Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (587)

Search Parameters:
Keywords = one phase transition separation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 6312 KB  
Review
Early Insights into AI and Machine Learning Applications in Hydrogel Microneedles: A Short Review
by Jannah Urifa and Kwok Wei Shah
Micro 2025, 5(4), 48; https://doi.org/10.3390/micro5040048 (registering DOI) - 31 Oct 2025
Abstract
Hydrogel microneedles (HMNs) act as non-invasive devices that can effortlessly merge with the human body for drug delivery and diagnostic purposes. Nonetheless, their improvement is limited by intricate and repetitive issues related to material composition, structural geometry, manufacturing accuracy, and performance enhancement. At [...] Read more.
Hydrogel microneedles (HMNs) act as non-invasive devices that can effortlessly merge with the human body for drug delivery and diagnostic purposes. Nonetheless, their improvement is limited by intricate and repetitive issues related to material composition, structural geometry, manufacturing accuracy, and performance enhancement. At present, there are only a limited number of studies accessible since artificial intelligence and machine learning (AI/ML) for HMN are just starting to emerge and are in the initial phase. Data is distributed across separate research efforts, spanning different fields. This review aims to tackle the disjointed and narrowly concentrated aspects of current research on AI/ML applications in HMN technologies by offering a cohesive, comprehensive synthesis of interdisciplinary insights, categorized into five thematic areas: (1) material and microneedle design, (2) diagnostics and therapy, (3) drug delivery, (4) drug development, and (5) health and agricultural sensing. For each domain, we detail typical AI methods, integration approaches, proven advantages, and ongoing difficulties. We suggest a systematic five-stage developmental pathway covering material discovery, structural design, manufacturing, biomedical performance, and advanced AI integration, intended to expedite the transition of HMNs from research ideas to clinically and commercially practical systems. The findings of this review indicate that AI/ML can significantly enhance HMN development by addressing design and fabrication constraints via predictive modeling, adaptive control, and process optimization. By synchronizing these abilities with clinical and commercial translation requirements, AI/ML can act as key facilitators in converting HMNs from research ideas into scalable, practical biomedical solutions. Full article
Show Figures

Figure 1

23 pages, 9559 KB  
Article
Terminal Guidance Based on an Online Ground Track Predictor for Uncrewed Space Vehicles
by Zhengyou Wen, Yu Zhang and Liaoni Wu
Drones 2025, 9(11), 750; https://doi.org/10.3390/drones9110750 - 29 Oct 2025
Viewed by 157
Abstract
This paper proposes a terminal area energy management (TAEM) guidance system using an online ground track predictor (GTP) for an uncrewed space vehicle (USV). Based on the current geometric range method for each separate phase, we establish a real-time range-to-go calculation method for [...] Read more.
This paper proposes a terminal area energy management (TAEM) guidance system using an online ground track predictor (GTP) for an uncrewed space vehicle (USV). Based on the current geometric range method for each separate phase, we establish a real-time range-to-go calculation method for generating reference commands online. The method ensures continuous range-to-go variation through status flags and an integrated range, thereby avoiding sudden command changes at subphase transitions, which may reduce longitudinal tracking stability. To enhance adaptability in an initial low-energy state, the system tracks the low-energy reference trajectory to provide an additional lift-to-drag margin, thus preventing an overly low terminal velocity. The results of numerical simulations with multiple uncertainties validate the proposed guidance strategy. Moreover, the flight test results confirm its ability to direct the USV to the target position with the desired energy state in real-world conditions. Full article
Show Figures

