Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,512)

Search Parameters:
Keywords = nucleophilic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 3805 KiB  
Article
Ferrocene-Catalyzed Aromatization and Competitive Oxidative Ring Transformations of 1,2-Dihydro-1-Arylpyridazino[4,5-d]Pyridazines
by Dániel Hutai, Tibor Zs. Nagy, Veronika Emődi and Antal Csámpai
Catalysts 2025, 15(8), 742; https://doi.org/10.3390/catal15080742 - 4 Aug 2025
Abstract
This paper presents the expected and unexpected, but typically substituent-dependent, ferrocene-catalyzed DDQ-mediated oxidative transformations of a series of 5,8-bis(methylthio)-1-aryl-1,2-dihydropyridazino[4,5-d]pyridazines and 8-(3,5-dimethyl-1H-pyrazol-1-yl)-5-(methylthio)-1-aryl-1,2-dihydropyridazino[4,5-d]pyridazines. Under noncatalytic conditions the reactions were sluggish, mainly producing a substantial amount of undefined [...] Read more.
This paper presents the expected and unexpected, but typically substituent-dependent, ferrocene-catalyzed DDQ-mediated oxidative transformations of a series of 5,8-bis(methylthio)-1-aryl-1,2-dihydropyridazino[4,5-d]pyridazines and 8-(3,5-dimethyl-1H-pyrazol-1-yl)-5-(methylthio)-1-aryl-1,2-dihydropyridazino[4,5-d]pyridazines. Under noncatalytic conditions the reactions were sluggish, mainly producing a substantial amount of undefined tarry materials; nevertheless, the ferrocene-catalyzed reactions of the 5,8-bis(methylthio)-substituted precursors gave the aromatic products the expected aromatic products in low yields. Their formation was accompanied by ring transformations proceeding via aryne-generating fragmentation/Diels–Alder (DA)/N2-releasing retro Diels–Alder (rDA) sequence to construct arene-fused phthalazines. On the other hand, neither the noncatalytic nor the catalytic reactions of the 8-pyrazolyl-5-methylthio-substituted dihydroaromatics yielded the expected aromatic products. Instead, depending on their substitution pattern, the catalytic reactions of these pyrazolyl-substituted precursors also led to the formation of dearylated arene-fused phthalazines competing with an unprecedented multistep fragmentation sequence terminated by the hydrolysis of cationic intermediates to give 4-(methylthio)pyridazino[4,5-d]pyridazin-1(2H)-one and the corresponding 3,5-dimethyl-1-aryl-1H-pyrazole. When 0.6 equivalents of DDQ were applied in freshly absolutized THF, a representative pyrazolyl-substituted model underwent an oxidative coupling to give a dimer formed by the interaction of the cationic intermediate, and a part of the N-nucleophilic precursor remained intact. A systematic computational study was conducted on these intriguing reactions to support their complex mechanisms proposed on the basis of the structures of the isolated products. Full article
(This article belongs to the Special Issue Catalysis in Heterocyclic and Organometallic Synthesis, 3rd Edition)
Show Figures

Graphical abstract

12 pages, 2911 KiB  
Article
A pH-Sensitive Glutathione Responsive Small-Molecule Probe TZ2 Sensitizes Lung Cancer Cells to Chemotherapy by Targeting Tumor Microenvironment
by Changle Zhong, Minghan Lu, Guanhao Pan, Xintong You, Yan Peng, Shulan Zeng and Guohai Zhang
Molecules 2025, 30(15), 3081; https://doi.org/10.3390/molecules30153081 - 23 Jul 2025
Viewed by 206
Abstract
The tumor microenvironment plays an important role in tumor incidence, metastasis, and chemotherapy resistance. Novel therapeutic strategies targeting the tumor microenvironment have become a research focus in the field of biomedicine. In this study, we developed a smart small-molecule probe, TZ2, featuring [...] Read more.
The tumor microenvironment plays an important role in tumor incidence, metastasis, and chemotherapy resistance. Novel therapeutic strategies targeting the tumor microenvironment have become a research focus in the field of biomedicine. In this study, we developed a smart small-molecule probe, TZ2, featuring pH/GSH dual-responsive characteristics. TZ2 exhibits a unique pH-dependent reaction mechanism: GSH is preferentially covalently modified with maleimide groups in acidic microenvironments (pH < 7), while specifically activating nucleophilic substitutions under alkaline conditions (pH > 7). It is worth noting that TZ2 effectively eliminates intracellular glutathione (GSH) in a time and concentration-dependent manner, demonstrating significant GSH depletion ability in various tumor cell lines. Pharmacodynamic studies have shown that TZ2 not only inhibits the cell cycle by regulating the expression of cell cycle-related proteins, but also effectively suppresses the cloning ability of cancer cells. Furthermore, TZ2 significantly increases the sensitivity of drug-resistant cancer cells to cisplatin. By integrating microenvironment modulation, real-time monitoring, and synergistic therapy, TZ2 provides a novel molecular tool and theoretical basis for tumor theranostics integration. Full article
Show Figures

