Figure 1

17 pages, 3268 KB  
Article
Simulative Analysis of Stimulated Raman Scattering Effects on WDM-PON Based 5G Fronthaul Networks
by Yan Xu, Shuai Wang and Asad Saleem
Sensors 2025, 25(10), 3237; https://doi.org/10.3390/s25103237 - 21 May 2025
Cited by 1 | Viewed by 889
Abstract
In future hybrid fiber and radio access networks, wavelength division multiplexing passive optical networks (WDM-PON) based fifth-generation (5G) fronthaul systems are anticipated to coexist with current protocols, potentially leading to non-linearity impairment due to stimulated Raman scattering (SRS). To meet the loss budget [...] Read more.
In future hybrid fiber and radio access networks, wavelength division multiplexing passive optical networks (WDM-PON) based fifth-generation (5G) fronthaul systems are anticipated to coexist with current protocols, potentially leading to non-linearity impairment due to stimulated Raman scattering (SRS). To meet the loss budget requirements of 5G fronthaul networks, this paper investigates the power changes induced by SRS in WDM-PON based 5G fronthaul systems. The study examines wavelength allocation schemes utilizing both the C-band and O-band, with modulation formats including non-return-to-zero (NRZ), optical double-binary (ODB), and four-level pulse amplitude modulation (PAM4). Simulation results indicate that SRS non-linearity impairment causes a power depletion of 1.3 dB in the 20 km C-band link scenario, regardless of whether the modulation formats are 25 Gb/s or 50 Gb/s NRZ, ODB, and PAM4, indicating that the SRS-induced power changes are largely independent of both modulation formats and modulation rates. This effect occurs when only the upstream and downstream wavelengths of the 5G fronthaul are broadcast. However, when the 5G fronthaul wavelengths coexist with previous protocols, the maximum power depletion increases significantly to 10.1 dB. In the O-band scenario, the SRS-induced maximum power depletion reaches 1.5 dB with NRZ, ODB, and PAM4 modulation formats at both 25 Gb/s and 50 Gb/s. Based on these analyses, the SRS non-linearity impairment shall be fully considered when planning the wavelengths for 5G fronthaul transmission. Full article
(This article belongs to the Special Issue Novel Technology in Optical Communications)
Show Figures

Figure 1

14 pages, 1074 KB  
Article
WDM-PON Free Space Optical (FSO) System Utilizing LDPC Decoding for Enhanced Cellular C-RAN Fronthaul Networks
by Dokhyl AlQahtani and Fady El-Nahal
Photonics 2025, 12(4), 391; https://doi.org/10.3390/photonics12040391 - 17 Apr 2025
Cited by 3 | Viewed by 1192
Abstract
Modern cellular systems rely on high-capacity and low-latency optical networks to meet ever-increasing data demands. Centralized Radio Access Network (C-RAN) architectures offer a cost-effective approach for deploying mobile infrastructures. In this work, we propose a flexible and cost-efficient fronthaul topology that combines Wavelength [...] Read more.
Modern cellular systems rely on high-capacity and low-latency optical networks to meet ever-increasing data demands. Centralized Radio Access Network (C-RAN) architectures offer a cost-effective approach for deploying mobile infrastructures. In this work, we propose a flexible and cost-efficient fronthaul topology that combines Wavelength Division Multiplexing (WDM) passive optical networks (PONs) with free-space optical (FSO) links. To enhance overall system performance, we introduce Low-Density Parity Check (LDPC) decoding, which provides robust error-correction capabilities against atmospheric turbulence and noise. Our system transmits 20 Gbps, 16-QAM intensity-modulated orthogonal frequency-division multiplexing (OFDM) signals, achieving a substantial reduction in bit error rate (BER). Numerical results show that the proposed WDM-PON-FSO architecture, augmented with LDPC decoding, maintains reliable transmission over 2 km under strong turbulence conditions. Full article
Show Figures