Figure 1

17 pages, 1383 KB  
Article
Determination of Gnetol in Murine Biological Matrices by Liquid Chromatography–Tandem Mass Spectrometry (LC–MS/MS): Application in a Biodistribution Study
by Boyu Liao, Hongrui Jin, Huan Chen, Yuxin Zhang, Xuexian Deng, Jingyi Yao, Na Li, Shaoshu Xu, Jingbo Wang, Mingming Gao, Xiaoying Zhang, Paul C. L. Ho, Hui Liu and Hai-Shu Lin
Int. J. Mol. Sci. 2025, 26(21), 10358; https://doi.org/10.3390/ijms262110358 - 24 Oct 2025
Viewed by 217
Abstract
Gnetol (trans-2,3′,5′,6-tetrahydroxystilbene), a naturally occurring stilbene structurally related to resveratrol (trans-3,5,4′-trihydroxystilbene; RES), has been reported to possess multiple health-promoting activities. In order to support its potential nutraceutical application, a reliable chromatography–tandem mass spectrometry (LC–MS/MS) assay was developed and validated [...] Read more.
Gnetol (trans-2,3′,5′,6-tetrahydroxystilbene), a naturally occurring stilbene structurally related to resveratrol (trans-3,5,4′-trihydroxystilbene; RES), has been reported to possess multiple health-promoting activities. In order to support its potential nutraceutical application, a reliable chromatography–tandem mass spectrometry (LC–MS/MS) assay was developed and validated for the quantitative determination of gnetol in mouse plasma and tissue samples, using isotopically labeled RES-13C6 serving as the internal standard (IS). Electrospray ionization (ESI) was performed in negative mode, with multiple reaction monitoring (MRM) transitions m/z 243.2 → 175.0 for gnetol and m/z 233.1 → 191.0 for the IS. Chromatographic separation was achieved on a reversed-phase HPLC column using a 5-min gradient delivery of acetonitrile and 2 mM ammonium acetate at 0.5 mL/min and 40 °C. The linear calibration curve covered the concentration range of 5.0–1500 ng/mL, and the method validation confirmed its selectivity, accuracy, precision, stability, and dilution integrity. The developed method was subsequently applied to a biodistribution study in mice after oral administration of gnetol at 400 µmol/kg (equivalent to 97.7 mg/kg). Gnetol was rapidly absorbed and extensively distributed in key pharmacologically relevant organs. Despite its poor aqueous solubility, oral uptake was not significantly hindered. Collectively, these findings demonstrate that gnetol exhibits favorable absorption and tissue distribution profiles, supporting its promise as a candidate for nutraceutical development. Full article
(This article belongs to the Special Issue Bioactive Phenolics and Polyphenols 2025)
Show Figures

Figure 1

18 pages, 1595 KB  
Article
Heat Capacity and Thermodynamic Properties of Photocatalitic Bismuth Tungstate, Bi2WO6
by Bogusław Onderka and Anna Kula
Metals 2025, 15(11), 1174; https://doi.org/10.3390/met15111174 - 23 Oct 2025
Viewed by 164
Abstract
The photocatalytic activity of Bi2WO6 Aurivillius phase has been widely exploited for the degradation of a wide range of gaseous and aqueous molecules, as well as microorganisms, under the influence of visible irradiation. Strategies for the development of doped and [...] Read more.
The photocatalytic activity of Bi2WO6 Aurivillius phase has been widely exploited for the degradation of a wide range of gaseous and aqueous molecules, as well as microorganisms, under the influence of visible irradiation. Strategies for the development of doped and co-doped bismuth tungstate materials require the thermodynamic data on this phase. The heat capacity of bismuth tungstate, Bi2WO6, was investigated using a DSC microcalorimeter on polycrystalline powder samples in the temperature range from 313 to 1103 K (40–830 °C) in two separate runs. The samples were synthesized by solid-state reaction from pure binary oxides at 1033 K (760 °C) in a platinum crucible with cover. The high temperature Cp(T) data were fitted by the Maier–Kelley equation and, from this relation, the standard molar heat capacity of γ-Bi2WO6 polymorph was estimated to be at 298.15 K 176.8 ± 3.9 J·K−1·mol−1. A reversible second-order transition of Bi2WO6 phase was observed in the experimental temperature range, with a peak close to 940 K (667 °C). Additionally, the extrapolation of Cp(T) to 0 K was proposed using a method based on the multiple Einstein model. Thermodynamic properties (heat capacity Cp(T), entropy S°(T), enthalpy H°(T), Gibbs energy G°(T)) of crystalline γ-Bi2WO6 were calculated in the temperature range of 298.15–1123 K (25–850 °C). Full article
(This article belongs to the Section Extractive Metallurgy)
Show Figures

