Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (68)

Search Parameters:
Keywords = nursery stocks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4317 KiB  
Article
Advancing Sustainability in Pelargonium Nursery Management: Scientific Exploration of an Innovative Prolonged Cold Storage System for Cuttings
by Bożena Szewczyk-Taranek, Marcin Rapacz, Sylwester Smoleń, Joanna Pitala, Paweł Marcinkowski and Tomasz Wojewodzic
Agronomy 2025, 15(4), 907; https://doi.org/10.3390/agronomy15040907 - 6 Apr 2025
Viewed by 657
Abstract
Cold storage of pelargonium cuttings addresses the issue of nonoverlapping production seasons in Central Europe, where cuttings are harvested from stock plants in December, but rooting begins in mid-February/March. Here, we show an innovative system for cuttings storage using nature-based solutions. We compared [...] Read more.
Cold storage of pelargonium cuttings addresses the issue of nonoverlapping production seasons in Central Europe, where cuttings are harvested from stock plants in December, but rooting begins in mid-February/March. Here, we show an innovative system for cuttings storage using nature-based solutions. We compared post-delivery storage of unrooted cuttings in paperpots maintained in greenhouses (8/6 °C day/night) to standard rooting immediately after delivery. Key factors included genotype (Pelargonium zonale, P. peltatum, and hybrids), four delivery weeks (48–51), two growing seasons (2021 and 2022), and storage duration (up to 4 weeks). Genotype strongly influenced cold storage tolerance, with P. peltatum enduring storage for up to 4 weeks without significant loss of rooting efficiency, unlike P. zonale. The success of storage depended on stock plants’ quality and nutritional status: higher nitrogen content in 2022 cuttings compared to 2021 was associated with reduced rooting in P. zonale and hybrids. Neither delivery timing nor residual ethephon affected rooting outcomes after storage. This study demonstrates that storing pelargonium cuttings for up to two weeks using this method preserves quality while optimizing production efficiency by reducing nursery space, water, fertilizer, and pesticide use. This shift in production practices reduces per-unit costs and enhances the economic viability of bedding young plant producers. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

13 pages, 2064 KiB  
Article
Morphological, Molecular and Pathological Characterization of Phytophthora pseudocryptogea Associated with Rosmarinus officinalis Dieback in Tuscany, Central Italy
by Alessandra Benigno, Chiara Aglietti, Santa Olga Cacciola and Salvatore Moricca
Microorganisms 2025, 13(3), 567; https://doi.org/10.3390/microorganisms13030567 - 3 Mar 2025
Viewed by 2675
Abstract
A severe dieback of rosemary (Rosmarinus officinalis L.) plants was observed in a medicinal/culinary herb plantation in Casole d’Elsa, Siena, central Italy. Symptoms included stunted growth, crown desiccation, root rot, collar rot and internal tissue necrosis, strongly indicative of Phytophthora root and [...] Read more.
A severe dieback of rosemary (Rosmarinus officinalis L.) plants was observed in a medicinal/culinary herb plantation in Casole d’Elsa, Siena, central Italy. Symptoms included stunted growth, crown desiccation, root rot, collar rot and internal tissue necrosis, strongly indicative of Phytophthora root and crown rot syndrome. Morphological and molecular identification (ITS and Cox1 sequencing) of strains isolated from symptomatic stems, roots and soil revealed the occurrence of two Phytophthora species: Phytophthora pseudocryptogea, which constituted 94% of isolates obtained from the stem, root apparatus and rhizosphere; and Phytophthora megasperma, which was not recovered from plant organs or tissue, being exclusively isolated from rhizosphere soil samples at a low isolation rate (6%). The pathogenicity of the obtained strains was assessed by inoculating eighteen-month-old R. officinalis plants in a soil infestation trial. Plants inoculated with P. pseudocryptogea strains died 10 days after artificial inoculation. P. pseudocryptogea was subsequently re-isolated from the roots of inoculated, symptomatic plants, thus fulfilling Koch’s postulates. Plants inoculated with P. megasperma strains were in good vegetative condition and did not show any visible symptoms, suggesting P. megasperma to be nonpathogenic. Artificial inoculation tests thus confirmed P. pseudocryptogea to be the aetiological agent responsible for the death of R. officinalis plants in the plantation under study. This is the first report of root, collar and crown rot caused by P. pseudocryptogea on R. officinalis in Italy. There is evidence that poorly drained soils and climate constraints facilitate the spread of this oomycete. These findings highlight the critical role of nursery trade in the introduction of Phytophthora species in agroecosystems and emphasize the need for more stringent control measures. Full article
(This article belongs to the Special Issue Phytopathogens: Detection and Control)
Show Figures