Figure 1

14 pages, 1376 KB  
Article
Ultra-Wideband Analog Radio-over-Fiber Communication System Employing Pulse-Position Modulation
by Sandis Migla, Kristaps Rubuls, Nikolajs Tihomorskis, Toms Salgals, Oskars Ozolins, Vjaceslavs Bobrovs, Sandis Spolitis and Arturs Aboltins
Appl. Sci. 2025, 15(8), 4222; https://doi.org/10.3390/app15084222 - 11 Apr 2025
Viewed by 1344
Abstract
This research presents a novel approach to 28 GHz impulse radio ultra-wideband (IR-UWB) transmission using pulse position modulation (PPM) over an analog radio-over-fiber (ARoF) link, investigating the impact of fiber-based fronthaul on the overall performance of the communication system. In this setup, an [...] Read more.
This research presents a novel approach to 28 GHz impulse radio ultra-wideband (IR-UWB) transmission using pulse position modulation (PPM) over an analog radio-over-fiber (ARoF) link, investigating the impact of fiber-based fronthaul on the overall performance of the communication system. In this setup, an arbitrary waveform generator (AWG) is employed for PPM signal generation, while demodulation is performed with a commercial time-to-digital converter (TDC) based on an event timer. To enhance the reliability of transmitted reference PPM (TR-PPM) signals, the transmission system integrates Gray coding and Consultative Committee for Space Data Systems (CCSDS)-standard-compliant Reed-Solomon (RS) error correcting code (ECC). System performance was evaluated by transmitting pseudorandom binary sequences (PRBSs) and measuring the bit error ratio (BER) across a 5-m wireless link between two 20 dBi gain horn (Ka-band) antennas, with and without a 20 km single-mode optical fiber (SMF) link in transmitter side and ECC at the receiver side. The system achieved a BER of less than 8.17 × 10−7, using a time bin duration of 200 ps and a pulse duration of 100 ps, demonstrating robust performance and significant potential for space-to-ground telecommunication applications. Full article
(This article belongs to the Special Issue Recent Advances in Microwave Devices and Intelligent Systems)
Show Figures

Figure 1

20 pages, 5129 KB  
Article
Multi-Band Analog Radio-over-Fiber Mobile Fronthaul System for Indoor Positioning, Beamforming, and Wireless Access
by Hang Yang, Wei Tian, Jianhua Li and Yang Chen
Sensors 2025, 25(7), 2338; https://doi.org/10.3390/s25072338 - 7 Apr 2025
Cited by 2 | Viewed by 1113
Abstract
In response to the urgent demands of the Internet of Things for precise indoor target positioning and information interaction, this paper proposes a multi-band analog radio-over-fiber mobile fronthaul system. The objective is to obtain the target’s location in indoor environments while integrating remote [...] Read more.
In response to the urgent demands of the Internet of Things for precise indoor target positioning and information interaction, this paper proposes a multi-band analog radio-over-fiber mobile fronthaul system. The objective is to obtain the target’s location in indoor environments while integrating remote beamforming capabilities to achieve wireless access to the targets. Vector signals centered at 3, 4, 5, and 6 GHz for indoor positioning and centered at 30 GHz for wireless access are generated centrally in the distributed unit (DU) and fiber-distributed to the active antenna unit (AAU) in the multi-band analog radio-over-fiber mobile fronthaul system. Target positioning is achieved by radiating electromagnetic waves indoors through four omnidirectional antennas in conjunction with a pre-trained neural network, while high-speed wireless communication is realized through a phased array antenna (PAA) comprising four antenna elements. Remote beamforming for the PAA is implemented through the integration of an optical true time delay pool in the multi-band analog radio-over-fiber mobile fronthaul system. This integration decouples the weight control of beamforming from the AAU, enabling centralized control of beam direction at the DU and thereby reducing the complexity and cost of the AAU. Simulation results show that the average accuracy of localization classification can reach 86.92%, and six discrete beam directions are achieved via the optical true time delay pool. In the optical transmission layer, when the received optical power is 10 dBm, the error vector magnitudes (EVMs) of vector signals in all frequency bands remain below 3%. In the wireless transmission layer, two beam directions were selected for verification. Once the beam is aligned with the target device at maximum gain and the received signal is properly processed, the EVM of millimeter-wave vector signals remains below 11%. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