Graphical abstract

17 pages, 1441 KB  
Review
Remodeling of Germ Cell mRNPs for Translational Control
by Brett D. Keiper and Hayden P. Huggins
Biology 2025, 14(10), 1430; https://doi.org/10.3390/biology14101430 - 17 Oct 2025
Viewed by 376
Abstract
The localization and remodeling of mRNPs is inextricably linked to translational control. In recent years there has been great progress in the field of mRNA translational control due to the characterization of the proteins and small RNAs that compose mRNPs. But our initial [...] Read more.
The localization and remodeling of mRNPs is inextricably linked to translational control. In recent years there has been great progress in the field of mRNA translational control due to the characterization of the proteins and small RNAs that compose mRNPs. But our initial assumptions about the physical nature and participation of germ cell granules/condensates in mRNA regulation may have been misguided. These “granules” were found to be non-membrane-bound liquid–liquid phase-separated (LLPS) condensates that form around proteins with intrinsically disordered regions (IDRs) and RNA. Their macrostructures are dynamic as germ cells differentiate into gametes and subsequently join to form embryos. In addition, they segregate translation-repressing RNA-binding proteins (RBPs), selected eIF4 initiation factors, Vasa/GLH-1 and other helicases, several Argonautes and their associated small RNAs, and frequently components of P bodies and stress granules (SGs). Condensate movement, separation, fusion, and dissolution were long conjectured to mediate the translational control of mRNAs residing in contained mRNPs. New high-resolution microscopy and tagging techniques identified order in their organization, showing the segregation of similar mRNAs and the stratification of proteins into distinct mRNPs. Functional transitions from repression to activation seem to corelate with the overt granule dynamics. Yet increasing evidence suggests that the resident mRNPs, and not the macroscopic condensates, exert the bulk of the regulation. Full article
(This article belongs to the Section Developmental and Reproductive Biology)
Show Figures

Graphical abstract

15 pages, 3566 KB  
Article
Passive Control of Boundary-Layer Separation on a Wind Turbine Blade Using Varying-Parameter Flow Deflector
by Xin Chen, Jiaqian Qiu, Junwei Zhong, Chaolei Zhang and Yufeng Gan
Fluids 2025, 10(10), 270; https://doi.org/10.3390/fluids10100270 - 16 Oct 2025
Viewed by 217
Abstract
Horizontal-axis wind turbines are widely used for wind energy harvesting, but they often encounter flow separation near the blade root, leading to power loss and structural fatigue. A varying-parameter flow deflector (FD) is proposed as a passive flow control method. The FD adopts [...] Read more.
Horizontal-axis wind turbines are widely used for wind energy harvesting, but they often encounter flow separation near the blade root, leading to power loss and structural fatigue. A varying-parameter flow deflector (FD) is proposed as a passive flow control method. The FD adopts varying parameters along the blade spanwise direction to match the varying local angle of attack. Numerical simulation using the transition SST k-ω turbulence model combined with the response-surface methodology are used to investigate the effect of the varying-parameter FD on the flow structure and aerodynamic performance of the NREL Phase VI wind turbine. The results indicate that optimal performance can be achieved when the normal position of the FD increases from the blade root to the tip, and the install angle of the FD should be greater than 62° at blade section of r/R = 63.1%. Furthermore, response-surface methodology was employed to optimize the deflector parameters, with analysis of variance revealing the relative significance of geometric factors (l1 > l2 > θ1 > θ2). Compared with the original blade, the shaft torque of the controlled blade with the optimal FD is improved by 24.7% at 10 m/s. Full article
(This article belongs to the Special Issue Industrial CFD and Fluid Modelling in Engineering, 3rd Edition)
Show Figures

Figure 1

20 pages, 3645 KB  
Article
Investigation of Biodegradable and Non-Biodegradable Solvents for the Fabrication of Polylactic Acid Membranes via Nonsolvent Induced Phase Separation (NIPS) for Air Filtration Applications
by Ebuka Ogbuoji, Odianosen Ewah, Anastasia Myers, Corey Roberts, Anastasia Shaverina and Isabel C. Escobar
Sustain. Chem. 2025, 6(4), 34; https://doi.org/10.3390/suschem6040034 - 14 Oct 2025
Viewed by 568
Abstract
The substitution of hazardous, environmentally persistent solvents (NMP and DMAc) with more sustainable alternatives (ETAc and GBL) in fabricating flat sheet polyactic acid (PLA) membranes via nonsolvent-induced phase separation for air filtration applications was the focus of this study. The polymer-solvent affinity was [...] Read more.
The substitution of hazardous, environmentally persistent solvents (NMP and DMAc) with more sustainable alternatives (ETAc and GBL) in fabricating flat sheet polyactic acid (PLA) membranes via nonsolvent-induced phase separation for air filtration applications was the focus of this study. The polymer-solvent affinity was first evaluated using Hansen solubility parameters, confirming suitable Relative Energy Difference (RED) values (<1) for all solvent candidates. Dope solutions prepared with biodegradable solvents demonstrated higher viscosity compared to those prepared with environmentally persistent solvents. These biodegradable solvent systems also exhibited slower precipitation rates during membrane formation. This resulted in spongelike cross-sectional morphologies, contrasting with the combined fingerlike and spongelike structures observed in membranes fabricated with environmentally persistent NMP and DMAc. Thermal analysis revealed that membranes fabricated with biodegradable solvents exhibited superior thermal stability with higher glass transition temperatures (Tg = 54.39–55.34 °C) compared to those made with environmentally persistent solvents (Tg = 49.97–50.71 °C). Membranes fabricated with ethyl acetate (ETAc) showed the highest hydrophobicity (contact angle = 115.1 ± 9°), airflow rate (12.7 ± 0.28 LPM at 0.4 bar) and maintained filtration efficiency at values greater than 95% for 0.3 μm aerosols. Full article
Show Figures