Figure 1

14 pages, 901 KiB  
Article
Structural Modifications at the C3 and C30 Positions of the Lupane Skeleton with Carbon-Centered Nucleophiles
by Davide Castiglione, Gianfranco Fontana, Laura Castoldi and Vittorio Pace
Molecules 2025, 30(15), 3064; https://doi.org/10.3390/molecules30153064 - 22 Jul 2025
Viewed by 300
Abstract
Lupeol, a naturally occurring pentacyclic triterpenoid widely distributed in various medicinal plants, has attracted significant attention due to its diverse pharmacological properties. In this study, we report the synthesis and structural modification of 14 lupeol derivatives through selective functionalizations at C3 and C30 [...] Read more.
Lupeol, a naturally occurring pentacyclic triterpenoid widely distributed in various medicinal plants, has attracted significant attention due to its diverse pharmacological properties. In this study, we report the synthesis and structural modification of 14 lupeol derivatives through selective functionalizations at C3 and C30 positions of the lupane skeleton, via the sequential chemoselective introduction of carbonyl moieties and the addition of organometallics. Emphasis has been given to the stereoselective alkylation at C3 using a range of carbanions, including organolithiums, organomagnesiums and organoindiums. The C30 position was modified through oxidative pathways to introduce several functionalities. Full article
Show Figures

Scheme 1

7 pages, 636 KiB  
Short Note
Benzyl-N-[4-(2-hydroxyethyl)-1,3-thiazol-2-yl]carbamate
by Lucrezia Spinelli, Matteo Mori and Laura Fumagalli
Molbank 2025, 2025(3), M2040; https://doi.org/10.3390/M2040 - 21 Jul 2025
Viewed by 497
Abstract
Heterocycles—cyclic compounds containing at least one non-carbon heteroatom (e.g., N, O, S)—are fundamental in medicinal chemistry due to their influence on a drug’s physicochemical and biological properties. They improve solubility, bioavailability, and facilitate molecular recognition through their electronic and hydrogen-bonding features. These properties [...] Read more.
Heterocycles—cyclic compounds containing at least one non-carbon heteroatom (e.g., N, O, S)—are fundamental in medicinal chemistry due to their influence on a drug’s physicochemical and biological properties. They improve solubility, bioavailability, and facilitate molecular recognition through their electronic and hydrogen-bonding features. These properties make them indispensable in drug design. This study focuses on the synthesis of a key heterocyclic intermediate: benzyl-N-[4-(2-hydroxyethyl)-1,3-thiazol-2-yl]carbamate. This molecule incorporates a thiazole ring, known for its rigidity and electronic properties, that enhances target interactions. The 2-position bears a Cbz-protected amine, enabling orthogonal deprotection, while the 4-position features a hydroxyethyl side chain, providing a handle for further chemical modifications via nucleophilic substitution. Herein, we report the successful synthesis of this intermediate along with its full 1H and 13C NMR spectra, melting point, and crystal structure, confirming its identity and purity. Full article
Show Figures

