Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (457)

Search Parameters:
Keywords = operation waiting times

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1090 KiB  
Article
Inbound Truck Scheduling for Workload Balancing in Cross-Docking Terminals
by Younghoo Noh, Seokchan Lee, Jeongyoon Hong, Jeongeum Kim and Sung Won Cho
Mathematics 2025, 13(15), 2533; https://doi.org/10.3390/math13152533 - 6 Aug 2025
Abstract
The rapid growth of e-commerce and advances in information and communication technologies have placed increasing pressure on last-mile delivery companies to enhance operational productivity. As investments in logistics infrastructure require long-term planning, maximizing the efficiency of existing terminal operations has become a critical [...] Read more.
The rapid growth of e-commerce and advances in information and communication technologies have placed increasing pressure on last-mile delivery companies to enhance operational productivity. As investments in logistics infrastructure require long-term planning, maximizing the efficiency of existing terminal operations has become a critical priority. This study proposes a mathematical model for inbound truck scheduling that simultaneously minimizes truck waiting times and balances workload across temporary inventory storage located at outbound chutes in cross-docking terminals. The model incorporates a dynamic rescheduling strategy that updates the assignment of inbound trucks in real time, based on the latest terminal conditions. Numerical experiments, based on real operational data, demonstrate that the proposed approach significantly outperforms conventional strategies such as First-In First-Out (FIFO) and Random assignment in terms of both load balancing and truck turnaround efficiency. In particular, the proposed model improves workload balance by approximately 10% and 12% compared to the FIFO and Random strategies, respectively, and it reduces average truck waiting time by 17% and 18%, thereby contributing to more efficient workflow and alleviating bottlenecks. The findings highlight the practical potential of the proposed strategy for improving the responsiveness and efficiency of parcel distribution centers operating under fixed infrastructure constraints. Future research may extend the proposed approach by incorporating realistic operational factors, such as cargo heterogeneity, uncertain arrivals, and terminal shutdowns due to limited chute storage. Full article
20 pages, 2800 KiB  
Article
An Enhanced NSGA-II Driven by Deep Reinforcement Learning to Mixed Flow Assembly Workshop Scheduling System with Constraints of Continuous Processing and Mold Changing
by Bihao Yang, Jie Chen, Xiongxin Xiao, Sidi Li and Teng Ren
Systems 2025, 13(8), 659; https://doi.org/10.3390/systems13080659 - 4 Aug 2025
Abstract
Mixed-flow assembly lines are widely employed in industrial manufacturing to handle diverse production tasks. For mixed flow assembly lines that involve mold changes and greater processing difficulties, there are currently two approaches: batch production and production according to order sequence. The first approach [...] Read more.
Mixed-flow assembly lines are widely employed in industrial manufacturing to handle diverse production tasks. For mixed flow assembly lines that involve mold changes and greater processing difficulties, there are currently two approaches: batch production and production according to order sequence. The first approach struggles to meet the processing constraints of workpieces with higher production difficulty, while the second approach requires the development of suitable scheduling schemes to balance mold changes and continuous processing. Therefore, under the second approach, developing an excellent scheduling scheme is a challenging problem. This study addresses the mixed-flow assembly shop scheduling problem, considering continuous processing and mold-changing constraints, by developing a multi-objective optimization model to minimize additional production time and customer waiting time. As this NP-hard problem poses significant challenges in solution space exploration, the conventional NSGA-II algorithm suffers from limited local search capability. To address this, we propose an enhanced NSGA-II algorithm (RLVNS-NSGA-II) integrating deep reinforcement learning. Our approach combines multiple neighborhood search operators with deep reinforcement learning, which dynamically utilizes population diversity and objective function data to guide and strengthen local search. Simulation experiments confirm that the proposed algorithm surpasses existing methods in local search performance. Compared to VNS-NSGA-II and SVNS-NSGA-II, the RLVNS-NSGA-II algorithm achieved hypervolume improvements ranging from 19.72% to 42.88% and 12.63% to 31.19%, respectively. Full article
(This article belongs to the Section Systems Engineering)
Show Figures