17 pages, 5419 KB  
Article
Fiber/Free-Space Optics with Open Radio Access Networks Supplements the Coverage of Millimeter-Wave Beamforming for Future 5G and 6G Communication
by Cheng-Kai Yao, Hsin-Piao Lin, Chiun-Lang Cheng, Ming-An Chung, Yu-Shian Lin, Wen-Bo Wu, Chun-Wei Chiang and Peng-Chun Peng
Fibers 2025, 13(4), 39; https://doi.org/10.3390/fib13040039 - 2 Apr 2025
Cited by 4 | Viewed by 1797
Abstract
Conceptually, this paper aims to help reduce the communication blind spots originating from the design of millimeter-wave (mmW) beamforming by deploying radio units of an open radio access network (O-RAN) with free-space optics (FSOs) as the backhaul and the fiber-optic link as the [...] Read more.
Conceptually, this paper aims to help reduce the communication blind spots originating from the design of millimeter-wave (mmW) beamforming by deploying radio units of an open radio access network (O-RAN) with free-space optics (FSOs) as the backhaul and the fiber-optic link as the fronthaul. At frequencies exceeding 24 GHz, the transmission reach of 5G/6G beamforming is limited to a few hundred meters, and the periphery area of the sector operational range of beamforming introduces a communication blind spot. Using FSOs as the backhaul and a fiber-optic link as the fronthaul, O-RAN empowers the radio unit to extend over greater distances to supplement the communication range that mmW beamforming cannot adequately cover. Notably, O-RAN is a prime example of next-generation wireless networks renowned for their adaptability and open architecture to enhance the cost-effectiveness of this integration. A 200 meter-long FSO link for backhaul and a fiber-optic link of up to 10 km for fronthaul were erected, thereby enabling the reach of communication services from urban centers to suburban and remote rural areas. Furthermore, in the context of beamforming, reinforcement learning (RL) was employed to optimize the error vector magnitude (EVM) by dynamically adjusting the beamforming phase based on the communication user’s location. In summary, the integration of RL-based mmW beamforming with the proposed O-RAN communication setup is operational. It lends scalability and cost-effectiveness to current and future communication infrastructures in urban, peri-urban, and rural areas. Full article
Show Figures

Figure 1

36 pages, 16208 KB  
Article
End-to-End Power Models for 5G Radio Access Network Architectures with a Perspective on 6G
by Bhuvaneshwar Doorgakant, Tulsi Pawan Fowdur and Mobayode O. Akinsolu
Mathematics 2025, 13(3), 466; https://doi.org/10.3390/math13030466 - 30 Jan 2025
Cited by 5 | Viewed by 3079
Abstract
5G, the fifth-generation mobile network, is predicted to significantly increase the traditional trajectory of energy consumption. It now uses four times as much energy as 4G, the fourth-generation mobile network. As a result, compared to previous generations, 5G’s increased cell density makes energy [...] Read more.
5G, the fifth-generation mobile network, is predicted to significantly increase the traditional trajectory of energy consumption. It now uses four times as much energy as 4G, the fourth-generation mobile network. As a result, compared to previous generations, 5G’s increased cell density makes energy efficiency a top priority. The objective of this paper is to formulate end-to-end power consumption models for three different 5G radio access network (RAN) deployment architectures, namely the 5G distributed RAN, the 5G centralized RAN with dedicated hardware and the 5G Cloud Centralized-RAN. The end-to-end modelling of the power consumption of a complete 5G system is obtained by combining the power models of individual components such as the base station, the core network, front-haul, mid-haul and backhaul links, as applicable for the different architectures. The authors considered the deployment of software-defined networking (SDN) at the 5G Core network and gigabit passive optical network as access technology for the backhaul network. This study examines the end-to-end power consumption of 5G networks across various architectures, focusing on key dependent parameters. The findings indicate that the 5G distributed RAN scenario has the highest power consumption among the three models evaluated. In comparison, the centralized 5G and 5G Cloud C-RAN scenarios consume 12% and 20% less power, respectively, than the Centralized RAN solution. Additionally, calculations reveal that base stations account for 74% to 78% of the total power consumption in 5G networks. These insights helped pioneer the calculation of the end-to-end power requirements of different 5G network architectures, forming a solid foundation for their sustainable implementation. Furthermore, this study lays the groundwork for extending power modeling to future 6G networks. Full article
Show Figures