Figure 1

17 pages, 1827 KiB  
Article
Synthesis of Substituted 1,4-Benzodiazepines by Palladium-Catalyzed Cyclization of N-Tosyl-Disubstituted 2-Aminobenzylamines with Propargylic Carbonates
by Masahiro Yoshida, Saya Okubo, Akira Kurosaka, Shunya Mori, Touya Kariya and Kenji Matsumoto
Molecules 2025, 30(14), 3004; https://doi.org/10.3390/molecules30143004 - 17 Jul 2025
Viewed by 502
Abstract
A synthesis of substituted 1,4-benzodiazepines has been developed via palladium-catalyzed cyclization of N-tosyl-disubstituted 2-aminobenzylamines with propargylic carbonates. The reaction proceeds through the formation of π-allylpalladium intermediates, which undergo intramolecular nucleophilic attack by the amide nitrogen to afford seven-membered benzodiazepine cores. In reactions [...] Read more.
A synthesis of substituted 1,4-benzodiazepines has been developed via palladium-catalyzed cyclization of N-tosyl-disubstituted 2-aminobenzylamines with propargylic carbonates. The reaction proceeds through the formation of π-allylpalladium intermediates, which undergo intramolecular nucleophilic attack by the amide nitrogen to afford seven-membered benzodiazepine cores. In reactions involving unsymmetrical diaryl-substituted carbonates, regioselectivity was observed to favor nucleophilic attack at the alkyne terminus substituted with the more electron-rich aryl group, suggesting that electronic effects play a key role in determining product distribution. The versatility of this reaction was further demonstrated by constructing a benzodiazepine framework found in bioactive molecules, indicating its potential utility in medicinal chemistry. Mechanistic insights supported by stereochemical outcomes and X-ray crystallographic analysis of key intermediates reinforce the proposed reaction pathway. This palladium-catalyzed protocol thus offers an efficient and practical approach to access structurally diverse benzodiazepine derivatives. Full article
(This article belongs to the Special Issue Advances in Heterocyclic Synthesis, 2nd Edition)
Show Figures

Graphical abstract

46 pages, 3942 KiB  
Review
Catalytic Fluorination with Modern Fluorinating Agents: Recent Developments and Synthetic Scope
by Muhammad Saeed Akhtar, Mohammad Aslam, Wajid Zaman, Kuppu Sakthi Velu, Seho Sun and Hee Nam Lim
Catalysts 2025, 15(7), 665; https://doi.org/10.3390/catal15070665 - 8 Jul 2025
Viewed by 1986
Abstract
Fluorinated organic molecules have become indispensable in modern chemistry, owing to the unique properties imparted by fluorine to other compounds, including enhanced metabolic stability, controlled lipophilicity, and improved bioavailability. The site-selective incorporation of fluorine atoms into organic frameworks is essential in pharmaceutical, agrochemical, [...] Read more.
Fluorinated organic molecules have become indispensable in modern chemistry, owing to the unique properties imparted by fluorine to other compounds, including enhanced metabolic stability, controlled lipophilicity, and improved bioavailability. The site-selective incorporation of fluorine atoms into organic frameworks is essential in pharmaceutical, agrochemical, and material science research. In recent years, catalytic fluorination has become an important methodology for the efficient and selective incorporation of fluorine atoms into complex molecular architectures. This review highlights advances in catalytic fluorination reactions over the past six years and describes the contributions of transition metal catalysts, photocatalysts, organocatalysts, and electrochemical systems that have enabled site-selective fluorination under a variety of conditions. Particular attention is given to the use of well-defined fluorinating agents, including Selectfluor, N-fluorobenzenesulfonimide (NFSI), AlkylFluor, Synfluor, and hypervalent iodine reagents. These reagents have been combined with diverse catalytic systems, such as AgNO3, Rh(II), Mo-based complexes, Co(II)-salen, and various organocatalysts, including β,β-diaryl serine catalysts, isothiourea catalysts, and chiral phase-transfer catalysts. This review summarizes proposed mechanisms reported in the original studies and discusses examples of electrophilic, nucleophilic, radical, photoredox, and electrochemical fluorination pathways. Recent developments in stereoselective and more sustainable protocols are also examined. By consolidating these strategies, this article provides an up-to-date perspective on catalytic fluorination and its impact on synthetic organic chemistry. Full article
(This article belongs to the Special Issue Sustainable Catalysis for Green Chemistry and Energy Transition)
Show Figures