Figure 1

13 pages, 3846 KiB  
Article
Projecting the Shift of Chub Mackerel (Scomber japonicus) Spawning Grounds Driven by Climate Change in the Western North Pacific Ocean
by Seonggil Go, Joon-ho Lee and Sukgeun Jung
Fishes 2025, 10(1), 20; https://doi.org/10.3390/fishes10010020 - 6 Jan 2025
Cited by 1 | Viewed by 1147
Abstract
Spawning grounds may shift due to climate change and subsequent variations in the marine environment, but few studies have aimed to project shifts in the spawning grounds of chub mackerel driven by climate change. We projected the effects of climate change on the [...] Read more.
Spawning grounds may shift due to climate change and subsequent variations in the marine environment, but few studies have aimed to project shifts in the spawning grounds of chub mackerel driven by climate change. We projected the effects of climate change on the spawning grounds of chub mackerel (Scomber japonicus) by developing and applying a suitable spawning ground index based on a regional ocean circulation model for the western North Pacific. Our model indicated that the potential spawning grounds of chub mackerel extended from southern waters of the East China Sea to the Korea Strait, Yellow Sea, and Japan/East Sea. Despite some uncertainty, our model based on climate change scenarios projected that, by the 2050s, spawning grounds will shift northward due to warming of the ocean surface, resulting in a subsequent westward shift of nursery grounds from the Japan/East Sea to the Korea Strait and Yellow Sea. Our projections will contribute to clarifying the impacts of climate change on the distribution of exploitable chub mackerel, the adaptation of fisheries to climate change, and the reliability of stock assessments used for fisheries management in the region. Full article
Show Figures

Figure 1

20 pages, 16601 KiB  
Article
Antarctic Toothfish Dissostichus mawsoni in the South Orkney Islands: Using Otolith Chemistry to Test Current Hypotheses About Nursery Areas and Demographic Units
by Paulina Carimán, Edwin J. Niklitschek, Cristóbal Garcés, Mathieu Leisen, Fernando Barra and Rurik Romero
Biology 2025, 14(1), 7; https://doi.org/10.3390/biology14010007 - 25 Dec 2024
Viewed by 1024
Abstract
We used otolith chemistry to test and complement current hypotheses regarding habitat use and connectivity between Dissostichus mawsoni sub-populations in Area 48 of the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR). Sagittal otoliths from 45 fish sampled near the South [...] Read more.
We used otolith chemistry to test and complement current hypotheses regarding habitat use and connectivity between Dissostichus mawsoni sub-populations in Area 48 of the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR). Sagittal otoliths from 45 fish sampled near the South Orkney Islands were analysed. Their elemental (Li, Na, Mg, Cr, Mn, Sr, Sn, and Ba relative to Ca) and isotopic (δ18O and δ13C) signatures were examined in both the nuclear and marginal regions, representing juvenile and adult stages. Potential nursery habitats were geo-located by comparing observed and expected δ18O values. Chemical differences between the nuclear and marginal regions indicated ontogenetic migrations to deeper offshore habitats, suggesting a distinct habitat shift between 11 and 13 years of life. The data supported the existence of two nursery origins contributing to the study area’s population. However, the exact locations of these origins remain unclear and did not provide direct support for the hypotheses currently under consideration by the CCAMLR. Therefore, further assessment of the connectivity between nursery and adult habitats, as well as spawning site fidelity, is necessary before ruling out alternative hypotheses. Full article
(This article belongs to the Special Issue Applications of Stable Isotope Analysis in Ecology)
Show Figures