Figure 1

13 pages, 6831 KB  
Article
Demonstration of a Hybrid B5G System Integrating VLC and RF-Based Technologies with Access Networks
by Tomás Powell Villena Andrade, Celso Henrique de Souza Lopes, Letícia Carneiro de Souza and Arismar Cerqueira Sodré Junior
Appl. Sci. 2025, 15(2), 955; https://doi.org/10.3390/app15020955 - 19 Jan 2025
Viewed by 1381
Abstract
Visible-light communication (VLC) has emerged as a promising technology to provide the very high-throughput wireless communications demanded by beyond-fifth-generation (B5G) applications. However, few works are found in the literature regarding the integration of VLC systems with other wireless communications technologies and with access [...] Read more.
Visible-light communication (VLC) has emerged as a promising technology to provide the very high-throughput wireless communications demanded by beyond-fifth-generation (B5G) applications. However, few works are found in the literature regarding the integration of VLC systems with other wireless communications technologies and with access networks. In this context, and as a proof of concept, we implement and experimentally evaluate a hybrid network architecture based on VLC, radio-over-fiber (RoF), free space optics (FSO), fiber-wireless (FiWi), and millimeter-waves (mm-waves) for B5G applications. Such optical networks make use of fiber-optic links based on RoF technology as backhauls, whereas their fronthauls might be either by FSO or RoF. Finally, a triple-wireless-access network is ensured by VLC, FiWi, and mm-wave links. The latter use a real 5G new radio (5G NR) signal. The system performance is evaluated in terms of a root mean square error vector magnitude (EVMRMS) parameter in accordance with the 3rd-Generation Partnership Project (3GPP) requirements. The experimental results demonstrate a total maximal theoretical throughput of approximately 1.66 Gbps, aligning with the digital performance requirements set by 3GPP. Full article
(This article belongs to the Special Issue Visible Light Communications (VLC) Networks)
Show Figures

Figure 1

19 pages, 1177 KB  
Article
Joint Divergence Angle of Free Space Optics (FSO) Link and UAV Trajectory Design in FSO-Based UAV-Enabled Wireless Power Transfer Relay Systems
by Jinho Kang
Photonics 2024, 11(12), 1136; https://doi.org/10.3390/photonics11121136 - 2 Dec 2024
Viewed by 1987
Abstract
Free Space Optics (FSO)-based UAV-enabled wireless power transfer (WPT) relay systems have emerged as a key technology for 6G networks, efficiently providing continuous power to Internet of Things (IoT) devices even in remote areas such as disaster recovery zones, maritime regions, and military [...] Read more.
Free Space Optics (FSO)-based UAV-enabled wireless power transfer (WPT) relay systems have emerged as a key technology for 6G networks, efficiently providing continuous power to Internet of Things (IoT) devices even in remote areas such as disaster recovery zones, maritime regions, and military networks, while addressing the limited battery capacity of UAVs through the FSO fronthaul link. However, the harvested power at the ground devices depends on the displacement and diameter of the FSO beam spot reaching the UAV, as well as the UAV trajectory, which affects both the FSO link and the radio-frequency (RF) link simultaneously. In this paper, we propose a joint design of the divergence angle in the FSO link and the UAV trajectory, in order to maximize the power transfer efficiency. Driven by the analysis of the optimal condition for the divergence angle, we develop a hybrid BS-PSO-based method to jointly optimize them while improving optimization performance. Numerical results demonstrate that the proposed method substantially increases power transfer efficiency and improves the optimization capability. Full article
Show Figures

Figure 1

10 pages, 1622 KB  
Proceeding Paper
Analysis of Conventional Direct Detection and Coherent Optical Receivers in Optical Access Networks
by Johanna Berenice Arguero Tello, Milton N. Tipán, Germán V. Arévalo and Christian Tipantuña
Eng. Proc. 2024, 77(1), 30; https://doi.org/10.3390/engproc2024077030 - 18 Nov 2024
Viewed by 2823
Abstract
This study evaluated the use of GFDM transmission in passive optical networks (PONs) by comparing the performance of coherent and non-coherent optical receivers using OptSim 2023.12sp2 and Matlab 2018b ®. The study concentrated on transmitting 10 Gb/s radio frequency signals over optical [...] Read more.
This study evaluated the use of GFDM transmission in passive optical networks (PONs) by comparing the performance of coherent and non-coherent optical receivers using OptSim 2023.12sp2 and Matlab 2018b ®. The study concentrated on transmitting 10 Gb/s radio frequency signals over optical fiber, emphasizing the significance of high-speed fronthaul links for 5G networks. The findings demonstrated that coherent detection markedly enhances receiver sensitivity by approximately 3 dB compared to direct detection, thereby augmenting the capacity of optical fronthaul networks despite the elevated cost. Additionally, the study recommended investigating pre- and post-compensation techniques to mitigate signal dispersion in optical fibers for further performance optimization. Full article
(This article belongs to the Proceedings of The XXXII Conference on Electrical and Electronic Engineering)
Show Figures