Graphical abstract

18 pages, 11004 KB  
Article
Electrical Imaging Across Eastern South China: New Insights into the Intracontinental Tectonic Process During Mesozoic
by Kun Zhang, Zhaohong Wan, Xingzhi Ma, Yufan Yang and Hao Hu
Minerals 2025, 15(10), 1035; https://doi.org/10.3390/min15101035 - 29 Sep 2025
Viewed by 293
Abstract
To further investigate the collision process and tectonic regime transition between the North China (NCB) and South China Block (SCB), two magnetotelluric profiles were arranged across the Dabie Orogeny Belt (DOB) and eastern SCB. We then obtain the lithospheric resistivity models. The prominent [...] Read more.
To further investigate the collision process and tectonic regime transition between the North China (NCB) and South China Block (SCB), two magnetotelluric profiles were arranged across the Dabie Orogeny Belt (DOB) and eastern SCB. We then obtain the lithospheric resistivity models. The prominent feature revealed by our new model is an extensive conductive arc from the lower crust to the upper mantle, across the Jiangnan orogenic belt (JNOB) and the eastern Cathaysia Block (CAB). In addition, a huge resistor beneath the conductive arc is revealed, which is separated by a conductive wedge. Combining the heat flow and seismic tomographic imaging results, the conductors are to contain a large amount of hot material that present as the detachment layers (belts) controlled by the two subduction slabs. Considering multi-phase magmatism in the study area, new models suggest an intracontinental tectonic event in eastern CAB. Therefore, we propose a reliable tectonic process that occurred in the study area, including five stages: (1) an eastward intracontinental subduction and orogen carried out in CAB before the collision between SCB and NCB; (2) an extensional structural developed in CAB, following the subduction slab wrecking/sinking; (3) after the collision with NCB, the SCB crust/lithosphere thickened following the westward subduction of the Paleo-Pacific plate; (4) following the westward Yangtze slab sinking, the regional extension developed with the asthenosphere upwelling beneath SCB; (5) afterwards, the SCB was welded into one continent in a setting of westward compression. Full article
Show Figures

Figure 1

12 pages, 1655 KB  
Article
Two-Dimensional Multilayered Ferroelectric with Polarization-Boosted Photocatalytic Hydrogen Evolution
by Yu Peng, Liangyao Li, Yilin Xu, Xing Wang and Yu Hou
Catalysts 2025, 15(9), 910; https://doi.org/10.3390/catal15090910 - 18 Sep 2025
Viewed by 543
Abstract
Ferroelectric materials have attracted great attention for photocatalytic hydrogen (H2) evolution due to their internal depolarization fields that promote carrier separation and directional migration. However, conventional inorganic ferroelectrics often suffer from wide band gaps and low conductivity, limiting their solar-to-hydrogen conversion [...] Read more.
Ferroelectric materials have attracted great attention for photocatalytic hydrogen (H2) evolution due to their internal depolarization fields that promote carrier separation and directional migration. However, conventional inorganic ferroelectrics often suffer from wide band gaps and low conductivity, limiting their solar-to-hydrogen conversion efficiency. Here, we report a two-dimensional (2D) multilayered perovskite ferroelectric, [butylammonium]2[ethylammonium]2Pb3I10 (BAPI), which integrates robust spontaneous polarization (Ps) and excellent semiconductor properties to enable efficient photocatalysis. Under simultaneous light and ultrasonic excitation, BAPI/Pt (1 wt%) achieves a H2 evolution rate of 1256 μmol g−1 h−1, which is twice that under light alone, due to dynamic polarization modulation that mitigates ionic screening and enhances internal electric fields. Notably, this enhancement vanishes when BAPI transitions to a centrosymmetric, nonpolar phase at 323 K, confirming the critical role of Ps. These findings offer a new pathway toward high-performance ferroelectric photocatalysts for solar hydrogen production. Full article
(This article belongs to the Section Photocatalysis)
Show Figures