Graphical abstract

13 pages, 1113 KiB  
Article
Assessment of Water Quality, Growth of Penaeus vannamei, and Partial Budget in Super-Intensive BFT and RAS: A Comparison Between Sustainable Aquaculture Systems
by Bianca de Oliveira Ramiro, Wilson Wasielesky, Otávio Augusto Lacerda Ferreira Pimentel, Taozhu Sun, Ethan McAlhaney, Stephen Urick, Fernando H. Gonçalves, Jonathan van Senten, Michael H. Schwarz and Dariano Krummenauer
Sustainability 2024, 16(24), 11005; https://doi.org/10.3390/su162411005 - 15 Dec 2024
Cited by 4 | Viewed by 2548
Abstract
This study evaluated water quality, growth, and partial budget analysis (PBA) for Penaeus vannamei, comparing super-intensive Biofloc Technology (BFT) and Recirculating Aquaculture Systems (RAS). The 69-day trial used 100 L units with two treatments (RAS and BFT), each with three replicates. Shrimp [...] Read more.
This study evaluated water quality, growth, and partial budget analysis (PBA) for Penaeus vannamei, comparing super-intensive Biofloc Technology (BFT) and Recirculating Aquaculture Systems (RAS). The 69-day trial used 100 L units with two treatments (RAS and BFT), each with three replicates. Shrimp were initially reared in a 30-day nursery to a weight of 0.10 ± 0.04 g and then stocked at 500 shrimp m−3. Biofloc growth in BFT was promoted by maintaining a C:N ratio of 15:1, adding dextrose when total ammonia nitrogen (TAN) reached 1 mg L−1. Probiotics (3 g m−3) were administered daily to both groups. TAN levels in BFT initially spiked but stabilized after 36 days. Vibrio abundance was initially higher in RAS, but by the end of the trial, it was higher in BFT. Final weight, weekly growth ratio, and yield were greater in BFT, whereas feed conversion ratio (FCR) and water use were higher in RAS. Survival rates were 83.33% in BFT and 88% in RAS. BFT achieved a superior net benefit/cost compared to RAS. Although RAS more effectively controlled nitrogenous compounds, BFT exhibited better growth performance, with higher final weights, lower FCR, and better Vibrio management. The partial budget analysis indicated an economic advantage for BFT, with a net positive benefit of $2270.09 when shifting from RAS to BFT due to lower operating costs and higher shrimp yield. Among these two sustainable production systems, BFT was more productive while utilizing less natural resources. Full article
Show Figures

Figure 1

17 pages, 6523 KiB  
Article
Lightweight Model Development for Forest Region Unstructured Road Recognition Based on Tightly Coupled Multisource Information
by Guannan Lei, Peng Guan, Yili Zheng, Jinjie Zhou and Xingquan Shen
Forests 2024, 15(9), 1559; https://doi.org/10.3390/f15091559 - 4 Sep 2024
Cited by 1 | Viewed by 1155
Abstract
Promoting the deployment and application of embedded systems in complex forest scenarios is an inevitable developmental trend in advanced intelligent forestry equipment. Unstructured roads, which lack effective artificial traffic signs and reference objects, pose significant challenges for driverless technology in forest scenarios, owing [...] Read more.
Promoting the deployment and application of embedded systems in complex forest scenarios is an inevitable developmental trend in advanced intelligent forestry equipment. Unstructured roads, which lack effective artificial traffic signs and reference objects, pose significant challenges for driverless technology in forest scenarios, owing to their high nonlinearity and uncertainty. In this research, an unstructured road parameterization construction method, “DeepLab-Road”, based on tight coupling of multisource information is proposed, which aims to provide a new segmented architecture scheme for the embedded deployment of a forestry engineering vehicle driving assistance system. DeepLab-Road utilizes MobileNetV2 as the backbone network that improves the completeness of feature extraction through the inverse residual strategy. Then, it integrates pluggable modules including DenseASPP and strip-pooling mechanisms. They can connect the dilated convolutions in a denser manner to improve feature resolution without significantly increasing the model size. The boundary pixel tensor expansion is then completed through a cascade of two-dimensional Lidar point cloud information. Combined with the coordinate transformation, a quasi-structured road parameterization model in the vehicle coordinate system is established. The strategy is trained on a self-built Unstructured Road Scene Dataset and transplanted into our intelligent experimental platform to verify its effectiveness. Experimental results show that the system can meet real-time data processing requirements (≥12 frames/s) under low-speed conditions (≤1.5 m/s). For the trackable road centerline, the average matching error between the image and the Lidar was 0.11 m. This study offers valuable technical support for the rejection of satellite signals and autonomous navigation in unstructured environments devoid of high-precision maps, such as forest product transportation, agricultural and forestry management, autonomous inspection and spraying, nursery stock harvesting, skidding, and transportation. Full article
(This article belongs to the Special Issue Modeling of Vehicle Mobility in Forests and Rugged Terrain)
Show Figures