Figure 1

24 pages, 3500 KiB  
Article
Optimized Collaborative Routing for UAVs and Ground Vehicles in Integrated Logistics Systems
by Hafiz Muhammad Rashid Nazir, Yanming Sun and Yongjun Hu
Drones 2025, 9(8), 538; https://doi.org/10.3390/drones9080538 - 30 Jul 2025
Viewed by 191
Abstract
This study investigates the optimization of urban parcel delivery by integrating logistics vehicles and onboard drones within a static road network. A centralized delivery hub is responsible for coordinating both modes of transport to minimize total vehicle operation costs and customer waiting times. [...] Read more.
This study investigates the optimization of urban parcel delivery by integrating logistics vehicles and onboard drones within a static road network. A centralized delivery hub is responsible for coordinating both modes of transport to minimize total vehicle operation costs and customer waiting times. A simulation-based framework is developed to accurately model the delivery process. An enhanced Ant Colony Optimization (ACO) algorithm is proposed, incorporating a multi-objective formulation to improve route planning efficiency. Additionally, a scheduling algorithm is designed to synchronize the operations of multiple delivery bikes and drones, ensuring coordinated execution. The proposed integrated approach yields substantial improvements in both cost and service efficiency. Simulation results demonstrate a 16% reduction in vehicle operation costs and an 8% decrease in average customer waiting times relative to benchmark methods, indicating the practical applicability of the approach in urban logistics scenarios. Full article
Show Figures

Figure 1

19 pages, 2103 KiB  
Article
Airport Field Path Optimization Method Based on Conflict Hotspot Avoidance Mechanism
by Wen Tian, Mingjian Yang, Xuefang Zhou, Jianan Yin and Xv Shi
Appl. Sci. 2025, 15(15), 8204; https://doi.org/10.3390/app15158204 - 23 Jul 2025
Viewed by 166
Abstract
The state path optimization model, alongside strategies like slowing down and waiting, aims to identify optimal aircraft routes that minimize the total taxi time and prevent conflicts. Optimization reduces taxiing times for aircraft YZR7537, CES2558, and CSZ9806, while slightly increasing the times for [...] Read more.
The state path optimization model, alongside strategies like slowing down and waiting, aims to identify optimal aircraft routes that minimize the total taxi time and prevent conflicts. Optimization reduces taxiing times for aircraft YZR7537, CES2558, and CSZ9806, while slightly increasing the times for CSN6310 and CSN3210 due to conflict hotspot avoidance measures. This approach also decreases the number of aircraft passing through key conflict hotspots, effectively reducing both conflicts and risk levels in these areas. Consequently, the total taxiing time for the optimized aircraft is cut by 53 s, enhancing airport operational efficiency. The proposed model serves as a theoretical foundation for developing an intelligent airport operation management system. Full article
Show Figures

Figure 1

20 pages, 3233 KiB  
Article
A Two-Stage Optimization Framework for UAV Fleet Sizing and Task Allocation in Emergency Logistics Using the GWO and CBBA
by Yongchao Zhang, Wei Xu, Helin Ye and Zhuoyong Shi
Drones 2025, 9(7), 501; https://doi.org/10.3390/drones9070501 - 16 Jul 2025
Viewed by 321
Abstract
The joint optimization of fleet size and task allocation presents a critical challenge in deploying Unmanned Aerial Vehicles (UAVs) for time-sensitive missions such as emergency logistics. Conventional approaches often rely on pre-determined fleet sizes or computationally intensive centralized optimizers, which can lead to [...] Read more.
The joint optimization of fleet size and task allocation presents a critical challenge in deploying Unmanned Aerial Vehicles (UAVs) for time-sensitive missions such as emergency logistics. Conventional approaches often rely on pre-determined fleet sizes or computationally intensive centralized optimizers, which can lead to suboptimal performance. To address this gap, this paper proposes a novel two-stage hierarchical framework that integrates the Grey Wolf Optimizer (GWO) with the Consensus-Based Bundle Algorithm (CBBA). At the strategic level, the GWO determines the optimal number of UAVs by minimizing a comprehensive cost function that balances mission efficiency and operational costs. Subsequently, at the tactical level, the CBBA performs decentralized, real-time task allocation for the optimally sized fleet. We validated our GWO-CBBA framework through extensive simulations against three benchmarks: a standard CBBA with a fixed fleet, a centralized Particle Swarm Optimization (PSO) approach, and a Greedy Heuristic algorithm. The results are compelling: our framework demonstrates superior performance across all key metrics, reducing the overall scheduling cost by 13.2–36.5%, minimizing UAV mileage cost and significantly decreasing total task waiting time. This work provides a robust and efficient solution that effectively balances operational costs with service quality for dynamic multi-UAV scheduling problems. Full article
Show Figures