Figure 1

24 pages, 495 KB  
Review
Dynamical Transitions in Trapped Superfluids Excited by Alternating Fields
by Vyacheslav I. Yukalov and Elizaveta P. Yukalova
Physics 2025, 7(3), 41; https://doi.org/10.3390/physics7030041 - 12 Sep 2025
Viewed by 420
Abstract
The paper presents a survey of some dynamical transitions in nonequilibrium trapped Bose-condensed systems subject to the action of alternating fields. Nonequilibrium states of trapped systems can be implemented in two ways: resonant and nonresonant. Under resonant excitation, several coherent modes are generated [...] Read more.
The paper presents a survey of some dynamical transitions in nonequilibrium trapped Bose-condensed systems subject to the action of alternating fields. Nonequilibrium states of trapped systems can be implemented in two ways: resonant and nonresonant. Under resonant excitation, several coherent modes are generated by external alternating fields with the frequencies been tuned to resonance with some transition frequencies of the trapped system. A Bose system of trapped atoms with Bose–Einstein condensate can display two types of the Josephson effect, the standard one, when the system is separated into two or more parts in different locations, or the internal Josephson effect, when there are no any separation barriers but the system becomes nonuniform due to the coexistence of several coherent modes interacting one with another. The mathematics in both these cases is similar. We focus on the internal Josephson effect. Systems with nonlinear coherent modes demonstrate rich dynamics, including Rabi oscillations, the Josephson effect, and chaotic motion. Under the Josephson effect, there exist dynamic transitions that are similar to phase transitions in equilibrium systems. The bosonic Josephson effect is shown to be implementable not only for quite weakly interacting systems, but also in superfluids with not necessarily as weak interactions. Sufficiently strong nonresonant excitation can generate several types of nonequilibrium states comprising vortex germs, vortex rings, vortex lines, vortex turbulence, droplet turbulence, and wave turbulence. Nonequilibrium states are shown to be characterized and distinguished by effective temperature, effective Fresnel number, and dynamic scaling laws. Full article
Show Figures

Figure 1

16 pages, 1473 KB  
Review
Lipid-Mediated Assembly of Biomolecular Condensates: Mechanisms, Regulation, and Therapeutic Implications
by Shijie Ma, Zheng Yang, Chang Du, Binjie Gan and Tong Tang
Biology 2025, 14(9), 1232; https://doi.org/10.3390/biology14091232 - 10 Sep 2025
Viewed by 1149
Abstract
Cellular organization relies on both membrane-bound organelles and membraneless biomolecular condensates formed through liquid–liquid phase separation. Recent discoveries reveal intricate coupling between lipid membrane organization and condensate assembly, reshaping our understanding of cellular compartmentalization. This review synthesizes multidisciplinary research using advanced techniques including [...] Read more.
Cellular organization relies on both membrane-bound organelles and membraneless biomolecular condensates formed through liquid–liquid phase separation. Recent discoveries reveal intricate coupling between lipid membrane organization and condensate assembly, reshaping our understanding of cellular compartmentalization. This review synthesizes multidisciplinary research using advanced techniques including super-resolution microscopy, fluorescence recovery after photobleaching, and in vitro reconstitution to examine lipid-condensate interactions. Lipid membranes serve as nucleation platforms that reduce critical concentrations for condensate formation by orders of magnitude through membrane anchoring and thermodynamic coupling, creating specialized microenvironments that substantially enhance enzymatic activities. Key regulatory mechanisms include phosphorylation-driven assembly and disassembly, membrane composition effects from cholesterol content and fatty acid saturation, and environmental factors such as calcium and pH. These interactions drive signal transduction through receptor clustering, membrane trafficking via organized domains, and stress responses through protective condensate formation. Dysregulation of lipid-condensate coupling, including aberrant phase transitions and membrane dysfunction, underlies metabolic disorders and neurodegenerative diseases. This coupling represents a fundamental organizing principle with significant therapeutic potential. Current challenges include developing quantitative methods for characterizing condensate dynamics in complex cellular environments and translating molecular mechanisms into clinical applications. Future progress requires interdisciplinary approaches combining advanced experimental techniques, computational modeling, and standardized protocols to advance both fundamental understanding and therapeutic innovations. Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Show Figures