Figure 1

16 pages, 2532 KiB  
Article
Stocking Density and Diet of Two Oyster (Crassostrea gasar and Crassostrea gigas) Seeds in Fluidized Bed Bottle Nursery System
by Simone Sühnel, Francisco José Lagreze-Squella, Gabriel Nandi Corrêa, Jaqueline Araújo, Glauber de Souza, João Paulo Ramos Ferreira, Francisco Carlos da Silva, Carlos Henrique Araújo de Miranda Gomes and Claudio Manoel Rodrigues de Melo
Fishes 2024, 9(5), 183; https://doi.org/10.3390/fishes9050183 - 17 May 2024
Cited by 1 | Viewed by 1629
Abstract
Crassostrea is the most farmed oyster genus worldwide and has significant economic and social impacts with environmental benefits. Hatchery oyster seed production is a highly costly phase, and a fluidized nursery system can help reduce this cost and reduce seed production time. The [...] Read more.
Crassostrea is the most farmed oyster genus worldwide and has significant economic and social impacts with environmental benefits. Hatchery oyster seed production is a highly costly phase, and a fluidized nursery system can help reduce this cost and reduce seed production time. The present study evaluated the survival and growth of two oyster species (Crassostrea gasar and Crassostrea gigas) in a fluidized bed bottle nursery system. With C. gasar, two experiments were performed; one tested three stocking densities and the other three bialgae diets. With C. gigas, one experiment with a bialgae and monoalgae in an initial bottle occupation of 8.8% produced more seeds per bottle, but an initial bottle occupation of 2.2% produced bigger seeds. Also, the experiment with C. gasar and with C. gigas tested diets did not affect seed survival, but the diets with bialgae I. galbana and N. oculate promoted more seed growth. The fluidized bed bottle nursery system developed for this study was adequate for the seeds of the oysters C. gasar and C. gigas in the nursery phase. Full article
(This article belongs to the Special Issue Integrated Aquaculture and Monoculture of Low-Trophic Species)
Show Figures

Figure 1

20 pages, 4709 KiB  
Article
New Insights in Lifetime Migrations of Albacore Tuna (Thunnus alalunga, Bonnaterre, 1788) between the Southwest Indian and the Southeast Atlantic Oceans Using Otolith Microchemistry
by Maylis Labonne, Audrey M. Darnaude, Theotime Fily, Cécile Petit, Natacha Nikolic, Denham Parker, Stewart James Norman, Naomi Clear, Jessica Farley, Jennifer Paige Eveson, Iraide Artetxe-Arrate, Hilario Murua, Campbell Davies and Francis Marsac
Fishes 2024, 9(1), 38; https://doi.org/10.3390/fishes9010038 - 17 Jan 2024
Cited by 1 | Viewed by 2752
Abstract
To clarify potential trans-oceanic connectivity and variation in the natal origin of albacore tuna (Thunnus alalunga) from the southwest Indian Ocean (SWI) and the southeast Atlantic (SA), lifetime otolith elemental signatures were assessed from 46 adults sampled from Reunion Island, and [...] Read more.
To clarify potential trans-oceanic connectivity and variation in the natal origin of albacore tuna (Thunnus alalunga) from the southwest Indian Ocean (SWI) and the southeast Atlantic (SA), lifetime otolith elemental signatures were assessed from 46 adults sampled from Reunion Island, and 26 juveniles(group 2+) sampled from two locations along the Atlantic coast of South Africa. LA-ICP-MS analysis was used to assess the multi-elemental composition in B, Ba, Mg, P, Sr, and Zn along the otolith edge (chemical signatures of the capture area), but also near the otolith primordium (spawning origin) and in an area located at 1400–1600 µm from it (nursery origin). Two groups of distinct near-primordium multi-elemental signatures, denoting potentially discrete spawning origins (SpO), were identified using hierarchical clustering. Each of the two SpO was found to contribute to the albacore stocks from all the areas sampled, suggesting a common spawning origin in some fish from the SWI and from the SA, and complex migrations between the two oceans. Three potentially discrete primary nursery sites were identified, each contributing to SA juvenile and SWI adult capture sites differently. The timing for the trans-oceanic movements observed for each albacore capture zone and its implications for local stock management are discussed. Full article
(This article belongs to the Section Environment and Climate Change)
Show Figures

