Sign in to use this feature.

Years

Between: -

Subjects

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = optic–electric composite high-voltage submarine cable

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4135 KiB  
Article
Temperature Estimation Method on Optic–Electric Composite Submarine Power Cable Based on Optical Fiber Distributed Sensing
by Chao Luo, Zhitao Feng, Yihua Zhu, Yuyan Liu, Yi Zhang, Ying Zhou, Muning Zhang and Lijuan Zhao
Photonics 2025, 12(6), 622; https://doi.org/10.3390/photonics12060622 - 19 Jun 2025
Viewed by 263
Abstract
The status of an optic–electric composite high-voltage submarine cable (referred to as submarine cable) can be monitored based on optical fiber-distributed sensing technology, and at the same time, no additional sensor is needed in the monitoring system. Currently, this technology is widely used [...] Read more.
The status of an optic–electric composite high-voltage submarine cable (referred to as submarine cable) can be monitored based on optical fiber-distributed sensing technology, and at the same time, no additional sensor is needed in the monitoring system. Currently, this technology is widely used in submarine cable monitoring systems. To estimate the temperatures of conductor and XLPE (cross-linked polyethylene) insulation of the submarine cable based on the ambient temperature and optical fiber temperature, the thermoelectric coupling field model of the 110 kV single-core submarine cable is established and validated. The thermoelectric coupling field models of the submarine cable with different values of ambient temperature and ampacity are built, and the influence of ambient temperature and ampacity on the temperatures of conductor, insulation and optical fiber is investigated. Furthermore, the relationship between the temperatures of the conductor and insulation and the ambient temperature and optical fiber temperature is obtained. Then, estimation formulas for temperatures of conductor and insulation of submarine cable according to ambient temperature and optical fiber temperature are obtained and preliminarily validated. This work lays the foundation for condition evaluation of the submarine cable insulation, life expectancy and maximum allowable ampacity estimation. Full article
(This article belongs to the Special Issue Advances in Optical Fiber Sensing Technology)
Show Figures

Figure 1

Back to TopTop