Graphical abstract

16 pages, 2998 KiB  
Article
Synthesis of Novel Tetra-Substituted Pyrazole Derivatives Using Microwave Irradiation and Their Anti-Leukemic Activity Against Jurkat Cells
by Felipe P. Machado, Maria Clara Campos, Juliana Echevarria-Lima, Diego P. Sangi, Carlos Serpa, Otávio Augusto Chaves and Aurea Echevarria
Molecules 2025, 30(13), 2880; https://doi.org/10.3390/molecules30132880 - 7 Jul 2025
Viewed by 527
Abstract
Three previously synthesized ketene dithioacetals were used as intermediates to obtain four nucleophiles to synthesize ten tetra-substituted pyrazoles (1120). This was achieved through microwave irradiation in ethanol as the solvent, yielding superb results ranging from 68.4% to 90.1%, in [...] Read more.
Three previously synthesized ketene dithioacetals were used as intermediates to obtain four nucleophiles to synthesize ten tetra-substituted pyrazoles (1120). This was achieved through microwave irradiation in ethanol as the solvent, yielding superb results ranging from 68.4% to 90.1%, in agreement with some of the principles of green chemistry. The proposed structures were determined using various spectroscopic techniques, including infrared spectroscopy and hydrogen and carbon-13 nuclear magnetic resonance. Furthermore, the compounds underwent in-silico evaluations using CLC-Pred and AdmetSAR software to predict the absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties. This was combined with molecular docking calculations for four main cancer-related targets for pyrazole core, to facilitate screening for subsequent biological assessments. Based on the data generated from these analyses, it was identified two pyrazoles (11 and 18) likely to exhibit anti-tumor activity, while also demonstrating low toxicity levels. Upon selection, these two pyrazoles were subjected to toxicity assessments using the Artemia salina method and evaluated for their effects on the viability of Jurkat cancer cells with a potency of 45.05 and 14.85 µM to 11 and 18, respectively, and with a potency of above 100 µM for the non-carcinogenic cells HEK 293. Overall, the findings from these studies indicate pyrazole derivatives as potential anti-tumor candidates. Full article
Show Figures

Figure 1

20 pages, 7908 KiB  
Article
DFT Study of PVA Biocomposite/Oyster Shell (CaCO3) for the Removal of Heavy Metals from Wastewater
by Jose Alfonso Prieto Palomo, Juan Esteban Herrera Zabala and Joaquín Alejandro Hernández Fernández
J. Compos. Sci. 2025, 9(7), 340; https://doi.org/10.3390/jcs9070340 - 1 Jul 2025
Viewed by 360
Abstract
The persistent contamination of aquatic environments by heavy metals, particularly Pb2+, Cd2+, and Cu2+, poses a serious global threat due to their toxicity, persistence, and bioaccumulative behavior. In response, low-cost and eco-friendly adsorbents are being explored, among which [...] Read more.
The persistent contamination of aquatic environments by heavy metals, particularly Pb2+, Cd2+, and Cu2+, poses a serious global threat due to their toxicity, persistence, and bioaccumulative behavior. In response, low-cost and eco-friendly adsorbents are being explored, among which CaCO3-based biocomposites derived from mollusk shells have shown exceptional performance. In this study, a hybrid biocomposite composed of poly(vinyl alcohol) (PVA) and oyster shell-derived CaCO3 was computationally investigated using Density Functional Theory (DFT) to elucidate the electronic and structural basis for its high metal-removal efficiency. Calculations were performed at the B3LYP/6-311++G(d,p), M05-2X/6-311+G(d,p), and M06-2X/6-311++G(d,p) levels using GAUSSIAN 16. Among them, B3LYP was identified as the most balanced in terms of accuracy and computational cost. The hybridization with CaCO3 reduced the HOMO-LUMO gap by 20% and doubled the dipole moment (7.65 Debye), increasing the composite’s polarity and reactivity. Upon chelation with metal ions, the gap further dropped to as low as 0.029 eV (Cd2+), while the dipole moment rose to 17.06 Debye (Pb2+), signaling enhanced charge separation and stronger electrostatic interactions. Electrostatic potential maps revealed high nucleophilicity at carbonate oxygens and reinforced electrophilic fields around the hydrated metal centers, correlating with the affinity trend Cu2+ > Cd2+ > Pb2+. Fukui function analysis indicated a redistribution of reactive sites, with carbonate oxygens acting as ambiphilic centers suitable for multidentate coordination. Natural Bond Orbital (NBO) analysis confirmed the presence of highly nucleophilic lone pairs and weakened bonding orbitals, enabling flexible adsorption dynamics. Furthermore, NCI/RDG analysis highlighted attractive noncovalent interactions with Cu2+ and Pb2+, while FT-IR simulations demonstrated the formation of hydrogen bonding (O–H···O=C) and Ca2+···O coordination bridges between phases. Full article
(This article belongs to the Special Issue Sustainable Biocomposites, 3rd Edition)
Show Figures