Figure 1

18 pages, 6131 KB  
Article
Quantum-Dash Semiconductor Optical Amplifier for Millimeter-Wave over Fibre Wireless Fronthaul Systems
by Xiaoran Xie, Youxin Mao, Chunying Song, Zhenguo Lu, Philip J. Poole, Jiaren Liu, Mia Toreja, Yang Qi, Guocheng Liu, Daniel Poitras, Penghui Ma, Pedro Barrios, John Weber, Ping Zhao, Martin Vachon, Mohamed Rahim, Xianling Chen, Ahmad Atieh, Xiupu Zhang and Jianping Yao
Photonics 2024, 11(9), 826; https://doi.org/10.3390/photonics11090826 - 1 Sep 2024
Cited by 1 | Viewed by 1477
Abstract
This paper demonstrates a five-layer InAs/InP quantum-dash semiconductor optical amplifier (QDash-SOA), which will be integrated into microwave-photonic on-chip devices for millimeter-wave (mmWave) over fibre wireless networking systems. A thorough investigation of the QDash-SOA is conducted regarding its communication performance at different temperatures, bias [...] Read more.
This paper demonstrates a five-layer InAs/InP quantum-dash semiconductor optical amplifier (QDash-SOA), which will be integrated into microwave-photonic on-chip devices for millimeter-wave (mmWave) over fibre wireless networking systems. A thorough investigation of the QDash-SOA is conducted regarding its communication performance at different temperatures, bias currents, and input powers. The investigation shows a fibre-to-fibre (FtF) small-signal gain of 18.79 dB and a noise figure of 6.3 dB. In a common application with a 300 mA bias current and 25 °C temperature, the peak FtF gain is located at 1507.8 nm, which is 17.68 dB, with 3 dB gain bandwidth of 56.6 nm. Furthermore, the QDash-SOA is verified in a mmWave radio-over-fibre link with QAM (32 Gb/s 64-QAM 4-GBaud) and OFDM (250 MHz 64-QAM) signals. The average error vector magnitude of the QAM and OFDM signals after a 2 m wireless link could be as low as 8.29% and 6.78%, respectively. These findings highlight the QDash-SOA’s potential as a key amplifying component in future integrated microwave-photonic on-chip devices. Full article
(This article belongs to the Section Optical Communication and Network)
Show Figures

Figure 1

29 pages, 1289 KB  
Article
Optical Wireless Fronthaul-Enhanced High-Throughput FC-AE-1553 Space Networks
by Xiang Chang, Xuzhi Li, Jianhua He, Yonghua Ma, Gen Li and Lu Lu
Photonics 2023, 10(12), 1331; https://doi.org/10.3390/photonics10121331 - 30 Nov 2023
Cited by 1 | Viewed by 1861
Abstract
Existing space application networks in space stations are mainly fiber-optic cable-based networks due to their low size, weight, and power (SWaP) values. While fiber networks in space stations offer data transmission at high speeds with minimal signal loss, their major disadvantage is the [...] Read more.
Existing space application networks in space stations are mainly fiber-optic cable-based networks due to their low size, weight, and power (SWaP) values. While fiber networks in space stations offer data transmission at high speeds with minimal signal loss, their major disadvantage is the lack of flexibility and mobility when new and unplanned space scientific equipment is added to the network. To enhance the flexibility of space networks while increasing their throughput, this paper introduces the hybrid space network (HSN), a new space network architecture that incorporates an optical wireless link, to meet the ever-increasing demands for larger bandwidth and higher mobile access capabilities in space scientific experiments. To best utilize the HSN’s system performance, we propose a multi-priority-based network scheduling scheme, which can dynamically adapt to the requirements of mass tasks and select the best transmission procedure. Through simulations, we find that by adding optical wireless communication (OWC) links to the state-of-the-art deterministic FC-AE-1553 space network, the HSN’s bandwidth can be increased by 20 times with an average latency reduction of 87.3%. We believe that the proposed HSN’s architecture may ultimately shape the future of space stations’ wireless connectivity, and in the meantime, innovate many advanced space applications with larger data rates and mobility requirements. Full article
(This article belongs to the Special Issue Enabling Technologies for Optical Communications and Networking)
Show Figures