Figure 1

17 pages, 3483 KiB  
Article
A Feasibility Study of a Virtual Power Line Device to Improve Hosting Capacity in Renewable Energy Sources
by Seong-Eun Rho, Sung-Moon Choi, Joong-Seon Lee, Hyun-Sang You, Seung-Ho Lee and Dae-Seok Rho
Energies 2025, 18(14), 3714; https://doi.org/10.3390/en18143714 - 14 Jul 2025
Viewed by 283
Abstract
As many renewable energy sources have been waiting to be interconnected with distribution systems due to the lack of power system infrastructure in Korea, studies to solve the delayed problem for renewable energy sources required. In order to overcome these problems, this paper [...] Read more.
As many renewable energy sources have been waiting to be interconnected with distribution systems due to the lack of power system infrastructure in Korea, studies to solve the delayed problem for renewable energy sources required. In order to overcome these problems, this paper presents an introduction model and optimal capacity algorithm of a VPL (virtual power line) device, which is a virtual power line operation technology to manage the power system by operating an ESS installed at the coupling point of renewable energy source without additionally expanding the power system infrastructure in a conventional way; this paper also proposes an economic evaluation method to assess the feasibility of the VPL device. The optimal capacity of the VPL device is determined by solving the over-voltage problem for the customer, and the economic evaluation method for the VPL device is considered by cost and benefit elements to evaluate the feasibility of introduction model for VPL device. From the simulation result of the proposed optimal capacity algorithm and economic evaluation method based on the introduction model in the VPL device, and it was confirmed that the optimal kW capacity of VPL device was selected as the maximum value in power control values, and the optimal kWh capacity was also determined by accumulating the power control values over the time intervals; also, the proper capacity of the VPL can be more economical than the investment cost of power system infrastructure expansion in the conventional method. Full article
(This article belongs to the Special Issue Stationary Energy Storage Systems for Renewable Energies)
Show Figures

Figure 1

21 pages, 1830 KiB  
Article
Optimization Model of Express–Local Train Schedules Under Cross-Line Operation of Suburban Railway
by Jingyi Zhu, Xin Guo and Jianju Pan
Appl. Sci. 2025, 15(14), 7853; https://doi.org/10.3390/app15147853 - 14 Jul 2025
Viewed by 224
Abstract
Cross-line operation and express–local train coordination are both crucial for enhancing the efficiency of multi-level urban rail transit systems. Most studies address suburban railway operations in isolation, overlooking coordination and inducing supply–demand mismatches that weaken system efficiency. This study addresses the joint optimization [...] Read more.
Cross-line operation and express–local train coordination are both crucial for enhancing the efficiency of multi-level urban rail transit systems. Most studies address suburban railway operations in isolation, overlooking coordination and inducing supply–demand mismatches that weaken system efficiency. This study addresses the joint optimization of cross-line operation and express–local scheduling by proposing a novel train timetable model. The model determines train service plans and departure times to minimize total system cost, including train operating and passenger travel costs. A space–time network represents integrated train–passenger interactions, and an extended adaptive large neighborhood search (E-ALNS) algorithm is developed to solve the model efficiently. Numerical experiments verify the effectiveness of the proposed approach. The E-ALNS achieves near-optimal solutions with less than 4% deviation from Gurobi. Comparative analysis shows that the proposed hybrid operation mode reduces total passenger travel cost by 6% and improves the cost efficiency ratio by 13% compared to independent operations. Sensitivity analyses further confirm the model’s robustness to variations in transfer walking time, passenger penalties, and waiting thresholds. This study provides a practical and scalable framework for optimizing train timetables in complex cross-line transit systems, offering insights for enhancing system coordination and passenger service quality. Full article
(This article belongs to the Section Transportation and Future Mobility)
Show Figures

Figure 1

16 pages, 2435 KiB  
Article
Optimum Equipment Allocation Under Discrete Event Simulation for an Efficient Quarry Mining Process
by Hyunho Lee and Sojung Kim
Processes 2025, 13(7), 2215; https://doi.org/10.3390/pr13072215 - 10 Jul 2025
Viewed by 357
Abstract
This study presents a discrete event simulation model to minimize operating costs in quarry mining processes by determining the optimal allocation of backhoes and dump trucks, which are the primary mining equipment. The modeling focuses on four principal vehicle types (24-ton dump truck, [...] Read more.
This study presents a discrete event simulation model to minimize operating costs in quarry mining processes by determining the optimal allocation of backhoes and dump trucks, which are the primary mining equipment. The modeling focuses on four principal vehicle types (24-ton dump truck, 2.0 m3 backhoe, 41-ton dump truck, 4.64 m3 backhoe) commonly deployed in quarry mining. The simulation replicates the sequential mining stages involving soil removal, rock ripping (weathered rock or weathered soil), and blasting operations. This methodology is applied to a case study of mining process planning under resource constraints, incorporating real-world quarry conditions in South Korea. Results demonstrate that optimizing the number of equipment units reduces construction costs and shortens the construction period by decreasing dump truck waiting times. When the number of backhoes is limited to 10 during operations, findings indicate an increase in costs and a gradual decline in net profit. Additionally, the interaction between the 24-ton and 41-ton dump trucks is shown to influence the optimal allocation strategy. The simulation-based optimization executes iterative experiments for each scenario, yielding statistically robust results within a 95% confidence interval, thereby supporting informed decision-making for managers. Full article
(This article belongs to the Special Issue Modeling and Optimization for Multi-scale Integration)
Show Figures