Figure 1

18 pages, 7501 KiB  
Article
Probing the Active Site of Class 3 L-Asparaginase by Mutagenesis: Mutations of the Ser-Lys Tandems of ReAV
by Kinga Pokrywka, Marta Grzechowiak, Joanna Sliwiak, Paulina Worsztynowicz, Joanna I. Loch, Milosz Ruszkowski, Miroslaw Gilski and Mariusz Jaskolski
Biomolecules 2025, 15(7), 944; https://doi.org/10.3390/biom15070944 - 29 Jun 2025
Viewed by 349
Abstract
The ReAV enzyme from Rhizobium etli, a representative of Class 3 L-asparaginases, is sequentially and structurally different from other known L-asparaginases. This distinctiveness makes ReAV a candidate for novel antileukemic therapies. ReAV is a homodimeric protein, with each subunit containing a highly [...] Read more.
The ReAV enzyme from Rhizobium etli, a representative of Class 3 L-asparaginases, is sequentially and structurally different from other known L-asparaginases. This distinctiveness makes ReAV a candidate for novel antileukemic therapies. ReAV is a homodimeric protein, with each subunit containing a highly specific zinc-binding site created by two cysteines, a lysine, and a water molecule. Two Ser-Lys tandems (Ser48-Lys51, Ser80-Lys263) are located in the close proximity of the metal binding site, with Ser48 hypothesized to be the catalytic nucleophile. To further investigate the catalytic process of ReAV, site-directed mutagenesis was employed to introduce alanine substitutions at residues from the Ser-Lys tandems and at Arg47, located near the Ser48-Lys51 tandem. These mutational studies, along with enzymatic assays and X-ray structure determinations, demonstrated that substitution of each of these highly conserved residues abolished the catalytic activity, confirming their essential role in enzyme mechanism. Full article
(This article belongs to the Special Issue State-of-the-Art Protein X-Ray Crystallography)
Show Figures

Figure 1

20 pages, 1433 KiB  
Article
Betulinic Acid ω-Triphenylphosphonium Alkyl Esters: Antiproliferative Activities and In Silico Pharmacokinetic Profiles
by Cristian Suárez-Rozas, Claudia Duarte-Salinas, Javier Gajardo-De la Fuente, Paola Salgado-Figueroa, Julio Salas-Norambuena, Bruce K. Cassels, Cristina Theoduloz, José A. Jara, Sebastián Fuentes-Retamal, Paola R. Campodónico, Jorge Soto-Delgado and Mabel Catalán
Biomedicines 2025, 13(7), 1539; https://doi.org/10.3390/biomedicines13071539 - 24 Jun 2025
Viewed by 593
Abstract
Background: Betulinic acid (BA) and some derivatives are well-known antiproliferative compounds. Literature precedents suggest that incorporating triphenylphosphonium (TPP+) salts on this triterpenoid scaffold enhances its biological activity. In the present study, we carried out a simple synthesis of [...] Read more.
Background: Betulinic acid (BA) and some derivatives are well-known antiproliferative compounds. Literature precedents suggest that incorporating triphenylphosphonium (TPP+) salts on this triterpenoid scaffold enhances its biological activity. In the present study, we carried out a simple synthesis of C-28 ester derivatives of this triterpenoid conjugated with TPP+ bromide salts through 4- to 6-carbon chains via nucleophilic substitution of the corresponding ω-TPP+bromoalkanes. Tests for antiproliferative activity in nine cancer cell lines and normal human fibroblasts showed that TPP+ incorporation enhanced the potency of BA by more than an order of magnitude, up to 100-fold. BA-C4-TPP+Br, with a four-carbon chain separating the TPP+ moiety from the BA, showed remarkable antiproliferative effects, sometimes more potent than the reference drug (Etoposide). This compound exhibited the strongest mitochondrial uncoupling effect in human cancer cells. No significant LDH release was noted in colorectal carcinoma cells at low micromolar concentrations of BA-C4-TPP+Br, and sub-micromolar concentrations were sufficient for inducing apoptosis. The in silico prediction of pharmacokinetic properties suggested high oral absorption (88%), as well as a non-inhibitor and non-substrate profile vs. cytochrome isoenzymes. These results point to this compound as a promising lead for the development of novel anticancer drugs. Full article
(This article belongs to the Special Issue Medicinal Chemistry in Drug Design and Discovery, 2nd Edition)
Show Figures