Graphical abstract

15 pages, 672 KiB  
Article
The Black Soldier Fly (Hermetia illucens) Larvae Meal Can Cost-Effectively Replace Fish Meal in Practical Nursery Diets for Post-Larval Penaeus vannamei under High-Density Culture
by Alberto J. P. Nunes, Hiroshi Yamamoto, João Paulo Simões, João Luiz Pisa, Nelson Miyamoto and Jordana Sampaio Leite
Fishes 2023, 8(12), 605; https://doi.org/10.3390/fishes8120605 - 10 Dec 2023
Cited by 8 | Viewed by 5745
Abstract
The black soldier larvae meal (BSFLM) has been the most extensively studied insect protein source in shrimp nutrition. However, both the availability and prices of BSFLM are still a constraint for its widespread use as an ingredient in animal feeds. The present study [...] Read more.
The black soldier larvae meal (BSFLM) has been the most extensively studied insect protein source in shrimp nutrition. However, both the availability and prices of BSFLM are still a constraint for its widespread use as an ingredient in animal feeds. The present study investigated the growth and economic performance of post-larval (PL) P. vannamei fed nursery diets with a progressive replacement of fish meal (FML) for BSFLM at 0, 25, 50, 75, and 100%. These replacements corresponded to a dietary inclusion (% of the diet, as-is) of FML and BSFLM of 16.50 and 6.33%, 11.00 and 13.04%, 5.50 and 19.74%, and 0 and 26.46%, respectively. A total of 102,647 shrimp at the age of PL15 with 2.7 ± 0.2 mg body weight (BW) were stocked in fifty 1.5 m3 tanks under 1369 PLs/m3 (2053 ± 33 PLs/tank) and reared for 42 days. Final shrimp survival (90.5 ± 7.6%), daily weight gain (14.7 ± 1.1 mg/day), and apparent feed intake (0.67 ± 0.03 g of feed per stocked shrimp) were unaffected by dietary treatment. The highest gained yield (791 ± 52 and 776 ± 38 g/m3) and final BW (621 ± 7.2 and 632 ± 7.2 mg) were attained when FML was replaced for BSFLM at 50 and 75% with the lowest at 0% (726 ± 34 g/m3 and 598 ± 8.1 mg, respectively). Shrimp fed diets with 0 and 100% replacement of FML exhibited the highest feed conversion ratio (1.25 ± 0.04 and 1.24 ± 0.08) compared to those fed a diet with 50% (1.16 ± 0.06). At a price of USD 2.00/kg, BSFLM demonstrated a favorable ROI (return of investment) when compared to FML, irrespective of the replacement level. With 25 and 50% replacement, BSFLM remained cost-competitive up to 3.50 USD/kg. At 75% FML replacement, there were no significant differences in ROI with a price range of 2.00 up to 3.04 USD/kg. At full replacement, ROI dropped significantly at a BSFLM price of 2.50 USD/kg and beyond. It can be concluded that FML can be fully replaced for BSFLM in well-balanced nursery diets for P. vannamei. Although the full replacement of FML for BSFLM was successfully accomplished, the competitive ROI was sustained only when the price of BSFLM did not exceed 3.04 USD/kg at its dietary highest inclusion of 19.74%. Further research may be necessary to fine-tune cost-effective inclusion levels of BSFLM to optimize the economic outcomes while considering the fluctuating prices of FML. Full article
(This article belongs to the Special Issue Application of Protein and Amino Acid in Aquaculture Feed)
Show Figures