Figure 1

14 pages, 2382 KB  
Article
Joint Resource Allocation in TWDM-PON-Enabled Cell-Free mMIMO System
by Tianyu Xue, Kamran Ali Memon and Chunguo Li
Photonics 2023, 10(11), 1180; https://doi.org/10.3390/photonics10111180 - 24 Oct 2023
Viewed by 1744
Abstract
Cell-free massive multiple input multiple outputs (CF-mMIMO) is considered a promising technology for sixth-generation (6G) telecommunication systems. In the CF-mMIMO system, an extensive array of distributed small base stations (BSs) is deployed across the network, which enables us to facilitate seamless collaboration among [...] Read more.
Cell-free massive multiple input multiple outputs (CF-mMIMO) is considered a promising technology for sixth-generation (6G) telecommunication systems. In the CF-mMIMO system, an extensive array of distributed small base stations (BSs) is deployed across the network, which enables us to facilitate seamless collaboration among BSs. To achieve this goal, the baseband signal from these BSs needs to be transmitted to a central server via fronthaul networks. Due to the large number of BSs, the data that needs to be transmitted is usually huge, which brings severe requirements on fronthaul networks. Time and wavelength division multiplexed passive optical networks (TWDM-PON) can be a potential solution for CF-mMIMO fronthaul due to their large capacity and high flexibility. However, how to efficiently allocate both optical and wireless resources in a TWDM-PON-enabled CF-mMIMO system is still a problem to be addressed. This paper proposes a joint scheduling method of wavelength, antenna, radio unit (RU), and radio resource block (RB) resources in the TWDM-PON-enabled CF-mMIMO system. Furthermore, an integer linear programming (ILP) model for joint resource allocation is proposed to minimize the fronthaul resource occupancy, thereby increasing network scalability. Considering the complexity of the ILP model, two heuristic algorithms are also presented to solve this model. We compare the ILP with heuristic algorithms under different scenarios. Simulation results show that the proposed algorithm can reduce the fronthaul resource occupancy to improve the network scalability of the CF-mMIMO system. Full article
(This article belongs to the Special Issue Next-Generation Passive Optical Networks: Progress and Challenges)
Show Figures

Figure 1

16 pages, 4295 KB  
Article
High-Capacity Free Space Optics-Based Passive Optical Network for 5G Front-Haul Deployment
by Rahat Ullah, Sibghat Ullah, Waqas A. Imtiaz, Jahangir Khan, Peer Meher Ali Shah, Muhammad Kamran, Jianxin Ren and Shuaidong Chen
Photonics 2023, 10(10), 1073; https://doi.org/10.3390/photonics10101073 - 24 Sep 2023
Cited by 22 | Viewed by 2651
Abstract
With the expansion of Information and Communication Technology, it is important to develop a communication network that can provide high-capacity ubiquitous connectivity. This work proposes an energy-efficient passive optical network (PON) using orthogonal frequency division multiple access (OFDMA) and wavelength division multiplexing (WDM) [...] Read more.
With the expansion of Information and Communication Technology, it is important to develop a communication network that can provide high-capacity ubiquitous connectivity. This work proposes an energy-efficient passive optical network (PON) using orthogonal frequency division multiple access (OFDMA) and wavelength division multiplexing (WDM) to facilitate the dense deployment of radio units (RUs) in a beyond 5G (B5G) communication network. High-speed connectivity is ensured by employing a hybrid PON architecture that includes a combination of free space optics (FSO) links and optical fiber (OF) media to carry OFDM and WDM multiplexed traffic. Furthermore, an optical frequency comb generator (OFCG) is utilized at the transmitter module to generate and leverage the spectrum for transmitting information from baseband units (BBUs) to the RUs situated near the end users. The proposed system is analyzed through (i) simulation analysis using Optisystem for transmission capacity computations and (ii) mathematical analysis to determine the total savings in energy. The simulation analysis shows that the given architecture can carry data across 3 km of FSO medium using 512 subcarriers per BBU transmitting at 10 Gbps of data with QPSK-modulated bit sequence. Additionally, energy efficiency shows that the use of an OFCG cuts the total energy usage by 22% at the transmitter module without negatively impacting the system’s high cardinality and transmission capacity. Full article
(This article belongs to the Special Issue Novel Advances in Optical Communications)
Show Figures

Figure 1

Back to TopTop