Graphical abstract

24 pages, 12400 KiB  
Article
Synthesis, Antimicrobial Activities, and Model of Action of Novel Tetralone Derivatives Containing Aminoguanidinium Moiety
by Qing-Jie Zhang, Yu-Xi Li, Wen-Bo Ge, Li-Xia Bai, Xiao Xu, Ya-Jun Yang, Xi-Wang Liu and Jian-Yong Li
Int. J. Mol. Sci. 2025, 26(13), 5980; https://doi.org/10.3390/ijms26135980 - 21 Jun 2025
Viewed by 424
Abstract
The objectives of this study were to design, synthesize, and evaluate the antibacterial activity of a series of novel aminoguanidine-tetralone derivatives. Thirty-four new compounds were effectively synthesized through nucleophilic substitution reaction and guanidinylation reaction. Chemical structures of all the desired compounds were identified [...] Read more.
The objectives of this study were to design, synthesize, and evaluate the antibacterial activity of a series of novel aminoguanidine-tetralone derivatives. Thirty-four new compounds were effectively synthesized through nucleophilic substitution reaction and guanidinylation reaction. Chemical structures of all the desired compounds were identified by NMR and HR-MS spectroscopy. Most of the synthesized compounds showed significant antibacterial activity against ESKAPE pathogens and clinically resistant Staphylococcus aureus (S. aureus) isolates. S. aureus is an important pathogen that has the capacity to cause a variety of diseases, including skin infections, pneumonia, and sepsis. The most active compound, 2D, showed rapid bactericidal activity against S. aureus ATCC 29213 and MRSA-2 with MIC/MBC values of 0.5/4 µg/mL and 1/4 µg/mL, respectively. The hemolytic activity and cytotoxicity of 2D was low, with HC50 and IC50(HEK 293-T) values of 50.65 µg/mL and 13.09 µg/mL, respectively. Compound 2D induced the depolarization of the bacterial membrane and disrupted bacterial membrane integrity, ultimately leading to death. Molecular docking revealed that dihydrofolate reductase (DHFR) may be a potential target for 2D. In the mouse skin abscess model caused by MRSA-2, 2D reduced the abscess volume, decreased bacterial load, and alleviated tissue pathological damage at doses of 5 and 10 mg/kg. Therefore, compound 2D may be a promising drug candidate for antibacterial purposes against S. aureus. Full article
(This article belongs to the Special Issue Advanced Research in Veterinary Drugs)
Show Figures