Figure 1

30 pages, 6991 KiB  
Article
A Hybrid EV Charging Approach Based on MILP and a Genetic Algorithm
by Syed Abdullah Al Nahid and Junjian Qi
Energies 2025, 18(14), 3656; https://doi.org/10.3390/en18143656 - 10 Jul 2025
Viewed by 348
Abstract
Uncoordinated electric vehicle (EV) charging can significantly complicate power system operations. In this paper, we develop a hybrid EV charging method that seamlessly integrates centralized EV charging and distributed control schemes to address EV energy demand challenges. The proposed method includes (1) a [...] Read more.
Uncoordinated electric vehicle (EV) charging can significantly complicate power system operations. In this paper, we develop a hybrid EV charging method that seamlessly integrates centralized EV charging and distributed control schemes to address EV energy demand challenges. The proposed method includes (1) a centralized day-ahead optimal scheduling mechanism and EV shifting process based on mixed-integer linear programming (MILP) and (2) a distributed control strategy based on a genetic algorithm (GA) that dynamically adjusts the charging rate in real-time grid scenarios. The MILP minimizes energy imbalance at overloaded slots by reallocating EVs based on supply–demand mismatch. By combining full and minimum charging strategies with MILP-based shifting, the method significantly reduces network stress due to EV charging. The centralized model schedules time slots using valley-filling and EV-specific constraints, and the local GA-based distributed control adjusts charging currents based on minimum energy, system availability, waiting time, and a priority index (PI). This PI enables user prioritization in both the EV shifting process and power allocation decisions. The method is validated using demand data on a radial feeder with residential and commercial load profiles. Simulation results demonstrate that the proposed hybrid EV charging framework significantly improves grid-level efficiency and user satisfaction. Compared to the baseline without EV integration, the average-to-peak demand ratio is improved from 61% to 74% at Station-A, from 64% to 80% at Station-B, and from 51% to 63% at Station-C, highlighting enhanced load balancing. The framework also ensures that all EVs receive energy above their minimum needs, achieving user satisfaction scores of 88.0% at Stations A and B and 81.6% at Station C. This study underscores the potential of hybrid charging schemes in optimizing energy utilization while maintaining system reliability and user convenience. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

17 pages, 1101 KiB  
Article
Ship Scheduling Algorithm Based on Markov-Modulated Fluid Priority Queues
by Jianzhi Deng, Shuilian Lv, Yun Li, Liping Luo, Yishan Su, Xiaolin Wang and Xinzhi Liu
Algorithms 2025, 18(7), 421; https://doi.org/10.3390/a18070421 - 8 Jul 2025
Viewed by 216
Abstract
As a key node in port logistics systems, ship anchorage is often faced with congestion caused by ship flow fluctuations, multi-priority scheduling imbalances and the poor adaptability of scheduling models to complex environments. To solve the above problems, this paper constructs a ship [...] Read more.
As a key node in port logistics systems, ship anchorage is often faced with congestion caused by ship flow fluctuations, multi-priority scheduling imbalances and the poor adaptability of scheduling models to complex environments. To solve the above problems, this paper constructs a ship scheduling algorithm based on a Markov-modulated fluid priority queue, which describes the stochastic evolution of the anchorage operation state via a continuous-time Markov chain and abstracts the arrival and service processes of ships into a continuous fluid input and output mechanism modulated by the state. The algorithm introduces a multi-priority service strategy to achieve the differentiated scheduling of different types of ships and improves the computational efficiency and scalability based on a matrix analysis method. Simulation results show that the proposed model reduces the average waiting time of ships by more than 90% compared with the M/G/1/1 and RL strategies and improves the utilization of anchorage resources by about 20% through dynamic service rate adjustment, showing significant advantages over traditional scheduling methods in multi-priority scenarios. Full article
Show Figures