Figure 1

22 pages, 6032 KiB  
Article
Assemblage Structure of Ichthyoplankton Communities in the Southern Adriatic Sea (Eastern Mediterranean)
by Alessandro Bergamasco, Roberta Minutoli, Genuario Belmonte, Daniela Giordano, Letterio Guglielmo, Anna Perdichizzi, Paola Rinelli, Andrea Spinelli and Antonia Granata
Biology 2023, 12(11), 1449; https://doi.org/10.3390/biology12111449 - 19 Nov 2023
Viewed by 1750
Abstract
Studies based on fish early life stages can provide information on spawning grounds and nursery areas, helping to determine the implications for stock biomass fluctuations of recruitment variability. This study describes the composition, abundance, spatial distribution and differences in day/night vertical distribution of [...] Read more.
Studies based on fish early life stages can provide information on spawning grounds and nursery areas, helping to determine the implications for stock biomass fluctuations of recruitment variability. This study describes the composition, abundance, spatial distribution and differences in day/night vertical distribution of ichthyoplankton in the southern Adriatic Sea. Samples were collected within the framework of the COCONET project (Towards COast to COast NETworks of marine protected areas) from 9 to 18 May 2013 by the R/V Urania, using the electronic multinet EZ-NET BIONESS (Bedford Institute of Oceanography Net Environmental Sampling System). A total of 20 species, belonging to 20 genera and 13 families, were identified. Of the collected larvae, 74.3% were meso- or bathypelagic species, 24.7% were epipelagic and 0.9% were demersal. The community was dominated by Gonostomatidae, followed by Engraulidae, Myctophidae and Photychthaidae. The most abundant species was Cyclothone braueri (45.6%), followed by Engraulis encrasicolus, Ceratoscopelus maderensis, Cyclothone pygmaea, Vinciguerria attenuata and Myctophum punctatum. An inshore/offshore increasing gradient in biodiversity and abundance was observed. Different weighted mean depths (WMDs) were observed for larvae and juveniles. No diel vertical migrations were observed. The high abundance of meso- or bathypelagic species in the upper 100 m confirms the epipelagic zone as an important environment for the development of the larval stages of these fish. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Figure 1

13 pages, 899 KiB  
Article
Effect of Growth Regulators on the Quality of Apple Tree Whorls
by Magdalena Kapłan, Kamila Klimek, Anna Borkowska and Kamil Buczyński
Appl. Sci. 2023, 13(20), 11472; https://doi.org/10.3390/app132011472 - 19 Oct 2023
Cited by 2 | Viewed by 1453
Abstract
High-quality nursery stock ensures the dynamic development of orchard crops. The most desirable by orchardists is a tree with a strongly developed crown, which makes it possible to shorten the investment period of newly planted orchards. The quality of the perianth and the [...] Read more.
High-quality nursery stock ensures the dynamic development of orchard crops. The most desirable by orchardists is a tree with a strongly developed crown, which makes it possible to shorten the investment period of newly planted orchards. The quality of the perianth and the degree of its branching depend on the growth strength of the rootstock, the ability of a given variety to form lateral shoots, the type and effectiveness of the treatments used to stimulate branching, soil and climatic conditions related to the location of the nursery and the course of the weather during the period of initiation and growth of young shoots. The study was conducted in 2017–2019 at a private nursery farm near Lublin. The aim of the experiment was to study the effect of mixtures based on the compounds benzyladenine (BA) and gibberellins (GA3) and (GA4+7) for chemical stimulation of lateral shoot outgrowth in apple cv. ‘Alwa’ and ‘Najdared’. In the course of the research, significant effects of the type of growth regulations used and the variety on the height of the perianths, the number and length of lateral shoots and the degree of branching were demonstrated. Full article
Show Figures