Figure 1

15 pages, 2012 KiB  
Article
Food Grade Synthesis of Hetero-Coupled Biflavones and 3D-Quantitative Structure–Activity Relationship (QSAR) Modeling of Antioxidant Activity
by Hongling Zheng, Xin Yang, Qiuyu Zhang, Joanne Yi Hui Toy and Dejian Huang
Antioxidants 2025, 14(6), 742; https://doi.org/10.3390/antiox14060742 - 16 Jun 2025
Viewed by 548
Abstract
Biflavonoids are a unique subclass of dietary polyphenolic compounds known for their diverse bioactivities. Despite these benefits, these biflavonoids remain largely underexplored due to their limited natural availability and harsh conditions required for their synthesis, which restricts broader research and application in functional [...] Read more.
Biflavonoids are a unique subclass of dietary polyphenolic compounds known for their diverse bioactivities. Despite these benefits, these biflavonoids remain largely underexplored due to their limited natural availability and harsh conditions required for their synthesis, which restricts broader research and application in functional foods and nutraceuticals. To address this gap, we synthesized a library of rare biflavonoids using a radical–nucleophile coupling reaction previously reported by our group. The food grade coupling reaction under weakly alkaline water at room temperature led to isolation of 28 heterocoupled biflavones from 11 monomers, namely 3′,4′-dihydroxyflavone, 5,3′,4′-trihydroxyflavone, 6,3′,4′-trihydroxyflavone, 7,3′,4′-trihydroxyflavone, diosmetin, chrysin, acacetin, genistein, biochanin A, and wogonin. The structures of the dimers are characterized by nuclear magnetic resonance spectroscopy (NMR) and high-resolution mass spectroscopy (HRMS). In addition, we evaluated the antioxidant potential of these biflavones using a DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging assay and the DPPH value ranges between 0.75 to 1.82 mM of Trolox/mM of sample across the 28 synthesized dimers. Additionally, a three-dimensional quantitative structure–activity relationship (3D-QSAR) analysis was conducted to identify structural features associated with enhanced antioxidant activity. The partial least squares (PLS) regression QSAR model showed acceptable r2 = 0.936 and q2 = 0.869. Additionally, the average local ionization energy (ALIE), electrostatic potential (ESP), Fukui index (F-), and electron density (ED) were determined to identify the key structural moiety that was capable of donating electrons to neutralize reactive oxygen species. Full article
Show Figures

Graphical abstract

19 pages, 10543 KiB  
Article
Protective Effect of Biobran/MGN-3, an Arabinoxylan from Rice Bran, Against the Cytotoxic Effects of Polyethylene Nanoplastics in Normal Mouse Hepatocytes: An In Vitro and In Silico Study
by Heba Allah M. Elbaghdady, Rasha M. Allam, Mahmoud I. M. Darwish, Maha O. Hammad, Hewida H. Fadel and Mamdooh H. Ghoneum
Nutrients 2025, 17(12), 1993; https://doi.org/10.3390/nu17121993 - 13 Jun 2025
Viewed by 1367
Abstract
Background: Plastic is one of the most versatile and widely used materials, but the environmental accumulation of nanoplastics (NPs) poses a risk to human health. Preclinical studies have verified that the liver is one of the main organs susceptible to NPs. Biobran/MGN-3, an [...] Read more.
Background: Plastic is one of the most versatile and widely used materials, but the environmental accumulation of nanoplastics (NPs) poses a risk to human health. Preclinical studies have verified that the liver is one of the main organs susceptible to NPs. Biobran/MGN-3, an arabinoxylan from rice bran, has been shown to have hepatoprotective effects; here, we show Biobran’s ability to alleviate polyethylene nanoplastics (PE-NPs)-induced liver cell toxicity by reversing apoptosis and restoring G2/M cell arrest in mouse liver cells (BNL CL.2). Methods: Toxicological effects were measured using the sulforhodamine B (SRB) assay for cell viability and flow cytometry for cell cycle analysis and apoptosis. An in silico study was also used to demonstrate the docking of PE-NPs to pro-inflammatory mediator proteins (IL-6R, IL-17R, CD41/CD61, CD47/SIRP), cell cycle regulators (BCL-2, c-Myc), as well as serine carboxypeptidase, which is an active ingredient of Biobran. Results: Exposing liver cells to PE-NPs caused a significant decrease in cell viability, with an IC50 value of 334.9 ± 2.7 µg/mL. Co-treatment with Biobran restored cell viability to normal levels, preserving 85% viability at the highest concentration of PE-NPs. Additionally, total cell death observed after exposure to PE-NPs was reduced by 2.4-fold with Biobran co-treatment. The G2/M arrest and subsequent cell death (pre-G0 phase) induced by PE-NPs were normalized after combined treatment. The in silico study revealed that Biobran blocks the nucleophilic centers of PE-NPs, preventing their interaction with pro-inflammatory mediators and cell cycle regulators. Conclusions: These findings highlight the potential use of Biobran as a hepatoprotector against NP toxicity. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Figure 1