Figure 1

11 pages, 10408 KB  
Communication
Leaving Glauber’s Salt Island: The Road to Stabilisation
by Poppy O’Neill, Anastasia Stamatiou and Ludger Fischer
Colloids Interfaces 2025, 9(5), 60; https://doi.org/10.3390/colloids9050060 - 9 Sep 2025
Viewed by 664
Abstract
Glauber’s salt is a promising phase change material for thermal energy storage due to its high latent heat capacity of 234 J/g and melting point of 34 °C, making it well-suited for low-temperature heating applications. However, its practical use has been limited by [...] Read more.
Glauber’s salt is a promising phase change material for thermal energy storage due to its high latent heat capacity of 234 J/g and melting point of 34 °C, making it well-suited for low-temperature heating applications. However, its practical use has been limited by phase separation and associated loss of performance during repeated thermal cycling. This study aimed to address this limitation through a novel stabilisation approach. The material was encapsulated within an emulsion matrix designed to physically constrain the salt and inhibit separation during melting and to form a phase change dispersion. The phase change dispersion was subjected to 100 controlled heating–cooling cycles whilst monitoring the latent heat capacity and phase transition plateaus. The phase change dispersion retained its thermal properties throughout testing, showing no measurable degradation in storage capacity nor shift in phase transition temperature. These results demonstrate that this encapsulation mechanism can effectively maintain the functional performance of Glauber’s salt under repeated thermal cycling. This approach may form the basis for more durable salt hydrate-based storage media and has potential relevance for applications in building heating, waste heat recovery and renewable energy integration. By improving stability, this method helps unlock the long-term operational viability of phase change materials. Full article
(This article belongs to the Special Issue Recent Advances on Emulsions and Applications: 3rd Edition)
Show Figures

Figure 1

24 pages, 20509 KB  
Review
Applications of X-Ray Computed Tomography Technology to Solid–Liquid Phase Change Materials—A Review
by Jorge Martinez-Garcia, Dario Guarda, Damian Gwerder, Benjamin Fenk, Rebecca Ravotti, Simone Mancin, Anastasia Stamatiou, Jörg Worlitschek, Ludger Josef Fischer and Philipp Schuetz
Energies 2025, 18(17), 4704; https://doi.org/10.3390/en18174704 - 4 Sep 2025
Cited by 1 | Viewed by 1055
Abstract
Latent heat thermal energy storage (LHTES) based on phase change materials (PCMs) is receiving increasing interest since it offers high energy storage density while enabling the integration of variable renewable energies, hence boosting the transition towards a climate-neutral future. Despite the advantages that [...] Read more.
Latent heat thermal energy storage (LHTES) based on phase change materials (PCMs) is receiving increasing interest since it offers high energy storage density while enabling the integration of variable renewable energies, hence boosting the transition towards a climate-neutral future. Despite the advantages that PCMs offer in providing a nearly isothermal solid–liquid phase transition, they still face some challenges that limit their deployment in real applications such as low thermal conductivity, phase separation, and supercooling, which affect charging and discharging rates. X-ray computed tomography (XCT) is a non-destructive imaging technique widely used in materials science for both qualitative and quantitative analysis of material microstructures and their evolution. Recent advances in laboratory-XCT instrumentation enabled short acquisition times on the order of tens of seconds which allows the investigation of dynamic processes in situ by time-lapse XCT measurements. These advances open new opportunities for revealing information on the morphology of solid–liquid PCMs. Despite the fact that XCT imaging has significant potential for energy research, its application in the field of PCMs is fairly new. A key enabler of applications of XCT to PCMs is the density difference between solid and liquid PCMs, which was found to be higher than 7% for all investigated PCMs. This enabled solid and liquid phases to be distinguished one from the other and properly quantified over time. The present work reviews the principles of laboratory-based XCT and the recent applications of XCT technology in the characterisation of PCMs, with emphasis on the study of the solid–liquid phase transition and validation of numerical PCM models by addressing the potentialities and challenges of XCT in PCM research. Full article
Show Figures