Figure 1

19 pages, 3545 KiB  
Article
Declines in the Mekong’s Megadiverse Larval Fish Assemblages: Implications for Sustainable Development
by Samol Chhuoy, Zeb S. Hogan, Bunyeth Chan, Sudeep Chandra, Bunthang Touch, Ratha Sor, Sovan Lek and Peng Bun Ngor
Sustainability 2023, 15(18), 13535; https://doi.org/10.3390/su151813535 - 11 Sep 2023
Cited by 6 | Viewed by 2170
Abstract
Migratory fishes of the Mekong Basin are facing challenges from human-induced stressors. Quantifying the patterns of fish’s early life stages provides important information on spawning seasons, spawning and nursery habitats, reproductive strategies, migration and dispersal patterns, and stock status. However, the ecology of [...] Read more.
Migratory fishes of the Mekong Basin are facing challenges from human-induced stressors. Quantifying the patterns of fish’s early life stages provides important information on spawning seasons, spawning and nursery habitats, reproductive strategies, migration and dispersal patterns, and stock status. However, the ecology of the Mekong larval fishes, including patterns and drivers of larval fish dispersal, is not well understood. Here, we investigate the temporal variability of drifting larval and juvenile fish assemblages in the Cambodian Mekong River and identify their environmental drivers using long-term (10 year) daily fish larval/juvenile data collections. We found that, in the Mekong main channel, the larval and juvenile assemblages were dominated by longitudinal migrants from the families Cyprinidae and Pangasiidae. Peak abundance and richness were found to occur in July and August, respectively. We detected a significant decline in larval and juvenile abundance and richness over the study period. Cross-wavelet analysis revealed that water levels always lead larval abundance, but lag richness. In addition, cross-correlation analysis observed that peak abundance and richness occurred eight weeks and one week, respectively, before the peak water level. We also discovered that species abundance and richness had a strongly positive relationship with maximum water levels. Variation in fish larval and juvenile abundance and richness was also related to total phosphorus, nitrate, alkalinity, and conductivity. Maximum water levels and the key water quality parameters (e.g., phosphorus, nitrate, alkalinity, and conductivity) significantly influence larval and juvenile fish abundance and richness patterns. Therefore, safeguarding natural seasonal flows, especially maximum flows associated with the peak flood pulse, as well as maintaining good water quality, are key to the reproductive success of many migratory fishes and effective dispersal of offspring to the lower floodplain for nursing, rearing, and growth. Clean and unregulated rivers support productive and diverse fisheries. Full article
Show Figures

Figure 1

15 pages, 1425 KiB  
Article
Effect of Temperature, Seed Size, Sowing Depth, and Position on Seed Germination and Seedling Growth of Bauhinia retusa Roxb. and Bauhinia variegata L.
by Neeraj Yadav, Vinod Prasad Khanduri, Bhupendra Singh, Chatar Singh Dhanai, Manoj Kumar Riyal, Deepa Rawat, Taufiq Ahmad and Munesh Kumar
Forests 2023, 14(8), 1664; https://doi.org/10.3390/f14081664 - 17 Aug 2023
Cited by 5 | Viewed by 3239
Abstract
In urban forestry plantations are implemented in different cities of the world for social and environmental benefits. Bauhinia retusa and Bauhinia variegata are important species and to be used as large-scale plantation programs in urban forestry which might solve or mitigate urban, social, [...] Read more.
In urban forestry plantations are implemented in different cities of the world for social and environmental benefits. Bauhinia retusa and Bauhinia variegata are important species and to be used as large-scale plantation programs in urban forestry which might solve or mitigate urban, social, and environmental issues such as improving the physical & mental health of residents, food and nutrition security, increasing urban biodiversity, cooling the neighboring, preventing soil erosion, flooding, and mitigating greenhouse gas emissions and air pollution. The present study was conducted with the aim of producing quality planting material for B. retusa and B. variegata in the nursery for afforestation programs. Seeds of B. retusa and B. variegata were collected from the natural habitats to assess seed germination and seedling growth. Seeds were stored in different types of containers at room temperature and later on exposed to 15, 20, and 25 °C in seed germinator. Seeds were further sown in polythene bags according to the seed size, seed coat color, seed sowing depth, the orientation of seeds, and the result of the emergence of seedlings, their growth, and biomass were estimated. A two-way analysis of variance was calculated to estimate the variation among the studied parameters. Results revealed that a constant 25 °C temperature was considered best for seed germination of both the Bauhinia species. Polybags were found the most suitable for storing the Bauhinia seeds among the storage containers. The seedling emergence and growth were maximum in yellow color and large seeds. In B. retusa, seedling emergence, and growths were the maximum in seeds sown at a horizontal position and in B. variegata at an upright position. Seedling emergence, length, and biomass were recorded the maximum when seeds of B. retusa were sown at 4 cm depth and B. variegata seeds were sown at 2 cm depth. The study recommends that the yellow color seed that has to be sown at 2 cm to 4 cm depth with upright and horizontal positions is considered best for the production of quality planting stock of both studied Bauhinia species. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