Figure 1

20 pages, 3139 KiB  
Article
Data-Driven Optimization of CNC Manufacturing Using Simulation and DOE Techniques
by Vijay Sevella, Ahad Ali, Abdelhakim Abdelhadi and Ahmad Alkhaleefah
Appl. Sci. 2025, 15(14), 7637; https://doi.org/10.3390/app15147637 - 8 Jul 2025
Viewed by 358
Abstract
In the highly competitive manufacturing environment of today, operational success depends on increasing efficiency and cutting waste. The goal of this research is to use Arena simulation software to model a CNC production system to assess and improve system performance. Three different parts [...] Read more.
In the highly competitive manufacturing environment of today, operational success depends on increasing efficiency and cutting waste. The goal of this research is to use Arena simulation software to model a CNC production system to assess and improve system performance. Three different parts are processed by the model, which also includes rework loops in which a portion of faulty products are sent back for further processing. Finding bottlenecks, evaluating important performance metrics such as output, queue lengths, waiting times, and machine utilization, and testing improvement scenarios are the primary goals. Study findings indicate that waiting times were greatly shortened and resource usage was balanced in alternative scenarios, which were accomplished by shifting workloads, line balancing, and modifying inter-arrival durations. The results demonstrate how well simulation can represent and resolve inefficiencies in intricate industrial systems. Manufacturers may optimize manufacturing processes without interfering with ongoing operations thanks to this method, which encourages educated decision-making. Full article
Show Figures

Figure 1

23 pages, 1794 KiB  
Article
Dynamic Rescheduling Strategy for Passenger Congestion Balancing in Airport Passenger Terminals
by Yohan Lee, Seung Chan Choi, Keyju Lee and Sung Won Cho
Mathematics 2025, 13(13), 2208; https://doi.org/10.3390/math13132208 - 7 Jul 2025
Viewed by 412
Abstract
Airports are facing significant challenges due to the increasing number of air travel passengers. After a significant downturn during the COVID-19 pandemic, airports are implementing measures to enhance security and improve their level of service in response to rising demand. However, the rising [...] Read more.
Airports are facing significant challenges due to the increasing number of air travel passengers. After a significant downturn during the COVID-19 pandemic, airports are implementing measures to enhance security and improve their level of service in response to rising demand. However, the rising passenger volume has led to increased congestion and longer waiting times, undermining operational efficiency and passenger satisfaction. While most previous studies have focused on static modeling or infrastructure improvements, few have addressed the problem of dynamically allocating passengers in real-time. To tackle this issue, this study proposes a mathematical model with a dynamic rescheduling framework to balance the workload across multiple departure areas where security screening takes place, while minimizing the negative impact on passenger satisfaction resulting from increased walking distances. The proposed model strategically allocates departure areas for passengers in advance, utilizing data-based predictions. A mixed integer linear programming (MILP) model was developed and evaluated through discrete event simulation (DES). Real operational data provided by Incheon International Airport Corporation (IIAC) were used to validate the model. Comparative simulations against four baseline strategies demonstrated superior performance in balancing workload, reducing waiting passengers, and minimizing walking distances. In conclusion, the proposed model has the potential to enhance the efficiency of the security screening stage in the passenger departure process. Full article
Show Figures

Figure 1

27 pages, 1599 KiB  
Article
Optimization of Combined Urban Rail Transit Operation Modes Based on Intelligent Algorithms Under Spatiotemporal Passenger Imbalance
by Weisong Han, Zhihan Shi, Xiaodong Lv and Guangming Zhang
Sustainability 2025, 17(13), 6178; https://doi.org/10.3390/su17136178 - 5 Jul 2025
Viewed by 434
Abstract
With increasing attention to sustainability and energy efficiency in transportation systems, advanced intelligent algorithms provide promising solutions for optimizing urban rail transit operations. This study addresses the challenge of optimizing train operation plans for urban rail transit systems characterized by spatiotemporal passenger flow [...] Read more.
With increasing attention to sustainability and energy efficiency in transportation systems, advanced intelligent algorithms provide promising solutions for optimizing urban rail transit operations. This study addresses the challenge of optimizing train operation plans for urban rail transit systems characterized by spatiotemporal passenger flow imbalance. By exploring a combined short-turning and unpaired train operation mode, a three-objective optimization model was established, aiming to minimize operational costs, reduce passenger waiting times, and enhance load balancing. To effectively solve this complex problem, an Improved GOOSE (IGOOSE) algorithm incorporating elite opposition-based learning, probabilistic exploration based on elite solutions, and golden-sine mutation strategies were developed, significantly enhancing global search capability and solution robustness. A case study based on real operational data adjusted for confidentiality was conducted, and comparative analyses with Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Grey Wolf Optimizer (GWO) demonstrated the superiority of IGOOSE. Furthermore, an ablation study validated the effectiveness of each enhancement strategy within the IGOOSE algorithm. The optimized operation planning model reduced passenger waiting times by approximately 12.72%, improved load balancing by approximately 39.30%, and decreased the overall optimization objective by approximately 10.25%, highlighting its effectiveness. These findings provide valuable insights for urban rail transit operation management and indicate directions for future research, underscoring the significant potential for energy savings and emission reductions toward sustainable urban development. Full article
Show Figures