Figure 1

21 pages, 5447 KB  
Article
Dynamic Responses of Harbor Seal Whisker Model in the Propeller Wake Flow
by Bingzhuang Chen, Zhimeng Zhang, Xiang Wei, Wanyan Lei, Yuting Wang, Xianghe Li, Hanghao Zhao, Muyuan Du and Chunning Ji
Fluids 2025, 10(9), 232; https://doi.org/10.3390/fluids10090232 - 1 Sep 2025
Viewed by 524
Abstract
This study experimentally investigates the wake-induced vibration (WIV) behavior of a bio-inspired harbor seal whisker model subjected to upstream propeller-generated unsteady flows. Vibration amplitudes, frequencies, and wake–whisker interactions were systematically evaluated under various flow conditions. The test matrix included propeller rotational speed N [...] Read more.
This study experimentally investigates the wake-induced vibration (WIV) behavior of a bio-inspired harbor seal whisker model subjected to upstream propeller-generated unsteady flows. Vibration amplitudes, frequencies, and wake–whisker interactions were systematically evaluated under various flow conditions. The test matrix included propeller rotational speed Np = 0~5000 r/min, propeller diameter Dp = 60~100 mm, incoming flow velocity U = 0~0.2 m/s, and separation distance between the whisker model and the propeller L/D = 10~30 (D = 16 mm, diameter of the whisker model). Results show that inline (IL) and crossflow (CF) vibration amplitudes increase significantly with propeller speed and decrease with increasing separation distance. Under combined inflow and wake excitation, non-monotonic trends emerge. Frequency analysis reveals transitions from periodic to subharmonic and broadband responses, depending on wake structure and coherence. A non-dimensional surface fit using L/D and the advance ratio (J = U/(NpDp)) yielded predictive equations for RMS responses with good accuracy. Phase trajectory analysis further distinguishes stable oscillations from chaotic-like dynamics, highlighting changes in system stability. These findings offer new insight into WIV mechanisms and provide a foundation for biomimetic flow sensing and underwater tracking applications. Full article
(This article belongs to the Special Issue Marine Hydrodynamics: Theory and Application)
Show Figures

Figure 1

12 pages, 7860 KB  
Article
In Situ Synthesis of RMB6-TMB2 Composite Nanopowders via One-Step Solid-State Reduction
by Xiaogang Guo, Linyan Wang, Hang Zhou, Jun Xu, An Liu, Mengdong Ma, Rongxin Sun, Weidong Qin, Yufei Gao, Bing Liu, Baozhong Li, Lei Sun and Dongli Yu
Nanomaterials 2025, 15(17), 1341; https://doi.org/10.3390/nano15171341 - 1 Sep 2025
Viewed by 659
Abstract
RMB6-TMB2 (RM = rare earth elements, TM = transition metal elements) composites retain superior field emission properties of RMB6 while addressing its inherent mechanical limitations by constructing a eutectic structure with TMB2. Herein, an in situ route [...] Read more.
RMB6-TMB2 (RM = rare earth elements, TM = transition metal elements) composites retain superior field emission properties of RMB6 while addressing its inherent mechanical limitations by constructing a eutectic structure with TMB2. Herein, an in situ route for synthesizing RMB6-TMB2 composite nanopowders with homogeneous phase distribution using reduction reactions was proposed. The LaB6-ZrB2 composite nanopowders were synthesized in situ for the first time using sodium borohydride (NaBH4) as both a reducing agent and boron source, with lanthanum oxide (La2O3) and zirconium dioxide (ZrO2) serving as metal sources. The effects of the synthesis temperature on phase compositions and microstructure of the composites were systematically investigated. The LaB6-ZrB2 system with a eutectic weight ratio exhibited an accelerated reaction rate, achieving a complete reaction at 1000 °C, 300 °C lower than that of single-phase ZrB2 synthesis. The composite phases were uniformly distributed even at nanoscale. The composite powder displayed an average particle size of ~170 nm when synthesized at 1300 °C. With the benefit of the in situ synthesis method, LaB6-TiB2, CeB6-ZrB2, and CeB6-TiB2 composite powders were successfully synthesized. This process effectively addresses phase separation and contamination issues typically associated with traditional mixing methods, providing a scalable precursor for high-performance RMB6-TMB2 composites. Full article
(This article belongs to the Special Issue Synthesis, Characterization and Upscaling of Nanomaterials)
Show Figures

Figure 1

Back to TopTop