9 pages, 516 KiB  
Short Note
4,4-Dichloro-1,3-dithietane-2-one
by Tracy R. Thompson, William W. Brennessel, Erik S. Goebel, Matthew J. Turcotte and George Barany
Molbank 2025, 2025(2), M2021; https://doi.org/10.3390/M2021 - 13 Jun 2025
Viewed by 716
Abstract
The title compound, 4,4-dichloro-1,3-dithietane-2-one, was encountered when opening a commercial capped amber bottle labeled “thiophosgene” that had been stored in a cold room (4 °C) for decades without any special precautions. Treating it as an unknown, the structure was established by single crystal [...] Read more.
The title compound, 4,4-dichloro-1,3-dithietane-2-one, was encountered when opening a commercial capped amber bottle labeled “thiophosgene” that had been stored in a cold room (4 °C) for decades without any special precautions. Treating it as an unknown, the structure was established by single crystal X-ray analysis, and confirmed by 13C NMR, FTIR, melting behavior, and elemental analysis; its behavior under several mass spectrometric conditions was also examined. The dithietane appears to be a spontaneously formed cyclodimer of thiophosgene in which exactly one (not zero, not both) of the dichloromethylene moieties has been hydrolyzed to a carbonyl function. The relative long-term stability of the hydrolyzed dimer, along with a pathway back to thiophosgene, suggests that it might serve as a storage vehicle for toxic thiophosgene. Furthermore, as noted elsewhere, the title compound reacts with nucleophiles under mild aqueous conditions, suggesting that it may be a useful probe in chemical biology. Full article
(This article belongs to the Collection Molecules from Side Reactions)
Show Figures

Figure 1

21 pages, 2196 KiB  
Article
Synergistic Antifungal Properties, Chemical Composition, and Frontier Molecular Orbital Analysis of Essential Oils from Lemongrass, Kaffir Lime, Lime, Dill, and Shatavari Against Malassezia furfur
by Sarin Tadtong, Rada Chantavacharakorn, Sarocha Khayankan, Puriputt Akachaipaibul, Wanna Eiamart and Weerasak Samee
Int. J. Mol. Sci. 2025, 26(12), 5601; https://doi.org/10.3390/ijms26125601 - 11 Jun 2025
Viewed by 714
Abstract
This study explores the chemical composition and synergistic anti-fungal properties of essential oils from the aerial parts of Satavari (Asparagus racemosus Willd.), Dill (Anethum graveolens L.), and lemongrass (Cymbopogon citratus Stapf), along with the peels of Lime (Citrus aurantifolia [...] Read more.
This study explores the chemical composition and synergistic anti-fungal properties of essential oils from the aerial parts of Satavari (Asparagus racemosus Willd.), Dill (Anethum graveolens L.), and lemongrass (Cymbopogon citratus Stapf), along with the peels of Lime (Citrus aurantifolia (Christm.)) and Kaffir lime (Citrus hystrix DC), as well as the leaves of Citrus hystrix DC, against Malassezia furfur, a yeast linked to dandruff and seborrheic dermatitis. Gas chromatography-mass spectrometry (GC-MS) identified key volatile compounds within these oils. In vitro anti-fungal assays evaluated their efficacy individually and in combinations using checkerboard dilution techniques to assess synergy. Results indicated significant antifungal activity, with lemongrass exhibiting the strongest effect (MIC of 0.125% v/v). Notably, a 1:1 combination of lemongrass and kaffir lime essential oils showed synergism, reducing the MIC to 0.0625% v/v. The antifungal activity was primarily attributed to citral and citronellal, with MICs of 0.03125% v/v and 0.125% v/v, respectively. Molecular orbital analysis revealed that the higher energy levels of the lowest unoccupied molecular orbitals (LUMOs) in citral correlate with greater antifungal efficacy, likely due to its enhanced electrophilicity, facilitating nucleophilic interactions with M. furfur’s cellular components. These findings highlight potential applications of essential oil combinations in antifungal therapies. Full article
(This article belongs to the Special Issue Antifungal Potential of Botanical Compounds)
Show Figures

Figure 1

Back to TopTop