18 pages, 8921 KiB  
Article
Reproductive Biology and Distribution of the Blue Shark (Prionace glauca) in the Western Indian Ocean
by Jizhang Zhu, Zhe Geng, Jiangfeng Zhu and Kindong Richard
Biology 2023, 12(8), 1128; https://doi.org/10.3390/biology12081128 - 14 Aug 2023
Cited by 4 | Viewed by 2738
Abstract
Due to the limited biological research on the blue shark in the Indian Ocean, such as the lack of a clear understanding of its reproductive biology and distribution, our study analyzed and evaluated the fork length distribution, sexual maturity length, reproductive capacity, and [...] Read more.
Due to the limited biological research on the blue shark in the Indian Ocean, such as the lack of a clear understanding of its reproductive biology and distribution, our study analyzed and evaluated the fork length distribution, sexual maturity length, reproductive capacity, and spatiotemporal distribution of blue sharks based on biological data and capture location information collected in the western Indian Ocean from 2010 to 2020. The objective of this study is to provide reliable biological information important in performing future stock assessments vital for species conservation in this region. A total of 791 male (33–249.5 cm FL) and 803 female (12–349.6 cm FL) blue sharks were collected in the West Indian Ocean. We used the morphology of the sexual organs to ascertain their sexual maturity. Results show that the observed size at 50% sexual maturity of male blue sharks in the West Indian Ocean was 161.4cm FL (192.4 cm TL) for males and 179.3 cm FL (213.9 cm TL) for females based on logistic curve analysis. The average litter size of pregnant blue sharks was 33.7 pups. There were significant differences in the distribution of blue shark individuals with different sexual maturity levels in different quarters (p < 0.05). This study suggests that the area near the equator in the Indian Ocean from October to March of the following year may be the mating ground for blue sharks, while the temperate waters in the Indian Ocean are the nursery ground and parturition ground for pregnant and juvenile throughout the whole year. Therefore, it is recommended to adopt a more scientific and reasonable operational method in these areas. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Figure 1

11 pages, 1836 KiB  
Article
Field Implementation of Forecasting Models for Predicting Nursery Mortality in a Midwestern US Swine Production System
by Edison S. Magalhaes, Danyang Zhang, Chong Wang, Pete Thomas, Cesar A. A. Moura, Derald J. Holtkamp, Giovani Trevisan, Christopher Rademacher, Gustavo S. Silva and Daniel C. L. Linhares
Animals 2023, 13(15), 2412; https://doi.org/10.3390/ani13152412 - 26 Jul 2023
Cited by 4 | Viewed by 1942
Abstract
The performance of five forecasting models was investigated for predicting nursery mortality using the master table built for 3242 groups of pigs (~13 million animals) and 42 variables, which concerned the pre-weaning phase of production and conditions at placement in growing sites. After [...] Read more.
The performance of five forecasting models was investigated for predicting nursery mortality using the master table built for 3242 groups of pigs (~13 million animals) and 42 variables, which concerned the pre-weaning phase of production and conditions at placement in growing sites. After training and testing each model’s performance through cross-validation, the model with the best overall prediction results was the Support Vector Machine model in terms of Root Mean Squared Error (RMSE = 0.406), Mean Absolute Error (MAE = 0.284), and Coefficient of Determination (R2 = 0.731). Subsequently, the forecasting performance of the SVM model was tested on a new dataset containing 72 new groups, simulating ongoing and near real-time forecasting analysis. Despite a decrease in R2 values on the new dataset (R2 = 0.554), the model demonstrated high accuracy (77.78%) for predicting groups with high (>5%) or low (<5%) nursery mortality. This study demonstrated the capability of forecasting models to predict the nursery mortality of commercial groups of pigs using pre-weaning information and stocking condition variables collected post-placement in nursery sites. Full article
(This article belongs to the Special Issue 2nd U.S. Precision Livestock Farming Conference)
Show Figures

Figure 1

Back to TopTop