Figure 1

21 pages, 1644 KiB  
Article
Fuzzy-Based Control System for Solar-Powered Bulk Service Queueing Model with Vacation
by Radhakrishnan Keerthika, Subramani Palani Niranjan and Sorin Vlase
Appl. Sci. 2025, 15(13), 7547; https://doi.org/10.3390/app15137547 - 4 Jul 2025
Viewed by 301
Abstract
This study proposes a Fuzzy-Based Control System (FBCS) for a Bulk Service Queueing Model with Vacation, designed to optimize service performance by dynamically adjusting system parameters. The queueing model is categorized into three service levels: (A) High Bulk Service, where a large number [...] Read more.
This study proposes a Fuzzy-Based Control System (FBCS) for a Bulk Service Queueing Model with Vacation, designed to optimize service performance by dynamically adjusting system parameters. The queueing model is categorized into three service levels: (A) High Bulk Service, where a large number of arrivals are processed simultaneously; (B) Medium Single Service, where individual packets are handled at a moderate rate; and (C) Low Vacation, where the server takes minimal breaks to maintain efficiency. The Mamdani Inference System (MIS) is implemented to regulate key parameters, such as service rate, bulk size, and vacation duration, based on input variables including queue length, arrival rate, and server utilization. The Mamdani-based fuzzy control mechanism utilizes rule-based reasoning to ensure adaptive decision-making, effectively balancing system performance under varying conditions. By integrating bulk service with a controlled vacation policy, the model achieves an optimal trade-off between processing efficiency and resource utilization. This study examines the effects of fuzzy-based control on key performance metrics, including queue stability, waiting time, and system utilization. The results indicate that the proposed approach enhances operational efficiency and service continuity compared to traditional queueing models. Full article
Show Figures

Figure 1

16 pages, 3186 KiB  
Article
AI-Driven Framework for Secure and Efficient Load Management in Multi-Station EV Charging Networks
by Md Sabbir Hossen, Md Tanjil Sarker, Marran Al Qwaid, Gobbi Ramasamy and Ngu Eng Eng
World Electr. Veh. J. 2025, 16(7), 370; https://doi.org/10.3390/wevj16070370 - 2 Jul 2025
Viewed by 495
Abstract
This research introduces a comprehensive AI-driven framework for secure and efficient load management in multi-station electric vehicle (EV) charging networks, responding to the increasing demand and operational difficulties associated with widespread EV adoption. The suggested architecture has three main parts: a Smart Load [...] Read more.
This research introduces a comprehensive AI-driven framework for secure and efficient load management in multi-station electric vehicle (EV) charging networks, responding to the increasing demand and operational difficulties associated with widespread EV adoption. The suggested architecture has three main parts: a Smart Load Balancer (SLB), an AI-driven intrusion detection system (AIDS), and a Real-Time Analytics Engine (RAE). These parts use advanced machine learning methods like Support Vector Machines (SVMs), autoencoders, and reinforcement learning (RL) to make the system more flexible, secure, and efficient. The framework uses federated learning (FL) to protect data privacy and make decisions in a decentralized way, which lowers the risks that come with centralizing data. The framework makes load distribution 23.5% more efficient, cuts average wait time by 17.8%, and predicts station-level demand with 94.2% accuracy, according to simulation results. The AI-based intrusion detection component has precision, recall, and F1-scores that are all over 97%, which is better than standard methods. The study also finds important gaps in the current literature and suggests new areas for research, such as using graph neural networks (GNNs) and quantum machine learning to make EV charging infrastructures even more scalable, resilient, and intelligent. Full article
Show Figures

Figure 1

Back to TopTop